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Abstract

Laszlo Lovasz recently posed the following problem� �Is there an

NC algorithm for testing if a given graph has a unique perfect match�
ing�� We present such an algorithm for bipartite graphs� We also
give NC algorithms for obtaining a transitive orientation of a com�

parability graph� and an interval representation of an interval graph�
These enable us to obtain an NC algorithm for 	nding a maximum
matching in an incomparability graph�

� Introduction

Karp� Upfal and Wigderson ��� have recently shown that the maximum
matching problem is in Random NC � �RNC ��� This result has since been
improved to RNC � by Mulmuley� Vazirani� and Vazirani �	
�� It remains
open whether there is a deterministic NC algorithm for this problem� A �rst
step might be to obtain an NC algorithm for testing if a graph has a perfect
matching� An RNC algorithm for this problem exists� based on a method of
Lovasz �	�� �see �	��� Rabin and Vazirani �	
� give an NC algorithm for ob�
taining perfect matchings in graphs having a unique perfect matching� Laszlo
Lovasz recently posed the following problem� �Is there an NC algorithm for
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testing if a given graph has a unique perfect matching�� We present such an
algorithm for bipartite graphs�

We also give NC algorithms for obtaining a transitive orientation of a
given comparability graph� and an interval representation for a given inter�
val graph� The �rst sequential algorithms for these problems were obtained
by Gilmore and Ho�man �
� and Ghouila�Houri ���� More e�cient algorithms
were obtained by Even� Pnueli� and Lempel ��� 	�� and Golumbic ���� The NC
comparability graph algorithm� together with the NC two�processor schedul�
ing algorithm of Helmbold and Mayr �
� give an NC algorithm for maximum
matching in comparability graphs� a class of graphs containing all interval
graphs� This suggests that the maximum matching problem may be in NC �

� Testing for Unique Perfect Matching in

Bipartite Graphs

The problem can be stated as follows�

Input� An undirected bipartite graph G � �X�Y�E��

Output� A unique perfect matching if one exists�

Let jXj � jY j � n� Let A be the n � n adjacency matrix for G�
i�e� A�x� y� � 	 if the edge xy � E� � otherwise� For permutation � on
f	� �� � � � � ng� de�ne

value��� �
nY

i��

A�i� ��i�� �

The permutation � corresponds to a perfect matching in G i� value��� � 	�
The determinant of A is given by

jAj �
X

�

sign��� � value��� �

Thus if G has a unique perfect matching� then jAj � �	� and if G has no
perfect matching� then jAj � ��

If G has a unique perfect matching M � E� there is a simple NC algo�
rithm for obtaining it �	
�� however that algorithm does not check whether
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M is in fact unique� If the edge xy is in M � then the graph Gxy obtained
from G by removing the edge xy will have no perfect matching� If the edge
xy is not in M � then Gxy will still have a unique perfect matching� Thus
jAxyj � � if xy � M � and jAxyj � �	 if xy �� M � where Axy is the adjacency
matrix of Gxy� By computing the determinants jAxyj in parallel for all edges
xy� M can be determined in NC �

We now give a method for verifying in NC that M is unique�

Lemma � The graph G has a unique perfect matching i� A is nonsingular
and there exist permutation matrices P � Q such that PAQ is upper triangu�
lar�

Proof� Multiplying A on the left and right by permutation matrices P
and Q amounts to permuting the sets X and Y � If A is nonsingular� then
there must exist a perfect matching M � since jAj �� �� If in addition there
exist permutation matrices P � Q such that PAQ is upper triangular� then
M is unique and lies along the diagonal of PAQ� since there are no other
permutations � with value��� �� ��

Conversely� if there is a unique perfect matching M � let R be a permuta�
tion matrix such that the edges ofM lie on the diagonal of AR� Consider the
directed graph H with vertices f	� �� � � � � ng and edges fij j AR�i� j� � 	g�
Then H has adjacency matrix AR� There is no directed cycle in H� except
for the trivial cycles on the diagonal� a nontrivial cycle would correspond
to an alternating cycle of M and non�M edges of G� thus M would not be
unique� Since H is acyclic� its re�exive transitive closure is a partial order
on f	� �� � � � � ng� and thus extends to a total order� Let S be a permutation
matrix that reorders f	� �� � � � � ng in respect of this total order� so that if
i � j then S��ARS�i� j� � �� In other words� S��ARS is upper triangular�
The result is then obtained by taking P � S�� and Q � RS� �

Thus� in order to check whether the matching M is unique� we �rst com�
pute the matrix AR� which can be done by the method of �	
� described
above� Then the matching M in G will be unique i� the directed graph H
described in the proof of Lemma 	 has no cycles� There are very simple NC
algorithms to check this� We have shown

Theorem � There is an NC algorithm for testing if a given bipartite graph
has a unique perfect matching�
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� Comparability Graphs

An undirected graph is called a comparability graph if there is a way to orient
the edges so that the resulting binary relation is transitive� In this section
we give an NC algorithm for the following problem�

Input� An undirected graph G � �V�E��

Output� A transitive orientation of the edges� or indication that no such
orientation exists�

The �rst polynomial time algorithms for this problem were given inde�
pendently by Gilmore and Ho�man �
� and Ghouila�Houri ���� They proved�

Theorem � ���	 
�� A graph G is a comparability graph i� each odd cycle
has a triangular chord�

This property is easy to check in NC � However� producing a transitive
orientation in case one exists is a harder problem� We use a decomposition
theorem that allows a graph to be decomposed according to its comparability
structure� allowing separate parts of the graph to be oriented independently�
This decomposition was �rst discovered by Gallai ���� see Kelly �		� for an ex�
cellent account in English� Considerations of e�ciency require us to be more
careful in the development of the Gallai decomposition� Our development�
which we give below in full� departs from the standard development �		� 	��
in several technical respects� perhaps the most important of which is the in�
clusion of edges of the complementary graph in the de�nition of the relation
�� the symmetry of G and Gc� and the use of the relation ��� Otherwise�
basic notation and terminology follow �		� 	���

Let G � �V�E� be an undirected graph without multiple edges or loops�
We represent E as a set of ordered pairs such that E � E�� � fuv j vu � Eg�
Let Ec � fuv j u �� vg 	 E and Gc � �V�Ec�� Note that �Ec�c � E� Many
de�nitions and results below are symmetric in E and Ec� in the statement
of such results� we use the letter F to represent either E or Ec� and F c

to represent the other� We will also use the word edge to denote any pair
uv � V �� u �� v� We denote the induced subgraph of �V� F � on A � V by
�A�F ��
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De
nition � A transitive orientation of G is a subset T of E such that

�i� for each uv � E� either uv � T or vu � T but not both�

�ii� if uv� vw � T � then uw � T �

The graph G is called a comparability graph if there exists a transitive orien�
tation� �

De
nition 
 For uv� u�v� � F � de�ne uv�u�v� if either

�i� u � u� and vv� � F c� or

�ii� v � v� and uu� � F c�

Let �� be the re�exive transitive closure of �� The ���class of uv is denoted
�uv� and is called the implication class of uv� The set �uv� 
 �vu� is called
the color class of uv� The set of vertices touched by edges of �uv� is denoted
V �uv�� �

Unlike �		�� � and �� are de�ned on edges in Ec as well as E� and on
directed edges instead of undirected edges� Note� however� that �uv� � �u�v��
i� �vu� � �v�u��� thus �vu� � �uv����

Example � The ��cycle C� has exactly two color classes� one in E and one in
Ec� The complete bipartite graph K��� has seven color classes� one consisting
of all edges of E and six in Ec� three in each of the Ec�connected components�

�

The signi�cance of implication classes is that a particular orientation of
one edge forces an orientation of all the other edges in its implication class�
This is expressed in the following lemma�

Lemma � For any transitive orientation T � if uv � T and �uv� � �u�v���
then u�v� � T � In other words� for each uv� either �uv� � T or �uv��T � ��

Proof� Immediate from the de�nition of transitive orientation� �

In view of Lemma �� Theorem � can be restated� G is a comparability
graph i� �uv� �� �vu�� This condition is easily checked in NC by a simple
transitive closure procedure on edges� We will henceforth assume that the
condition holds of the given graph G�
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Lemma � If uv � F � then �V �uv�� F c� has either one or two connected
components� If two� then the edges of �uv� form a complete bipartite graph
from one component to the other�

Proof� It can be shown by induction on the de�nition of �� from � that
every vertex in V �uv� is connected to either u or v by an path in F c� Thus
�V �uv�� F c� has at most two components� If there are two components� say
A� B with u � A and v � B� then u�v� � F for every u� � A� v� � B� Since
�B�F c� is connected� �uv� � �uv��� Since �A�F c� is connected� �uv�� � �u�v���
Thus �u�v�� � �uv� for every u� � A and v� � B� Moreover� this exhausts the
edges of �uv�� since V �uv� � A 
 B� �

De
nition � An edge uv � F is said to be of type � if �V �uv�� F c� has one
connected component� type � if �V �uv�� F c� has two connected components�

�

De
nition �� For uv� u�v� � F � de�ne uv�u�v� if either

�i� u � u� and vv� �� �vu� 
 �uv��� or

�ii� v � v� and uu� �� �uv� 
 �vu���

Let ��� be the re�exive transitive closure of ��� The ����class of uv is
denoted ��uv��� The set of vertices touched by edges of ��uv�� is denoted V ��uv���

�

Lemma �� �i	 �uv� � ��uv��� and �uv� � ��uv�� if uv is of type ��

�ii	 If uv� uw� vw � F � ��uw�� � ��vw��� and u�v� � �uv�� then �u�w� � �uw�
and �v�w� � �vw��

Proof� The �rst statement of �i� is immediate from the de�nitions� For
�ii�� if uv�uv�� then v�w � F � otherwise uw�uv��uv� contradicting ��uw�� �
��vw��� Then v�w�vw� and by the �rst statement of �i�� ��v�w�� � ��vw�� � ��uw���
If uv�u�v� a symmetric argument shows that u�w � F � u�w�uw and ��u�w�� �
��uw�� � ��vw��� The result follows by induction on the de�nition of ���

For the latter statement of �i�� suppose uv�uw but �uv� �� �uw�� Then
uw�vw� and either all three edges uv� vw� wu are in F � or all three are in F c�
Let A � fu� j �u�v�� � �uv� for some v�g� B � fv� j �u�v�� � �uv� for some u�g�






By �ii�� �wu�� � �wu� for every u� � A� and �wv�� � �wv� for every v� � B�
Since �wu� �� �wv�� A�B � �� Moreover� for every u� � A� v� � B� u�v� � F �
Therefore A� B are two F c�connected components of V �uv�� and uv is of type
�� �

��� Normal subgraphs and kernels

De
nition �� A partition � of V is called a kernel if for all distinct A�
B � � and all u� u� � A� v� v� � B� �uv� � �u�v��� A subset A � V is called
normal if for all u �� A and v� v� � A� �uv� � �uv��� �

The de�nition of normal set is related to the de�nition of autonomous set
in �		� 	��� Our de�nition di�ers in that it involves edges in Ec as well as E�

Kernels and normal subsets are related by the following lemma�

Lemma �� A partition � is a kernel i� every A � � is normal� Every
normal set A is contained in some kernel�

Proof� The direction ��� of the �rst statement is immediate from the
de�nitions� Conversely� let A�B be distinct elements of �� u� u� � A� v� v� �
B� Since B is normal� �uv� � �uv��� and since A is normal� �uv�� � �u�v���
Therefore �uv� � �u�v��� Since singletons are trivially normal� every normal
set A is contained in a kernel� namely fAg 
 ffug j u �� Ag� �

Lemma �� For any uv � F � the connected components of �V �uv�� F c� are
normal sets�

Proof� Since V �uv� is connected by edges in the color class of uv� for any
s �� V �uv�� either all st� t � V �uv�� are in F or all are in F c� otherwise there
would be some edge in �uv�� say uv itself� such that su � F i� sv � F c�
But then either �su� � �vu� or �sv� � �uv�� contradicting the assumption that
s �� V �uv�� If s is F �connected to all t � V �uv�� then all edges from s to
a connected component of �V �uv�� F c� are in the same implication class� If
s is F c�connected to all t � V �uv�� then all st� t � V �uv� are in the same
implication class� the argument is the same as in Lemma 
� If uv is of type
�� then the edges from one connected component of �V �uv�� F c� to the other
are all in the same implication class� by Lemma 
� �
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Lemma �
 The set V ��uv�� is the smallest normal set containing uv�

Proof� First we show that V ��uv�� is normal� Since V ��uv�� is connected by
edges in ��uv�� and ��vu��� for any s �� V ��uv��� all edges st with t � V ��uv�� are in
the same implication class� otherwise there would be some edge in ��uv��� say
uv itself� such that �su� �� �sv�� But then either ��su�� � ��vu�� or ��sv�� � ��uv���
contradicting the assumption that s �� V ��uv���

Now suppose that A is normal and u� v � A� If v� �� A such that uv�uv��
then �vv�� �� �uv��� which is impossible if A is normal� Therefore V ��uv�� � A�

�

Lemma �� If A�B are normal� then either A � B� B � A� or A�B � ��

Proof� Suppose u � A 	 B� v � A � B� w � B 	 A� Then �uv� � �uw�
since B is normal� But since A is normal� this contradicts Lemmas 		�i� and
	�� �

Lemma �� If A is normal in G and B � A� then B is normal in �A�E�
i� B is normal in G�

Proof� Trivially� if B is normal in G then it is normal in �A�E�� Con�
versely� if B is normal in �A�E�� then for every vertex u � A 	 B� the set
of edges uv� v � B� are all in the same implication class� Since A is normal
in G� for any u � V 	 A� the set of edges uv� v � B� are all in the same
implication class� Thus B is normal in G� �

��� Simple graphs� quotient graphs� and comparabil�

ity morphisms

De
nition �� A graph is called simple if it has no nontrivial kernels� Equiv�
alently� a graph is simple if it has no nontrivial normal subsets� �

Example �� The ��cycle C� is simple� The complete bipartite graph K���

has a nontrivial kernel consisting of the two sets of vertices in the bipartition�
each with three vertices� �






De
nition �� If � is a kernel� the quotient graph G�� is obtained by col�
lapsing each A � � to a single node�

G�� � ��� fAB j A�B � �� A �� B� uv � E for some u � A� v � Bg �

The map f� � G� G�� is de�ned by

f��u� � A�where A is the unique element of � containing u�

f��uv� � f��u�f��v�� for u� v such that f��u� �� f��v��

�

Example �� The ��cycle C� is simple� thus has no quotients except itself
and the trivial one�vertex graph� The complete bipartite graph K��� has a
nontrivial quotient G��� where � is the kernel of Example 	�� The graph
G�� consists of a pair of directed edges between two vertices� �

The map f� may be called a comparability morphism� since it preserves
the relation ���

Lemma �� If � is a kernel in G� f � f�� f�u� �� f�v�� and f�u�� �� f�v���
then �uv� � �u�v�� in G i� �f�uv�� � �f�u�v��� in G��� In other words� if
f�u� �� f�v�� then f����f�uv��� � �uv��

Proof� By de�nition of kernel� uv � E i� f�uv� � E��� If uv�uv� in G�
then either f�v� � f�v��� in which case f�uv� � f�uv�� in G��� or f�v� ��
f�v��� in which case f�uv��f�uv�� in G��� In either case f�uv����f�uv���
Conversely� if f�uv��f�uv�� in G��� then f�v� �� f�v��� and uv�uv� in G�
The result follows by induction on the de�nition of ��� �

Lemma �� A is normal in G�� i� f��� �A� is normal in G� The partition �
is a kernel in G�� i� ff��� �A� j A � �g is a kernel in G�

Proof� Let f��u� �� f��v� and f��u� �� f��v
��� Then u �� f��� �A� and

v� v� � f��� �A� i� f��u� �� A and f��v�� f��v
�� � A� By Lemma ��� �uv� � �uv��

i� �f��uv�� � �f��uv
���� Therefore f��� �A� is normal i� A is normal�

The second statement is immediate from the �rst� �

Lemma �� � is a maximal kernel in G i� G�� is simple�
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Proof� If � is a nontrivial kernel in G��� then by Lemma ��� ff��� �A� j
A � �g is a nontrivial kernel in G that properly contains �� thus � was not
maximal� Conversely� if � is not maximal� then by Lemma 	
� there is a
nontrivial kernel � �� � such that each element of � is a union of elements of
�� Then � � ff��� �f��A�� j A � �g� Taking � � ff��A� j A � �g in Lemma
��� it follows that � is a nontrivial kernel in G��� �

Theorem �
 Every graph G decomposes into a product of simple graphs�

Proof� Let T be the tree of all normal subsets of G� ordered by inclusion�
This tree exists� by Lemma 	
� For any normal subset A� the successors
of A in T are the maximal proper normal subsets of A� by Lemma 	�� By
Lemma 	�� this set forms a maximal kernel � in �A�E�� therefore by Lemma
��� �A�E��� is simple� �

Theorem �� Let � � fV�� � � � � Vng be a kernel and let Gi � �Vi� E�� There
is a one�to�one correspondence between transitive orientations T of G and
tuples �T�� � � � � Tn� T��� of transitive orientations of G�� � � � � Gn and G���
respectively�

Proof� Let f � f�� Given a transitive orientation T of G� let

Ti � T � V �

i �

T�� � ff�uv� j f�u� �� f�v�� uv � Tg �

Ti is just the orientation induced on Gi as a subgraph of G and is clearly
transitive� If f�u� �� f�v�� then f�uv� � T�� i� f�vu� �� T�� by Lemma ��
so T�� is a valid orientation� T�� is transitive� since if f�uv�� f�vw� � T��
then uv� vw � T by Lemma �� therefore uw � T � Also� f�u� �� f�w��
otherwise �uv� � �wv�� and by Lemma � both wv and vw would be in T �
Thus f�uw� � T���

Conversely� if Ti� 	 �� i �� n� and T�� are given� let

T �
n�

i��

Ti 
 f
���T��� �

If f�u� � f�v� � Vi� u� v � Vi� then uv � T i� uv � Ti i� vu �� Ti i� vu �� T �
If f�u� �� f�v�� then uv � T i� f�uv� � T�� i� f�vu� �� T�� i� vu �� T � so
T is a valid orientation� To show T is transitive� suppose uv� vw � T � There
are three essential cases� from which the others follow by symmetry�
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�i� f�u� � f�v� � f�w� � Vi

�ii� f�u� � f�v� � Vi� f�w� �� Vi

�iii� f�u� �� f�v� and f�v� �� f�w��

Case �i� follows from the transitivity of Ti� In case �ii�� f�uw� � f�vw�� and
f�vw� � T��� Therefore f�uw� � T�� and uw � T � Finally� in case �iii�� it
cannot be that f�u� � f�w�� otherwise �uv� � �wv�� and then by Lemma ��
�f�uv�� � �f�wv��� so by Lemma �� f�wv� � T��� contradicting the fact that
f�vw� � T��� Then f�uv� � T�� and f�vw� � T��� therefore f�uw� � T���
and therefore uw � T � �

Theorem �� The following are all the normal subsets of G


�i	 singletons fug� u � V �

�ii	 V ��uv��� u� v � V �

Proof� These sets are normal� by Lemma 	�� Let A be any normal set
with at least two elements� Let � be a maximal proper kernel in A� Then
�A�E��� contains at least two vertices f��u�� f��v�� where u� v � A� By
Lemma 	�� V ��uv�� is the smallest normal set containing u and v� therefore by
Lemma 	
� f��u� 
 f��v� � V ��uv�� � A� But then A � V ��uv��� otherwise �
was not maximal� �

��� Classi�cation of simple graphs

The following theorem classi�es all simple graphs into one of three types� It
is a much simpli�ed restatement of Theorems 	�� and 	�
 of �		��

Theorem �� A graph G is simple i� either


�i	 G is a clique�

�ii	 G is totally disconnected �so that Gc is a clique	�

�iii	 G contains at least four vertices and has exactly two color classes� one
each in E and Ec�

		



Proof� First we show that any simple graph must be of one of the three
given forms� Let G be simple� Any simple graph of three or fewer vertices is
of the form �i� or �ii�� by inspection� Thus assume G has at least � vertices�

If G has a type � edge uv� then by Lemma 	�� �uv� is a singleton� otherwise
G has a nontrivial kernel� Using Lemma 		� it can be shown that V ��uv�� is
a clique of type � edges� all of which form singleton implication classes� By
Lemma 	�� V ��uv�� is normal� and since G is simple� V ��uv�� � V � Then G is
of the form �i��

If all uv are of type 	� then V �uv� � V for every u� v � V � by Lemmas
		�i� and 	�� We argue that for any uv� u�v� in F � either �uv� � �u�v�� or
�uv� � �v�u��� Suppose not� Since V � V �u�v��� there exists w � V such that
either �uw� � �u�v�� or �uw� � �v�u��� In either case� �uw� �� �uv�� Then vw �
F � and one of �vw� �� �vu�� �vw� �� �uw�� Without loss of generality� assume
the former� Then uw�vw� so by Lemma 		�ii�� w �� V �uv�� contradicting the
fact that V � V �uv�� We have shown that there are exactly two implication
classes in F � therefore one color class in F �

We now show that each of the types �i���iii� is simple� For �i�� a clique
cannot contain any nontrivial normal subset� because all implication classes
are singletons� so V ��uv�� � V for all u� v � V � By Lemma 	�� G is simple�
Case �ii� is symmetric� For G of type �iii�� suppose there is a nontrivial
maximal proper kernel �� By Lemma ��� G�� is simple� thus G�� is of one
of the forms �i���iii�� At least one implication class vanishes when passing to a
nontrivial quotient� and Lemma �� implies that each implication class in G��
is the image under f� of an implication class in G� Thus G�� cannot have any
of the following forms� otherwise G has too many implication classes� form
�iii�� form �i� or �ii� with three or more vertices� form �i� or �ii� with two
vertices� so that � � fA�Bg� and each of A� B contains at least two vertices�
or one of A� B contains at least three vertices� The only other alternative
is that G has three vertices� which is explicitly ruled out in the de�nition of
type �iii�� �

��� An NC algorithm for obtaining a transitive ori�

entation

Consider the following algorithm for producing a transitive orientation of a
comparability graph�

	�



	� Determine all classes �uv� and ��uv���

�� Find all normal sets�

�� Create the tree of normal sets� ordered by inclusion�

�� For each normal set A� �nd a transitive orientation of the quotient
�A�E���� where � is a maximal proper kernel in A�

�� Let these orderings induce an ordering on G under the maps f��� � ac�
cording to Theorem �
�

Step �	� is a transitive closure computation on edges� Step ��� determines
the sets V ��uv�� from this information� which by Theorem �� gives all normal
sets� Step ��� involves the construction of the Hasse diagram of the inclusion
relation on normal sets� Step ��� �rst computes a representation of the
quotient graph �A�E���� where � is the set of descendants of A in the tree
of normal sets� This is a maximal proper kernel� by Lemmas 	� and 	
� If
�A�E��� is a simple graph of type �i�� then any arbitrary ordering among
the m� possible orderings of the m vertices of �A�E��� gives a transitive
orientation� If �A�E��� is a simple graph of type �ii�� then there is only
one transitive orientation� namely as an antichain� If �A�E��� is a simple
graph of type �iii�� then there are only two possible transitive orientations�
corresponding to the two implication classes of �A�E���� Finally� ��� is a
matter of notation� All these computations can easily be done in NC using
standard algorithms� We have proved

Theorem �� There is an NC algorithm for checking if a given graph G �
�V�E� is a comparability graph� and if so� for obtaining a transitive orienta�
tion of its edges�

A stronger result can be shown� there is an NC algorithm for enumerating
all transitive orientations of a given undirected graph� By this we mean that
there are NC circuits which� given an undirected graph and a binary number
k� produce the kth transitive orientation in some ordering� This can be
obtained from the Gallai decomposition� We leave the details to the reader�
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� Interval Graphs

In this section we give an NC algorithm for the following problem�

Input� An undirected graph G � �V�E��

Output� An interval graph representation of G� or an indication that no
such representation exists�

De
nition �� �Gilmore and Ho�mann ���� Let � be a linearly ordered
�nite set� An interval 	 of � is any set of contiguous elements of �� Let
I be a set of intervals on �� The pair ��� I� is an interval representation of
the undirected graph G � �V�E� if there exists a bijection f � V � I such
that uv � E i� the intervals f�u� and f�v� intersect� An undirected graph
G � �V�E� is an interval graph i� it has an interval representation� �

De�ne an incomparability graph to be an undirected graph G whose com�
plement Gc is a comparability graph� The following characterization imme�
diately gives us an NC algorithm for checking if G is an interval graph�

Theorem �� �Gilmore and Ho�mann ���� G is an interval graph i�

�i	 G is an incomparability graph� and

�ii	 every cycle of length four in G has a diagonal�

Our NC algorithm for obtaining an interval representation for G is essen�
tially a parallelization of the sequential algorithm of Gilmore and Ho�man
�
�� using the transitive orientation algorithm of Section �� We give below
this sequential algorithm�

	� Transitively orient the edges of Gc�

�� qFind a set of maximal cliques in G such that every vertex and every
edge is in at least one such clique� Let this set of cliques be denoted ��
For each pair of cliques C�� C� � �� there is an edge of Gc connecting
some vertex in C� to some vertex in C� �otherwise C� 
C� would be a
clique�� Gilmore and Ho�man prove that under the orientation assigned
in step 	� either all such edges are directed from C� to C�� or else all
are directed from C� to C�� Moreover� if we de�ne C� 
 C� if these
edges are directed from C� to C�� then this linearly orders � �
��
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�� For any vertex v � G� let 	�v� be the set of maximal cliques to which
v belongs� These cliques will be contiguous� and thus will form an
interval of � �
�� Let I be the set of all the intervals corresponding to
the vertices of G� Then ��� I� is an interval representation of G�

We will now parallelize this algorithm�

	� Transitively orient Gc using Theorem ���

�� Do in parallel for each edge uv � G� �nd a maximal clique Cuv con�
taining uv�

�� Remove redundant cliques� Let � be the list of cliques remaining�

�� Do in parallel for each pair Ci� Cj � �� i � j� examine in parallel all
pairs of vertices u � Ci� v � Cj� and consult the orientation obtained
in step 	 to determine the order of Ci and Cj� This gives the linear
order on ��

�� Do in parallel for each vertex v � G� obtain the interval 	�v�� This
will yield the set of intervals I�

To accomplish step �� we can use the parallel maximal clique algorithm
of Karp and Wigderson �	��� or the more e�cient algorithm of Luby �	��� We
thus obtain�

Theorem �� There is an NC algorithm which checks if a given graph G �
�V�E� is an interval graph� and if so obtains an interval representation for
it�

� Parallel Matching Algorithms

We will use Theorem �� to obtain parallel maximum matchings in incompa�
rability graphs� Recall that an incomparability graph is an undirected graph
G whose complement Gc is a comparability graph� and that interval graphs
form a subclass of incomparability graphs�

Our algorithm will make use of a fast parallel algorithm for the two�
processor scheduling problem� This problem can be stated as follows�
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Input� A directed acyclic graph G � �V�E� whose vertices represent unit
time jobs and whose edges specify precedence constraints among the
jobs�

Output� An optimal schedule for the jobs on two identical processors sat�
isfyqing all the precedence constraints�

Two jobs which are scheduled in the same time unit on the two proces�
sors are said to be paired � The connection between this problem and the
maximum matching problem is established by the following theorem�

Theorem �� �Fujii	 Kasami	 and Ninomiya ���� Let G � �V�E� be a
directed� acyclic graph� and let G�c be the complement of its transitive closure�
Then the paired jobs in an optimal schedule for G form a maximum matching
in G�c�

This theorem enabled ��� to obtain a fast sequential algorithm for two�
processor scheduling� using a maximum matching algorithm as a subroutine�
We will do the reverse�

Vazirani and Vazirani �	�� gave a Random NC algorithm for the two�
processor scheduling problem� using the RNC matching algorithm of Karp�
Upfal� and Wigderson ��� as a subroutine� This gave a weaker version of
Theorem �� below which showed the maximum matching problem for interval
graphs to be in RNC � This was the �rst non�trivial class of graphs for which
maximum matchings could be obtained fast in parallel� It was subsumed by
���� who showed that the general matching problem was in NC �

More recently� Helmbold and Mayr �
� have obtained an NC algorithm
for two�processor scheduling� This allows us to dispense with randomization
in the case of incomparability graphs�

Theorem �� There is an NC algorithm which� given an incomparability
graph G � �V�E�� obtains a maximum matching in it�

Proof� Given an incomparability graph G� �rst obtain a transitive orien�
tation of Gc using Theorem ��� The resulting graph is then a transitively
closed acyclic digraph� compute an optimal two�processor schedule for it us�
ing Theorem ��� By ���� the list of paired jobs will be a maximum matching
in G� �
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