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Abstract

We prove a finite model theorem and infinitary completeness result for
the propositionalµ-calculus. The construction establishes a link between fi-
nite model theorems for propositional program logics and the theory of well-
quasi-orders.

1 Introduction

Lµ is a propositionalµ- or least fixpoint-calculus related to systems of Scott and
DeBakker [11] and Pratt [8].Lµ was introduced in [2], where an exponential-
time decision procedure and complete finitary deductive system were given for a
restricted class of formulas. In [3], a nonelementary decision procedure was given
for full Lµ. In this paper we prove that every satisfiable formula ofLµ is satisfied
in a finite model. We also give a complete infinitary deductive system.

Finite model theorems are useful in obtaining efficient decision procedures. In
general, the smaller the model (as a function of the size of the formula), the more
efficient the decision procedure. The standard technique for obtaining finite mod-
els in propositional program logics isfiltration, a technique borrowed from modal
logic. It was first used in propositional program logics to obtain a finite model
theorem for Propositional Dynamic Logic [1], thereby giving a nondeterministic
exponential-time decision procedure. Filtration does not work forLµ[2, 9], thus a
new technique is needed.

We prove the result by showing that the size of a minimal model for a given
satisfiableLµ formula is related to the size of a maximal set of pairwise incom-
parable elements in a particular ordered structure involving sets of ordinals. This

∗Supported by NSF grant DCR-8602663.

1



establishes a connection between finite model theorems for propositional program
logics and the theory of well-quasi-orders.

Basic definitions are given in§2. In §3 we define a partial order� on formulas
and extend it to a quasi-order on collections of formulas. In§4 we consider models
whose states are labeled with sets of formulas, and give local conditions (involving
�) on labelings which insure that a state satisfies all formulas in its label. The
results of this section may be of more general use in performing surgery on models.
In §5 we show that a certain quasi-order� on sets of ordinals is a well-quasi-
order [4], therefore has a finite base. In§6 we combine the results of§4 and§5 to
obtain a finite model theorem. In§7 we show how the finite model theorem gives
a complete infinitary deductive system.§8 contains conclusions and directions for
further work.

2 Definition of Lµ and L+
µ

The systemsLµ andL+
µ were defined in [2]. We review the definitions briefly,

referring the reader to [2] for a more detailed presentation.

2.1 Syntax

The basic nonlogical symbols ofLµ andL+
µ consist of

1. propositional constantsP,Q, . . .

2. propositional variablesX, Y, . . .

3. program constantsa, b, . . .

Formulasp, q, . . . are defined inductively:

1. X

2. P

3. p ∨ q

4. ¬p

5. <a>p

6. αX.pX, α an ordinal

7. µX.pX
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In (6) and (7),pX is a formula with a distinguished variableX, all of whose free
occurrences arepositive(occur in the scope of an even number of negations¬). In-
tuitively, αX.pX represents theα-fold composition of the operatorλX.pX applied
to false. L+

µ is the language defined by (1–7).Lµ is the countable sublanguage
obtained by deleting (6).

The operators∧,→, false, true, and[ a] are defined as usual. In addition, we
define

νX.pX = ¬µX.¬p¬X.

The operatorν is thegreatest fixpoint operator.
The usual quantifier scoping rules, as well as the definitions of bound and free

variables, apply toµX, νX, andαX. A formula with no free variables is called
closed.

An L+
µ formulaϕ is said to be inpositive formif it is built from the operators

∨,∧, µ, ν, < >, [ ] , and¬, with ¬ applied to atomic subformulas only. Every
closedLµ formula is equivalent to a formula in positive form.

2.2 Semantics

A modelis a structureM = (S, I), whereS is a set ofstatesandI is an inter-
pretation functioninterpreting the propositional and program constants, such that
I(P ) ⊆ S and I(a) ⊆ S × S. A formula p(X) with free variables among
X = X1, . . . , Xn is interpreted inM as an operatorpM which maps any valua-
tionA = A1, . . . , An of X over subsets ofS to a subsetpM(A) of S. The operator
pM is defined by induction as follows:

XM
i (A) = Ai (2.1)

PM(A) = I(P ) (2.2)

(p ∨ q)M(A) = pM(A) ∪ qM(A) (2.3)

(¬p)M(A) = S − pM(A) (2.4)

(<a>p)M(A) = <aM>(pM(A)) (2.5)

where in (2.5),
<aM>(B) = {s | ∃t ∈ B (s, t) ∈ I(a)}.

In order to give the semantics ofαX.pX andµX.pX, let pX be a formula with
distinguished free variableX occurring only positively. LetX denote the other
free variables inp. ThuspX = p(X, X). We assume by induction hypothesis that
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the operatorpM has already been defined.

0X.pXM(A) = falseM = ∅ (2.6)

(α + 1)X.pXM(A) = pM(αX.pXM(A), A) (2.7)

δX.pXM(A) =
⋃
β<δ

βX.pXM(A), δ a limit ordinal (2.8)

µX.pXM(A) =
⋃
β

βX.pXM(A) (2.9)

where in (2.9), the union is over all ordinalsβ. Takingµ > α for any ordinalα,
(2.6–2.9) reduce to the single definition

αX.pXM(A) =
⋃
β<α

pM(βX.pXM(A), A) (2.10)

whereα is either an ordinal orµ.
Becausep is positive in the variableX, λX.pXM(A) is a monotone set oper-

ator, and

α < β → αX.pXM(A) ⊆ βX.pXM(A). (2.11)

There exists a least ordinalκ such thatκX.pXM(A) = (κ + 1)X.pXM(A), and
it follows thatµX.pXM(A) = κX.pXM(A). The ordinalκ is called theclosure
ordinal of the operatorλX.pM(X, A), andµX.pXM(A) is the least fixpointof
λX.pM(X, A).

If p is closed, thenpM is a constant function, i.e.,pM(A) is a fixed set of
states independent ofA. In this case, we says satisfiesp if s ∈ pM(A), and write
M, s |= p or s |= p whenM is understood. We write|= p if M, s |= p for all M
ands.

2.3 Closure

Let p be anLµ formula in positive form. TheclosureCL(p) of p was defined in
[2]. It corresponds to the Fischer-Ladner closure ofPDL [1]. It is the smallest set
of formulas such that:

1. p ∈ CL(p)

2. if ¬P ∈ CL(p) thenP ∈ CL(p)

3. if q ∨ r ∈ CL(p) then bothq, r ∈ CL(p)

4. if q ∧ r ∈ CL(p) then bothq, r ∈ CL(p)
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5. if <a>q ∈ CL(p) thenq ∈ CL(p)

6. if [ a] q ∈ CL(p) thenq ∈ CL(p)

7. if σX.qX ∈ CL(p) thenq(σX.qX) ∈ CL(p),

whereσ is eitherµ or ν. CL(p) is finite, and is in fact no larger than the number of
symbols ofp [2].

3 A Partial Order on L+
µ Formulas

Let α = α1, . . . , αn andβ = β1, . . . , βn ben-tuples of ordinals orµ, and define
α ≤ β if αi ≤ βi, 1 ≤ i ≤ n. Let p be a formula ofL+

µ in positive form. Let
α1X1.q1X1, . . . , αnXn.qnXn be a list of all occurrences of subformulas ofp of
the formαX.qX, where eachαi is eitherµ or an ordinal, listed in the order in
which they occur inp. We denote this by writing

p = p(α1, . . . , αn) = p(α).

Replacingαi in p with βi, 1 ≤ i ≤ n, results in a well-formedL+
µ formulap(β).

We definep(α) � p(β) if α ≤ β. That is,p � q if p andq are identical except for
the ordinals appearing in subformulas of the formαX.rX, and the ordinals ofp
are no greater than the corresponding ordinals ofq. We definepµ = p(µ, . . . , µ),
theLµ formula obtained by replacing all ordinals byµ, and observe thatp � pµ

for all L+
µ formulasp. By (2.11) and the fact thatp is positive,

if p � q then |= p → q. (3.12)

If Σ,Γ aresetsof L+
µ formulas, define

Σ � Γ if ∀q ∈ Γ ∃p ∈ Σ p � q. (3.13)

From (3.12) we have that

if Σ � Γ then |=
∧

Σ →
∧

Γ. (3.14)

Finally, if Σ is a set ofL+
µ formulas, define

Σµ = {pµ | p ∈ Σ}.

5



4 Annotated Models

Let M = (S, I) be any model, and letΘ be a function labeling each states ∈
S with a classΘs of closed positiveL+

µ formulas. The labelingΘ is called an
annotationof M, and the triple(S, I,Θ) is called anannotated model.

The following definition ofwell-annotationgives local syntactic conditions
that insure that states of an annotated model satisfy their labels (Lemma 4.2). This
is useful in performing surgery on models, because in practice it is easily checked
that these local conditions are preserved by certain cutting and pasting operations.

Definition 4.1 An annotationΘ is called awell-annotationif the following condi-
tions hold:

1. if P ∈ Θs, thens |= P

2. if ¬P ∈ Θs, thens |= ¬P

3. if p ∨ q ∈ Θs, then eitherp ∈ Θs or q ∈ Θs

4. if p ∧ q ∈ Θs, then bothp, q ∈ Θs

5. if αX.pX ∈ Θs, then∃β < α p(βX.pX) ∈ Θs, α an ordinal orµ

6. if νX.pX ∈ Θs, thenp(νX.pX) ∈ Θs

7. if <a>p ∈ Θs, then∃t (s, t) ∈ I(a) and∃p′ � p p′ ∈ Θt

8. if [ a] p ∈ Θs, then∀t (s, t) ∈ I(a) → ∃p′ � p p′ ∈ Θt. 2

2

Lemma 4.2

(i) If Θ is a well-annotation, thens |= Θs for all s ∈ S.

(ii) If Θ is an annotation such that∀s s |= Θs, thenΘ can be extended to a
well-annotationΘ̂ satisfying the property⋃

s∈S

Θ̂µ
s ⊆

⋃
t∈S, q∈Θt

CL(qµ). (4.1)

Proof. (i) SupposeΘ is a well-annotation. For any closed positiveL+
µ formula

q, letqΘ = {s | ∃q′ � q q′ ∈ Θs}. If q = q1, . . . , qn is a list of closed formulas, let
qΘ denote the listqΘ

1 , . . . , qΘ
n . Let p(X) be anL+

µ formula in positive form with
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free variables amongX = X1, . . . , Xn. We prove by induction on the structure of
p and by transfinite induction on ordinals that

p(q)Θ ⊆ pM(qΘ).

In particular,pΘ ⊆ pM for any closedp. This will establish (i).

1. PΘ ⊆ PM by Definition 4.1(1).

2. ¬PΘ ⊆ ¬PM by Definition 4.1(2).

3. Xi(q)Θ = qΘ
i = XM

i (qΘ).

4. (p ∨ q)(q)Θ ⊆ p(q)Θ ∪ q(q)Θ by Definition 4.1(3)
⊆ pM(qΘ) ∪ qM(qΘ) by induction hypothesis
= (p ∨ q)M(qΘ).

5. (p ∧ q)(q)Θ ⊆ p(q)Θ ∩ q(q)Θ by Definition 4.1(4)
⊆ pM(qΘ) ∩ qM(qΘ) by induction hypothesis
= (p ∧ q)M(qΘ).

6. <a>p(q)Θ ⊆ <aM>p(q)Θ by Definition 4.1(7)
⊆ <aM>pM(qΘ) by induction hypothesis and monotonicity of<aM>
⊆ (<a>p)M(qΘ).

7. [ a] p(q)Θ ⊆ [ aM] (p(q)Θ) by Definition 4.1(8)
⊆ [ aM] pM(qΘ) by induction hypothesis and monotonicity of[ aM]
⊆ ([ a] p)M(qΘ).

8. αX.pX(q)Θ ⊆
⋃

β<α p(βX.pX(q), q)Θ by Definition 4.1(5)
⊆

⋃
β<α pM(βX.pX(q)Θ, qΘ) by induction hypothesis onp

⊆
⋃

β<α pM(βX.pXM(qΘ), qΘ) by induction hypothesis onβ and mono-
tonicity of pM

= αX.pXM(qΘ).

9. νX.pX(q)Θ ⊆ p(νX.pX(q), q)Θ by Definition 4.1(6)
⊆ pM(νX.pX(q)Θ, qΘ) by induction hypothesis onp; but νX.pXM(qΘ)
is the greatest subsetA of S such thatA ⊆ pM(A, qΘ), therefore

νX.pX(q)Θ ⊆ νX.pXM(qΘ).

(ii) Let Θ be any annotation such thats |= Θs. We will add new formulas toΘ
to satisfy the conditions of Definition 4.1, always preservings |= Θs, and making
sure that for any new formulap, pµ ∈ CL(qµ) for someq already appearing in
someΘt.
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1. If p ∨ q ∈ Θs, thens |= p ∨ q, so eithers |= p or s |= q. If the former, set
Θs := Θs ∪ {p}, otherwise setΘs := Θs ∪ {q}.

2. If p ∧ q ∈ Θs, setΘs := Θs ∪ {p, q}.

3. If [ a] p ∈ Θs, then for allt such that(s, t) ∈ I(a), t |= p. SetΘt :=
Θt ∪ {p} for all sucht.

4. If νX.pX ∈ Θs, setΘs := Θs ∪ {p(νX.pX)}.

5. If αX.pX ∈ Θs, thens |= αX.pX, so by (2.10) there must exist aβ < α
such thats |= p(βX.pX). Pick one suchβ and setΘs := Θs∪{p(βX.pX)}.

6. If <a>p ∈ Θs, then there must be a statet such that(s, t) ∈ I(a) andt |= p.
Pick one sucht and setΘt := Θt ∪ {p}.

Let Θ̂ be the final value ofΘ obtained by this procedure. Then̂Θ satisfies the
conditions of Definition 4.1 and the property (4.1).2

5 Well-Quasi-Orders

Definition 5.1 A quasi-orderis an ordered set(Q,≤) such that≤ is reflexive and
transitive.(Q,≤) is awell-quasi-orderif any of the following five equivalent con-
ditions hold:

1. Every set has a finite base:∀A ⊆ Q ∃A0 ⊆ A, A0 finite, such that∀y ∈
A ∃x ∈ A0 x ≤ y (i.e., such thatA0 ≤ A in the sense of (3.13)).

2. ≤ is well-founded, and there is no infinite set of pairwise≤-incomparable
elements.

3. Every countable sequencex0, x1, . . . hasxi ≤ xj for somei < j.

4. Every countable sequencex0, x1, . . . has a countable monotone subsequence
xi0 ≤ xi1 ≤ · · ·

5. Any linear order on the quotientQ/ ≡ extending≤ is a well-order, where
x ≡ y iff x ≤ y andy ≤ x. 2

2

Any well-order is a well-quasi-order, any subset of a well-quasi-order is a well-
quasi-order, and the direct product of any finite collection of well-quasi-orders is
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a well-quasi-order. The proof of the equivalence of the above five conditions uses
Ramsey’s theorem. See [4] for further details and references.

The power set of a well-quasi-order, ordered by (3.13), is not necessarily a
well-quasi-order. However, Nash-Williams defined the concept ofbetter-quasi-
order,and showed that any better-quasi-order is a well-quasi-order, and the power
set of a better-quasi-order is a better-quasi-order [6, 7]. Since the definition of
better-quasi-order is rather involved, we refer the reader to [5, 6, 7] for the defini-
tions and basic results, from which the following lemma is not hard to derive:

Lemma 5.2 (P (On),≤) is a well-quasi-order, whereOn is the class ofn-tuples
of ordinals,P (On) is the class of all sets of suchn-tuples, andS ≤ T iff ∀β ∈
T ∃α ∈ S α ≤ β. 2

6 The Finite Model Property

Theorem 6.1 Every satisfiableLµ formulap0 is satisfied in a finite model.

Proof. Supposep0 is satisfiable. letM = (SM, IM) be a model ands0 ∈ SM

such thats0 |= p0. LabelΘs0 = {p0}, Θs = ∅ for s 6= s0. By Lemma 4.2(ii),Θ
extends to a well-annotation̂Θ satisfying the property (4.1).

We wish to show that({Θ̂s | s ∈ SM},�) is a well-quasi-order. Let{p0, . . . , pk} =
CL(p0). By (4.1), everyp ∈ Θ̂s satisfiespµ = pi for some1 ≤ i ≤ k. In other
words, everyp ∈ Θ̂s is contained in some�-ideal(pi) = {q | q � pi}. Moreover,
p � q only if pµ = qµ. Therefore

Θ̂s � Θ̂t ↔ ∀q ∈ Θ̂t ∃p ∈ Θ̂s p � q

↔ ∀q ∈ Θ̂t ∩ (pi) ∃p ∈ Θ̂s ∩ (pi) p � q, 1 ≤ i ≤ k

↔ Θ̂s ∩ (pi) � Θ̂t ∩ (pi), 1 ≤ i ≤ k.

Since any finite product of well-quasi-orders is again a well-quasi-order, it suffices
to show that each of thek quasi-orders

{Θ̂s ∩ (pi) | s ∈ SM}, 1 ≤ i ≤ k

is a well-quasi-order. Ifpi = pi(µ, . . . , µ), this amounts to showing that each

{{α | pi(α) ∈ Θ̂s} | s ∈ SM}, 1 ≤ i ≤ k

is a well-quasi-order. But this is immediate from Lemma 5.2.
Now by Definition 5.1(1), the set{Θ̂s | s ∈ SM} has a finite base under�.

Therefore there exists a finite setSF ⊆ SM such that∀s ∈ SM ∃t ∈ SF Θ̂t �
Θ̂s. Let f : SM → SF such that̂Θf(s) � Θ̂s.
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Define a new annotated modelN as follows. TakeSN = SM andIN (P ) =
IM(P ), but

IN (a) = {(s, f(t)) | (s, t) ∈ IM(a)}.

In other words,N is exactly the same asM, except that we cut every edge(s, t) in
IM(a) and replace it with the edge(s, f(t)). The annotation̂Θ onN is still a well-
annotation: Definition 4.1(1–6) are still satisfied since no labels were changed, and
Definition 4.1(7–8) are still satisfied sincêΘf(t) � Θ̂t.

Now define a finite annotated modelF = (SF , IF , Θ̂dSF ) by restrictingN
to SF , i.e., IF (P ) = IN (P ) ∩ SF and IF (a) = IN (a) ∩ SF × SF . The
annotationΘ̂dSF is still a well-annotation: Definition 4.1(1–6) are still satisfied
since no labels were changed, and Definition 4.1(7–8) are still satisfied, since any
(s, t) ∈ IF (a) is also inIN (a).

ThusF is a finite well-annotated model. Moreover,f(s0) |= Θ̂f(s0) by Lemma

4.2(i), thereforef(s0) |= Θ̂s0 by (3.14), andp0 ∈ Θ̂s0 , thereforef(s0) |= p0. 2

7 An Infinitary Deductive System

The deductive system is the same as the one in [2], with the addition of the infinitary
rule of inference

nX.pX → q, all n < ω

µX.pX → q
. (7.1)

This deductive system can be shown complete by a straightforward adaptation of
the completeness proof of [2]. The difficult part is showing that the system is
sound, because the above rule is not valid if interpreted as an implication; in other
words, it is not true in general that

nX.pXM ⊆ qM, all n < ω → µX.pXM ⊆ qM,

as easy counterexamples show (see [2]). However, it is the case that ifnX.pXM ⊆
qM for all n < ω in all modelsM, thenµX.pXM ⊆ qM in all modelsM. For,
suppose there were a modelM and states with s ∈ µX.pXM ∩¬qM, or in other
wordss |= µX.pX ∧ ¬q. By Theorem 6.1, there would be a finite modelF and
statet of F with t |= µX.pX ∧¬q. But since all closure ordinals in a finite model
are finite,t |= nX.pX∧¬q for somen < ω, thusnX.pXF 6 ⊆ qF , a contradiction.
We have established

Theorem 7.1 The deductive system of [2], augmented with the infinitary rule (7.1),
is sound and complete forLµ. 2
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8 Conclusions and Directions for Further Work

Streett and Emerson [10] have recently given an elementary-time decision pro-
cedure forLµ involving automata on infinite trees. As a corollary to their con-
struction, they obtain a finite model property. Moreover, their construction gives
elementary bounds on the size of the model (roughly four exponentials), whereas
ours does not, at least in the current state of (the author’s) knowledge. Neverthe-
less, the construction of the present paper has the advantage that it is more direct,
and establishes a link between finite model theorems for program logics and the
theory of well-quasi-orders. For example, the construction of Theorem 6.1 shows
that the size of a minimal model for a given satisfiable formula is related to the size
of a maximal set of pairwise�-incomparable elements in a particular structure on
sets of ordinals. We are currently refining this relationship in the hope that it may
shed light on the complexity of the decision problem forLµ.
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