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Abstract

We prove a finite model theorem and infinitary completeness result for
the propositional:-calculus. The construction establishes a link between fi-
nite model theorems for propositional program logics and the theory of well-
guasi-orders.

1 Introduction

L, is a propositiona}:- or least fixpoint-calculus related to systems of Scott and
DeBakker [11] and Pratt [8].L,, was introduced in [2], where an exponential-
time decision procedure and complete finitary deductive system were given for a
restricted class of formulas. In [3], a nonelementary decision procedure was given
for full L. In this paper we prove that every satisfiable formuld pfis satisfied

in a finite model. We also give a complete infinitary deductive system.

Finite model theorems are useful in obtaining efficient decision procedures. In
general, the smaller the model (as a function of the size of the formula), the more
efficient the decision procedure. The standard technique for obtaining finite mod-
els in propositional program logics figtration, a technigque borrowed from modal
logic. It was first used in propositional program logics to obtain a finite model
theorem for Propositional Dynamic Logic [1], thereby giving a nondeterministic
exponential-time decision procedure. Filtration does not worllfd@, 9], thus a
new technique is needed.

We prove the result by showing that the size of a minimal model for a given
satisfiableL,, formula is related to the size of a maximal set of pairwise incom-
parable elements in a particular ordered structure involving sets of ordinals. This
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establishes a connection between finite model theorems for propositional program
logics and the theory of well-quasi-orders.

Basic definitions are given ig2. In §3 we define a partial ordet on formulas
and extend it to a quasi-order on collections of formulag4imwe consider models
whose states are labeled with sets of formulas, and give local conditions (involving
<) on labelings which insure that a state satisfies all formulas in its label. The
results of this section may be of more general use in performing surgery on models.
In §5 we show that a certain quasi-ordgron sets of ordinals is a well-quasi-
order [4], therefore has a finite base.§we combine the results §# and§s to
obtain a finite model theorem. KY we show how the finite model theorem gives
a complete infinitary deductive systef8 contains conclusions and directions for
further work.

2 Definition of L, and L}

The systemd.,, and L} were defined in [2]. We review the definitions briefly,
referring the reader to [2] for a more detailed presentation.

2.1 Syntax

The basic nonlogical symbols &f, andLj consist of
1. propositional constant8, @, . ..
2. propositional variableX, Y, ...
3. program constants b, . ..

Formulasp, q, . .. are defined inductively:
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In (6) and (7),pX is a formula with a distinguished variablé, all of whose free
occurrences angositive(occur in the scope of an even number of negatignsn-
tuitively, o X.pX represents the-fold composition of the operatorX .p X applied
to false. L:g is the language defined by (1-7),, is the countable sublanguage
obtained by deleting (6).

The operatorg\, —, false, true, and[ a] are defined as usual. In addition, we
define

vX.pX = uX.~p-X.

The operatov is thegreatest fixpoint operator.

The usual quantifier scoping rules, as well as the definitions of bound and free
variables, apply tg. X, v X, andaX. A formula with no free variables is called
closed.

An L:; formulap is said to be irpositive formif it is built from the operators
VA, puv,< > [ ], and—, with — applied to atomic subformulas only. Every
closedL,, formula is equivalent to a formula in positive form.

2.2 Semantics

A modelis a structureM = (5, 1), whereS is a set ofstatesand ] is aninter-
pretation functioninterpreting the propositional and program constants, such that
I(P) € SandI(a) C S x S. A formulap(X) with free variables among

X = X1,...,X, is interpreted inM as an operatgr™ which maps any valua-
tionA = Ay,..., A, of X over subsets of to a subsep’™ (A4) of S. The operator

p™ is defined by induction as follows:

XMA) = A (2.1)
PMA) = I(P) (2.2)
(pvo™A) = pMA) uMA) (2.3)
-pMA) = s-pM(4) (2.4)
(<a>p)™M(A) = <d“>(pM(A)) (2.5)

where in (2.5),
<aM>(B) = {s| 3t € B (s,t) € I(a)}.

In order to give the semantics ofX.pX anduX.pX, let pX be a formula with
distinguished free variabl& occurring only positively. LetX denote the other
free variables ip. ThuspX = p(X, X). We assume by induction hypothesis that



the operatop™! has already been defined.

0X.pXM(A) = falseM = @ (2.6)
(a+1D)XpXMA) = pMaXpXM(A),A) (2.7)
0XpXMA) = ] BxpXM(A), salimitordinal  (2.8)

B<6
pX pXMA) = | JpXpXM(4A) (2.9)

B

where in (2.9), the union is over all ordinaks Takingu > o for any ordinala,
(2.6—2.9) reduce to the single definition

aX pxM(A) = | pM(BX.pXM(A), A) (2.10)
B<a
whereq is either an ordinal of.

Because is positive in the variablél, AX.p X (A) is a monotone set oper-
ator, and

a < fB—aXpXM(A) C X pXM(A). (2.11)

There exists a least ordinalsuch thate X.pXM(A4) = (k 4+ 1) X.pXM(A), and
it follows that u X.pXM(A) = kX.pXM(A). The ordinalx is called theclosure
ordinal of the operaton\ X.p™ (X, A), anduX.pXM(A) is theleast fixpointof
AX pM(X, A).

If p is closed, therp™ is a constant function, i.ep(A) is a fixed set of
states independent ef. In this case, we saysatisfieg if s € p™!(A), and write
M, s = pors = pwhenM is understood. We write= p if M, s |= p for all M
ands.

2.3 Closure

Let p be anL,, formula in positive form. Thelosure CL(p) of p was defined in
[2]. It corresponds to the Fischer-Ladner closur@biL [1]. It is the smallest set
of formulas such that:

1. p € CL(p)

2. if =P € CL(p) thenP € CL(p)

3. ifgVvr e CL(p) then bothg, r € CL(p)
4. if g Ar € CL(p) then bothy, r € CL(p)
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5. if <a>q € CL(p) thenq € CL(p)
6. if [ a] ¢ € CL(p) thenq € CL(p)
7. if 0 X.qX € CL(p) thenq(c X.qX) € CL(p),

whereo is eithery orv. CL(p) is finite, and is in fact no larger than the number of
symbols ofp [2].

3 A Partial Order on L; Formulas

Leta = aq,...,an andf@ = f3,..., 3, ben-tuples of ordinals o, and define
a< pgifa; < G, 1 <i <n. Letpbe aformula otL;L in positive form. Let
a1 X1.q1 X1, ... ,anX,.qn X, be a list of all occurrences of subformulasyobf

the formaX.qX, where eachy; is eithery or an ordinal, listed in the order in
which they occur irp. We denote this by writing

p=npla,...,an) = p(@).

Replacingo; in p with 8;, 1 < i < n, results in a WeII-forme(L; formulap(g3).
We definep(@) < p(B) if @ < . Thatis,p < ¢ if p andq are identical except for
the ordinals appearing in subformulas of the faui.» X, and the ordinals o
are no greater than the corresponding ordinalg. e definep” = p(u, ..., p),
the L, formula obtained by replacing all ordinals py and observe that < p#
for all L:{ formulasp. By (2.11) and the fact thatis positive,

if p<qgthen Ep—q. (3.12)
If 3, T aresetsof L:[ formulas, define
YXTifVgeTIpeXp=<q. (3.13)
From (3.12) we have that
if S <xTthen = AT — AT. (3.14)
Finally, if ¥ is a set ofL;r formulas, define

Y ={pt|pe X}



4 Annotated Models

Let M = (S,1) be any model, and lg be a function labeling each statec
S with a classO; of closed positiveL,! formulas. The labeling is called an
annotationof M, and the triplg.S, I, ©) is called arannotated model.

The following definition ofwell-annotationgives local syntactic conditions
that insure that states of an annotated model satisfy their labels (Lemma 4.2). This
is useful in performing surgery on models, because in practice it is easily checked
that these local conditions are preserved by certain cutting and pasting operations.

Definition 4.1 An annotatior® is called awell-annotatiorif the following condi-
tions hold:

if P € O, thens = P
if =P € O, thens = =P
if pV q € O, then eithep € B, 0orq € O,
if p A g € O, then bottp, g € O,
if aX.pX € O, then3fg < a p(X.pX) € O4, a an ordinal o
if v X.pX € O, thenp(vX.pX) € O,
if <a>p € B4, then3t (s,t) € I(a) andIp’ < pp' € 6,
(

if[ a] p € O, thenVit (s,t) € I(a) — Ip' < pp' € ©. O

© N o 0o~ w bR

Lemma 4.2
(i) If © is a well-annotation, them = ©, forall s € S.

(ii) If © is an annotation such thats s = O, then© can be extended to a
well-annotation® satisfying the property

Uesc U o (4.1)

seS tesS, qeOy

Proof. (i) Suppose is a well-annotation. For any closed positiﬂg formula
¢, letqg® = {s| 3¢ < qq €O} If q=q1,...,qnisalistof closed formulas, let
7° denote the lisy?, ... ,¢2. Letp(X) be anL;; formula in positive form with



free variables amony = X1,..., X,,. We prove by induction on the structure of
p and by transfinite induction on ordinals that

p(@)° < p™(@°).
In particular,p® C p™ for any closed. This will establish (i).
1. P® C PM by Definition 4.1(1).
2. =P® C —PM by Definition 4.1(2).
3. Xi(@)° = ¢ = XM(@).
4
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- (pV )@)° < p(@)° Uq(q)® by Definition 4.1(3)
C pM(3®) U ¢™(g®) by induction hypothesis
q

5. (pAq)@)® C p(q)° N q(q)® by Definition 4.1(4)
c pM(q®) N ¢™(g®) by induction hypothesis

C (<a>p)™(7°).
7. [a] p@° C [ a™] (p(7)®) by Definition 4.1(8)
C [ a™] p™(g®) by induction hypothesis and monotonicity [oi**]
C ([ al p)M(3®).
8. aX.pX(q)° C Us<a p(BX.pX(q),q)® by Definition 4.1(5)
C Upeo PM(BX.pX (9)°,7°) by induction hypothesis op
C Upea PM(BX.pXM(g°),3°) by induction hypothesis ofi and mono-
tonicity of p™
= aX.pXM(@®).
9. vX.pX(@)®° C p(vX.pX(g),q)® by Definition 4.1(6)
C pM(vX.pX(9)®,3°) by induction hypothesis op; but v X.pXM(g°)
is the greatest subsdtof S such thatd C p*(A,7®), therefore

vX.pX(@)° < vXpXM(@°).

(i) Let © be any annotation such that= ©,. We will add new formulas t®
to satisfy the conditions of Definition 4.1, always presendng O, and making
sure that for any new formulg, p* € CL(g") for someq already appearing in
SOmeo;.



1. IfpVq € O thens = pV ¢, so eithers = p or s |= ¢. If the former, set
O, := 05 U {p}, otherwise se®; := O, U {q¢}.

2. fpA g€ B setOs := 0, U {p,q}.

3. If [a] p € O, then for allt such that(s,t) € I(a), t = p. SetO; :=
©, U {p} for all sucht.

4. IfvX.pX € O, set0; := 0, U{p(rX.pX)}.

5. If aX.pX € O, thens = aX.pX, so by (2.10) there must existhA< «
suchthak = p(6X.pX). Pick one sucls and seB, := O,U{p(5X.pX)}.

6. If <a>p € ©4, then there must be a stateuch thats,¢) € I(a) andt |= p.
Pick one sucht and se®, := ©, U {p}.

Let © be the final value 0® obtained by this procedure. Thénsatisfies the
conditions of Definition 4.1 and the property (4.1).

5 Well-Quasi-Orders

Definition 5.1 A quasi-orderis an ordered sétY, <) such thak is reflexive and
transitive.(Q, <) is awell-quasi-orderif any of the following five equivalent con-
ditions hold:

1. Every set has a finite baséA C @ dAq C A, Ay finite, such that'y €
A3z e Ayg z <y (i.e., such thatly < Ain the sense of (3.13)).

2. < is well-founded, and there is no infinite set of pairwiseéncomparable
elements.

3. Every countable sequengg, 1, ... hasz; < x; for somei < j.

4. Every countable sequeneg z1, . . . has a countable monotone subsequence
Tig S Tjy <vee

5. Any linear order on the quotie/ = extending< is a well-order, where
r=yiff x <yandy < z. O

d

Any well-order is a well-quasi-order, any subset of a well-quasi-order is a well-
guasi-order, and the direct product of any finite collection of well-quasi-orders is



a well-quasi-order. The proof of the equivalence of the above five conditions uses
Ramsey'’s theorem. See [4] for further details and references.

The power set of a well-quasi-order, ordered by (3.13), is not necessarily a
well-quasi-order. However, Nash-Williams defined the concepbaifer-quasi-
order,and showed that any better-quasi-order is a well-quasi-order, and the power
set of a better-quasi-order is a better-quasi-order [6, 7]. Since the definition of
better-quasi-order is rather involved, we refer the reader to [5, 6, 7] for the defini-
tions and basic results, from which the following lemma is not hard to derive:

Lemma5.2 (P(O"), <) is a well-quasi-order, wher®" is the class oh-tuples
of ordinals, P(O") is the class of all sets of suefituples, andS < T iff V3 ¢
TIdaeSa<p.o

6 The Finite Model Property

Theorem 6.1 Every satisfiable.,, formulap, is satisfied in a finite model.

Proof. Suppose is satisfiable. let = (SM, ™) be a model and, € SM
such thatsy = po. LabelOg, = {po}, O5 = @ for s # so. By Lemma 4.2(ii),©
extends to a well-annotaticd satisfying the property (4.1).

We wish to show that{©, | s € SM}, <) is awell-quasi-order. Leftpo, . .. ,pi} =
CL(po). By (4.1), everyp € O, satisfiesp* = p; for somel < i < k. In other
words, every € Oy is contained in some-ideal (p;) = {q | ¢ < p;}. Moreover,

p = qonly if p* = ¢*. Therefore

0, %6, — Yqe€6,3peB,p=gq
— VgeoN(p)IpeONpi))p=2q, 1 <i<k
= OsN(Pi) 2O N(pi), 1<i <k

Since any finite product of well-quasi-orders is again a well-quasi-order, it suffices
to show that each of thie quasi-orders

{(O.N(pi) | se My, 1<i<k
is a well-quasi-order. Ip; = p;(u, ... , 1), this amounts to showing that each
{{a|pi@ e} |sesM 1<i<k

is a well-quasi-order. But this is immediate from Lemma 5.2.

Now by Definition 5.1(1), the se{t(:)S | s € SM} has a finite base undef.
Therefore there exists a finite s&f C SM such that's € SM 3t € SF ©, <
O,. Let f : SM — S¥ such tha@f(s) < 0,.
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Define a new annotated modkl as follows. TakesV = SM and IV (P) =

™M(P), but
™(a) = {(s,f(1) | (s,1) € TM(a)}.

In other words\V is exactly the same a$1, except that we cut every edge ¢) in
I'M(a) and replace it with the edde, f(¢)). The annotatio® on is still a well-
annotation: Definition 4.1(1-6) are still satisfied since no labels were changed, and
Definition 4.1(7-8) are still satisfied sin@(t) =< C:)t.

Now define a finite annotated modgl = (57, 17, ©[S%) by restricting\
to S7, i.e., I7(P) = N(P)n S¥ and 17 (a) = NV(a) N S¥ x S7. The
annotation@)(Sf is still a well-annotation: Definition 4.1(1-6) are still satisfied
since no labels were changed, and Definition 4.1(7-8) are still satisfied, since any
(s,t) € I7(a) is also inIV (a).

ThusF is afinite well-annotated model. Moreové(so) = (:)f(SO) by Lemma
4.2(i), thereforef (so) = O, by (3.14), andp, € O,,, thereforef(sq) = po. O

7 An Infinitary Deductive System
The deductive system is the same as the one in [2], with the addition of the infinitary
rule of inference

nX.pX — q, alln < w
uX.pX —q '

(7.1)

This deductive system can be shown complete by a straightforward adaptation of
the completeness proof of [2]. The difficult part is showing that the system is
sound, because the above rule is not valid if interpreted as an implication; in other
words, it is not true in general that

nXpXM C M alln <w— pXpx™ c M,

as easy counterexamples show (see [2]). However, it is the caseifiapik M C
¢M for all n < w in all modelsM, thenu X .pXM C ¢ in all modelsM. For,
suppose there were a model and states with s € pX.p XM N —=¢™, orin other
wordss = uX.pX A -q. By Theorem 6.1, there would be a finite modeland
statet of F with ¢ = uX.pX A —¢. But since all closure ordinals in a finite model
are finite,t = n.X.pX A—q for somen < w, thusnX.pX7 £ ¢7, a contradiction.
We have established

Theorem 7.1 The deductive system of [2], augmented with the infinitary rule (7.1),
is sound and complete fdr,. O
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8 Conclusions and Directions for Further Work

Streett and Emerson [10] have recently given an elementary-time decision pro-
cedure forL, involving automata on infinite trees. As a corollary to their con-
struction, they obtain a finite model property. Moreover, their construction gives
elementary bounds on the size of the model (roughly four exponentials), whereas
ours does not, at least in the current state of (the author’s) knowledge. Neverthe-
less, the construction of the present paper has the advantage that it is more direct,
and establishes a link between finite model theorems for program logics and the
theory of well-quasi-orders. For example, the construction of Theorem 6.1 shows
that the size of a minimal model for a given satisfiable formula is related to the size
of a maximal set of pairwis&-incomparable elements in a particular structure on
sets of ordinals. We are currently refining this relationship in the hope that it may
shed light on the complexity of the decision problem foy.
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