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Abstract

Laszlo Lovasz recently posed the following problem: “Is there an
NC algorithm for testing if a given graph has a unique perfect match-
ing?” We present such an algorithm for bipartite graphs. We also
give NC algorithms for obtaining a transitive orientation of a com-
parability graph, and an interval representation of an interval graph.
These enable us to obtain an NC algorithm for finding a maximum
matching in an incomparability graph.

1 Introduction

Karp, Upfal and Wigderson [9] have recently shown that the maximum
matching problem is in Random NC?® (RNC?®). This result has since been
improved to RNC? by Mulmuley, Vazirani, and Vazirani [16]. It remains
open whether there is a deterministic NC' algorithm for this problem. A first
step might be to obtain an NC algorithm for testing if a graph has a perfect
matching. An RNC algorithm for this problem exists, based on a method of
Lovasz [13] (see [1]). Rabin and Vazirani [18] give an NC' algorithm for ob-
taining perfect matchings in graphs having a unique perfect matching. Laszlo
Lovasz recently posed the following problem: “Is there an NC' algorithm for

*A preliminary version of this paper appeared as [12].



testing if a given graph has a unique perfect matching?” We present such an
algorithm for bipartite graphs.

We also give NC' algorithms for obtaining a transitive orientation of a
given comparability graph, and an interval representation for a given inter-
val graph. The first sequential algorithms for these problems were obtained
by Gilmore and Hoffman [6] and Ghouila-Houri [5]. More efficient algorithms
were obtained by Even, Pnueli, and Lempel [2, 17] and Golumbic [7]. The NC
comparability graph algorithm, together with the NC' two-processor schedul-
ing algorithm of Helmbold and Mayr [8] give an NC algorithm for maximum
matching in comparability graphs, a class of graphs containing all interval
graphs. This suggests that the maximum matching problem may be in NC.

2 Testing for Unique Perfect Matching in
Bipartite Graphs

The problem can be stated as follows:
Input: An undirected bipartite graph G = (X,Y, E).
Output: A unique perfect matching if one exists.

Let |X| = |Y| = n. Let A be the n x n adjacency matrix for G,
i.e. A(z,y) = 1 if the edge zy € E, 0 otherwise. For permutation ¢ on
{1,2,...,n}, define

value(o) = f[lA(i,a(i)).

The permutation o corresponds to a perfect matching in G iff value(s) = 1.
The determinant of A is given by

|A| = > sign(o) - value(o) .

Thus if G has a unique perfect matching, then |A| = £1, and if G has no
perfect matching, then |A| = 0.

If G has a unique perfect matching M C FE, there is a simple NC' algo-
rithm for obtaining it [18]; however that algorithm does not check whether
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M is in fact unique. If the edge zy is in M, then the graph G, obtained
from G by removing the edge zy will have no perfect matching. If the edge
zy is not in M, then G,, will still have a unique perfect matching. Thus
|Azy| = 0if 2y € M, and |A,,| = £1if 2y ¢ M, where A,, is the adjacency
matrix of G,,. By computing the determinants |A,,| in parallel for all edges
xy, M can be determined in NC.

We now give a method for verifying in NC that M is unique.

Lemma 1 The graph G has a unique perfect matching iff A is nonsingular
and there exist permutation matrices P, Q such that PAQ) is upper triangu-
lar.

Proof. Multiplying A on the left and right by permutation matrices P
and @) amounts to permuting the sets X and Y. If A is nonsingular, then
there must exist a perfect matching M, since |A| # 0. If in addition there
exist permutation matrices P, @ such that PAQ is upper triangular, then
M is unique and lies along the diagonal of PAQ, since there are no other
permutations o with value(o) # 0.

Conversely, if there is a unique perfect matching M, let R be a permuta-
tion matrix such that the edges of M lie on the diagonal of AR. Consider the
directed graph H with vertices {1,2,...,n} and edges {ij | AR(i,j) = 1}.
Then H has adjacency matrix AR. There is no directed cycle in H, except
for the trivial cycles on the diagonal; a nontrivial cycle would correspond
to an alternating cycle of M and non-M edges of G, thus M would not be
unique. Since H is acyclic, its reflexive transitive closure is a partial order
on {1,2,...,n}, and thus extends to a total order. Let S be a permutation
matrix that reorders {1,2,...,n} in respect of this total order, so that if
i > j then STARS(7,7) = 0. In other words, S~ tARS is upper triangular.
The result is then obtained by taking P = S ! and Q = RS. d

Thus, in order to check whether the matching M is unique, we first com-
pute the matrix AR, which can be done by the method of [18] described
above. Then the matching M in G will be unique iff the directed graph H
described in the proof of Lemma 1 has no cycles. There are very simple NC
algorithms to check this. We have shown

Theorem 2 There is an NC' algorithm for testing if a given bipartite graph
has a unique perfect matching.



3 Comparability Graphs

An undirected graph is called a comparability graph if there is a way to orient
the edges so that the resulting binary relation is transitive. In this section
we give an NC' algorithm for the following problem:

Input: An undirected graph G = (V, E).

Output: A transitive orientation of the edges, or indication that no such
orientation exists.

The first polynomial time algorithms for this problem were given inde-
pendently by Gilmore and Hoffman [6] and Ghouila-Houri [5]. They proved:

Theorem 3 ([6, 5]) A graph G is a comparability graph iff each odd cycle
has a triangular chord.

This property is easy to check in NC. However, producing a transitive
orientation in case one exists is a harder problem. We use a decomposition
theorem that allows a graph to be decomposed according to its comparability
structure, allowing separate parts of the graph to be oriented independently.
This decomposition was first discovered by Gallai [4]; see Kelly [11] for an ex-
cellent account in English. Considerations of efficiency require us to be more
careful in the development of the Gallai decomposition. Our development,
which we give below in full, departs from the standard development [11, 15]
in several technical respects, perhaps the most important of which is the in-
clusion of edges of the complementary graph in the definition of the relation
Z, the symmetry of G and G°, and the use of the relation ZZ. Otherwise,
basic notation and terminology follow [11, 15].

Let G = (V, E) be an undirected graph without multiple edges or loops.
We represent E as a set of ordered pairs such that £ = E~' = {uv | vu € E}.
Let E¢ = {uwv | u # v} — E and G° = (V, E°). Note that (E°)° = E. Many
definitions and results below are symmetric in £ and E¢; in the statement
of such results, we use the letter F' to represent either £ or E°, and F°
to represent the other. We will also use the word edge to denote any pair
uv € V2, u # v. We denote the induced subgraph of (V,F) on A C V by
(A, F).



Definition 4 A transitive orientation of G is a subset T" of E such that

(i) for each wv € E, either uv € T or vu € T' but not both;
(ii) if wv,vw € T, then vw € T.

The graph G is called a comparability graph if there exists a transitive orien-
tation. !

Definition 5 For wv,u'v' € F, define uvZu'v' if either
(i) u =" and vv' € F°, or
(ii) v = and wu’ € F°.

Let /* be the reflexive transitive closure of /. The /*-class of uv is denoted
[uv] and is called the implication class of uv. The set [uv] U [vu] is called
the color class of uv. The set of vertices touched by edges of [uv] is denoted
V{uv. O

Unlike [11], Z and £* are defined on edges in E° as well as E, and on
directed edges instead of undirected edges. Note, however, that [uv] = [u'V']
iff [vu] = [v'4/], thus [vu] = [uv] ™.

Example 6 The 5-cycle C'5 has exactly two color classes, one in £ and one in
E<. The complete bipartite graph K3 3 has seven color classes, one consisting
of all edges of F and six in E°, three in each of the E°-connected components.

U

The significance of implication classes is that a particular orientation of
one edge forces an orientation of all the other edges in its implication class.
This is expressed in the following lemma.

Lemma 7 For any transitive orientation T, if wv € T and [uv] = [u'V'],

then u'v' € T. In other words, for each uv, either [uv] C T or [uv]NT = @.
Proof. Immediate from the definition of transitive orientation. d

In view of Lemma 7, Theorem 3 can be restated: G is a comparability
graph iff [uv] # [vu]. This condition is easily checked in NC' by a simple
transitive closure procedure on edges. We will henceforth assume that the
condition holds of the given graph G.



Lemma 8 If uv € F, then (V[uv], F¢) has either one or two connected
components. If two, then the edges of [uv] form a complete bipartite graph
from one component to the other.

Proof. Tt can be shown by induction on the definition of Z* from Z that
every vertex in V[uv| is connected to either u or v by an path in F°. Thus
(V[uv], F°) has at most two components. If there are two components, say
A, B with v € A and v € B, then v'v' € F for every ' € A, v' € B. Since

(B, F°) is connected, [uv] = [uv]. Since (A, F°) is connected, [uv'] = [u'v'].
Thus [u'v'] = [uv] for every v’ € A and v € B. Moreover, this exhausts the
edges of [uv], since V]uv] = AU B. O

Definition 9 An edge uv € I is said to be of type 1 if (V[uv], F¢) has one
connected component, type 2 if (V]uv], F¢) has two connected components.
|

Definition 10 For wv,u'v' € F, define uvZu'v' if either
(i) v = and vv' & [vu] U [ud'], or
(il) v =" and wu' & [uv] U [vd/].

Let //* be the reflexive transitive closure of //. The //*-class of uv is
denoted Juv]. The set of vertices touched by edges of [uv] is denoted V [uv].
O

Lemma 11 (i) [uv] C [uv], and [uv] = [uv] if uv is of type 1.

(i1) If wo,uw,vw € F, [uw] = [ow], and v'v' € [uv], then [v'w] = [uw]
and [v'w] = [vw].

Proof. The first statement of (i) is immediate from the definitions. For
(ii), if wvZud', then v'w € F, otherwise uwZuv' Zuv, contradicting Juw] =
[vw]. Then v'wZvw, and by the first statement of (i), [v'w] = [vw] = Juw].
If wvZu'v, a symmetric argument shows that «'w € F, v'wZuw and [v'w] =
Juw] = [vw]. The result follows by induction on the definition of £*.

For the latter statement of (i), suppose wvZuw but [uv] # [uw]. Then
uwZvw, and either all three edges uv, vw, wu are in F, or all three are in F°.
Let A = {u' | [u'v'] = [uv] for some ¢'}, B = {v' | [u'v'] = [uv] for some u'}.
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By (ii), [ww'] = [wu] for every «' € A, and [wv'] = [wv] for every v’ € B.
Since [wu] # [wv], AN B = @. Moreover, for every v’ € A, v' € B, u'v' € F.
Therefore A, B are two F'°-connected components of V[uv], and wv is of type
2. |

3.1 Normal subgraphs and kernels

Definition 12 A partition 7 of V' is called a kernel if for all distinct A,
B € wand all u,u’ € A, v,v' € B, [uv] = [u/v']. A subset A C V is called
normal if for all w ¢ A and v,v’ € A, [uv] = [u']. O

The definition of normal set is related to the definition of autonomous set
in [11, 15]. Our definition differs in that it involves edges in E° as well as E.
Kernels and normal subsets are related by the following lemma.

Lemma 13 A partition © is a kernel iff every A € © is normal. Every
normal set A is contained in some kernel.

Proof. The direction (—) of the first statement is immediate from the
definitions. Conversely, let A, B be distinct elements of 7, u,u’ € A, v,v" €

B. Since B is normal, [uv] = [u?'], and since A is normal, [uv'] = [u'V].
Therefore [uv] = [u/¢']. Since singletons are trivially normal, every normal
set A is contained in a kernel, namely {A} U {{u} | u & A}. O

Lemma 14 For any uwv € F, the connected components of (V[uv], F¢) are
normal sets.

Proof. Since V[uv| is connected by edges in the color class of uv, for any
s & V]uv|, either all st, t € V]uv], are in F or all are in I'¢, otherwise there
would be some edge in [uv], say uv itself, such that su € F iff sv € F*.
But then either [su] = [vu| or [sv] = [uv], contradicting the assumption that
s & V]uv]. If sis F-connected to all ¢t € V]uv|, then all edges from s to
a connected component of (V[uv], ) are in the same implication class. If
s is F°-connected to all t € V[uv], then all st, ¢ € V[uv] are in the same
implication class; the argument is the same as in Lemma 8. If uv is of type
2, then the edges from one connected component of (V[uv], F¢) to the other
are all in the same implication class, by Lemma 8. d



Lemma 15 The set V]uv] is the smallest normal set containing uv.

Proof. First we show that V[uv] is normal. Since V[uv] is connected by
edges in [uv] and [vu], for any s € V]uv], all edges st with ¢t € V]uv] are in
the same implication class, otherwise there would be some edge in Juv], say
ww itself, such that [su] # [sv]. But then either [su] = [vu] or [sv] = [uv],
contradicting the assumption that s ¢ V[uv].

Now suppose that A is normal and u,v € A. If v' € A such that uvZuv/,
then [vv'] # [uv'], which is impossible if A is normal. Therefore V]uv] C A.

O

Lemma 16 If A, B are normal, then either A C B, B C A, or ANB = J.

Proof. Suppose u € A— B, v € ANB, w € B— A. Then [uv] = [uw]
since B is normal. But since A is normal, this contradicts Lemmas 11(i) and
15. O

Lemma 17 If A is normal in G and B C A, then B is normal in (A, F)
iff B is normal in G.

Proof. Trivially, if B is normal in G then it is normal in (A, F). Con-
versely, if B is normal in (A, E'), then for every vertex u € A — B, the set
of edges uv, v € B, are all in the same implication class. Since A is normal
in G, for any u € V — A, the set of edges uv, v € B, are all in the same
implication class. Thus B is normal in G. g

3.2 Simple graphs, quotient graphs, and comparabil-
ity morphisms

Definition 18 A graph is called simple if it has no nontrivial kernels. Equiv-
alently, a graph is simple if it has no nontrivial normal subsets. d

Example 19 The 5-cycle Cs is simple. The complete bipartite graph K33
has a nontrivial kernel consisting of the two sets of vertices in the bipartition,
each with three vertices. O



Definition 20 If 7 is a kernel, the quotient graph G/w is obtained by col-
lapsing each A € 7 to a single node:

G/t = (n,{AB|A,Ben, A# B, uv € E for some u € A, v € B} .
The map fr : G — G/7 is defined by

f=(u) = A, where A is the unique element of 7 containing u,

Jfe(uwv) = fr(uw)fz(v),for u, v such that f.(u) # fz(v).
O

Example 21 The 5-cycle C5 is simple, thus has no quotients except itself
and the trivial one-vertex graph. The complete bipartite graph K33 has a
nontrivial quotient G/m, where 7 is the kernel of Example 19. The graph
G/7 consists of a pair of directed edges between two vertices. O

The map f, may be called a comparability morphism, since it preserves
the relation /*:

Lemma 22 If r is a kernel in G, f = f., f(u) # f(v), and f(u') # f(V'),
then [uwv] = [W''] in G iff [f(w)] = [f(u'v")] in G/7. In other words, if
J(w) # f(v), then f=H([f(uv)]) = [uv].

Proof. By definition of kernel, wv € E iff f(uwv) € E/n. If wvZuv' in G,
then either f(v) = f(v'), in which case f(uv) = f(uv') in G/7; or f(v) #
f(v"), in which case f(uv)Zf(uv') in G/7. In either case f(uv')Z™* f(uv').
Conversely, if f(uv)Zf(uv') in G/m, then f(v) # f(v'), and wvZuv' in G.
The result follows by induction on the definition of £*. d

Lemma 23 A is normal in G/ iff f7'(A) is normal in G. The partition p
is a kernel in G/m iff {f.*(A)| A € p} is a kernel in G.

Proof. Let fo(u) # fr(v) and fr(u) # fo(v'). Then u ¢ f7'(A) and
v,v' € f7HA) I fr(u) € Aand fr(v), f=(v') € A. By Lemma 22, [uv] = [uv/]
iff [fx(uv)] = [fr(uv')]. Therefore f7'(A) is normal iff A is normal.

The second statement is immediate from the first. O

Lemma 24 7 is a mazimal kernel in G iff G/m is simple.
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Proof. If p is a nontrivial kernel in G/, then by Lemma 23, {f'(A) |
A € p}is a nontrivial kernel in G that properly contains 7, thus 7 was not
maximal. Conversely, if 7 is not maximal, then by Lemma 16, there is a
nontrivial kernel o # 7 such that each element of ¢ is a union of elements of
7. Then o = {f. }(f:(A)) | A € ¢}. Taking p = {f(A4) | A € ¢} in Lemma
23, it follows that p is a nontrivial kernel in G/7. O

Theorem 25 Fvery graph G decomposes into a product of simple graphs.

Proof. Let T be the tree of all normal subsets of GG, ordered by inclusion.
This tree exists, by Lemma 16. For any normal subset A, the successors
of A in T are the maximal proper normal subsets of A, by Lemma 17. By
Lemma 13, this set forms a maximal kernel 7 in (A, E'), therefore by Lemma
24, (A, E')/ is simple. O

Theorem 26 Letw = {Vi,...,V,} be a kernel and let G; = (V;, E). There
is a one-to-one correspondence between transitive orientations T of G and
tuples (Ty,..., Ty, T/7) of transitive orientations of Gi,...,G, and G/,
respectively.

Proof. Let f = fr. Given a transitive orientation 7" of G, let
I, = Tn ‘/22 )
Tlw = {f(uv)| f(u) # [(v),uv € T} .

T; is just the orientation induced on G; as a subgraph of GG and is clearly
transitive. If f(u) # f(v), then f(uv) € T'/7 iff f(vu) ¢ T/7 by Lemma 7,
so T/ is a valid orientation. 7'/7 is transitive, since if f(uv), f(vw) € T/x
then uv,vw € T by Lemma 7, therefore uw € T. Also, f(u) # f(w),
otherwise [uv] = [wv], and by Lemma 7 both wv and vw would be in 7.
Thus f(uw) € T/~.

Conversely, if T;, 1 <=1 <=n, and T'/r are given, let

T = UTusNT/m) .
i=1
If flu)=f(v) =V;, u,v € Vi, then wv € T iff wv € T; iff vu ¢ T; iff vu ¢ T.
If f(u) # f(v), then wv € T iff f(uv) € T/w iff f(vu) ¢ T/7 iff vu & T, so

T is a valid orientation. To show 7' is transitive, suppose uv,vw € T'. There
are three essential cases, from which the others follow by symmetry:
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(i) f(
(i) f(u) = flv) = Vi, f(w) # Vi
(iif) f(u) # f(v) and f(v) # f(w).

Case (i) follows from the transitivity of 7;. In case (ii), f(uw) = f(vw), and
f(vw) € T'/w. Therefore f(uw) € T/m and uw € T. Finally, in case (iii), it
cannot be that f(u) = f(w), otherwise [uv] = [wv], and then by Lemma 22
[f(uv)] = [f(wv)], so by Lemma 7, f(wv) € T/, contradicting the fact that
f(vw) € T/w. Then f(uv) € T/w and f(vw) € T'/7, therefore f(uw) € T/,
and therefore ww € T'. O

Theorem 27 The following are all the normal subsets of G:
(i) singletons {u}, v e V;
(it) Vuv], v, ve V.

Proof. These sets are normal, by Lemma 15. Let A be any normal set
with at least two elements. Let 7 be a maximal proper kernel in A. Then
(A, E)/m contains at least two vertices fr(u), fr(v), where u,v € A. By
Lemma 15, V[uv] is the smallest normal set containing « and v, therefore by
Lemma 16, fo(u) U fr(v) C V[uv] C A. But then A = V]uv], otherwise ©
was not maximal. O

3.3 Classification of simple graphs

The following theorem classifies all simple graphs into one of three types. It
is a much simplified restatement of Theorems 1.2 and 1.8 of [11].

Theorem 28 A graph G is simple iff either:
(i) G is a clique;
(i1) G is totally disconnected (so that G¢ is a clique);

(11i) G contains at least four vertices and has exactly two color classes, one
each in E and E°.
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Proof. First we show that any simple graph must be of one of the three
given forms. Let G be simple. Any simple graph of three or fewer vertices is
of the form (i) or (ii), by inspection. Thus assume G has at least 4 vertices.

If G has a type 2 edge uv, then by Lemma 14, [uv] is a singleton, otherwise
G has a nontrivial kernel. Using Lemma 11, it can be shown that V]uv] is
a clique of type 2 edges, all of which form singleton implication classes. By
Lemma 15, V[uv] is normal, and since G is simple, V]uv] = V. Then G is
of the form (i).

If all wv are of type 1, then V]uv] = V for every u,v € V, by Lemmas

11(i) and 15. We argue that for any wwv, w'v" in F, either [uv] = [u/v/] or
[uv] = [v'u']. Suppose not. Since V = V[u'v'], there exists w € V such that
either [uw] = [u'v'] or [uw] = [v'v]. In either case, [uw] # [uv]. Then vw €

F, and one of [vw] # [vu], [vw] # [uw]. Without loss of generality, assume
the former. Then wwZvw, so by Lemma 11(ii), w ¢ V[uv], contradicting the
fact that V = V]uv]. We have shown that there are exactly two implication
classes in F', therefore one color class in F'.

We now show that each of the types (i)-(iii) is simple. For (i), a clique
cannot contain any nontrivial normal subset, because all implication classes
are singletons, so V]uv] = V for all u, v € V. By Lemma 15, G is simple.
Case (ii) is symmetric. For G of type (iii), suppose there is a nontrivial
maximal proper kernel 7. By Lemma 24, G/7 is simple, thus G/ is of one
of the forms (i)-(iii). At least one implication class vanishes when passing to a
nontrivial quotient, and Lemma 22 implies that each implication class in G/7
is the image under f, of an implication class in G. Thus G/7 cannot have any
of the following forms, otherwise GG has too many implication classes: form
(iii); form (i) or (ii) with three or more vertices; form (i) or (ii) with two
vertices, so that 7 = {A, B}, and each of A, B contains at least two vertices,
or one of A, B contains at least three vertices. The only other alternative
is that GG has three vertices, which is explicitly ruled out in the definition of
type (iii). O

3.4 An NC algorithm for obtaining a transitive ori-
entation

Consider the following algorithm for producing a transitive orientation of a
comparability graph:
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1. Determine all classes [uv] and Juv].
2. Find all normal sets.
3. Create the tree of normal sets, ordered by inclusion.

4. For each normal set A, find a transitive orientation of the quotient
(A, E)/m, where 7 is a maximal proper kernel in A.

5. Let these orderings induce an ordering on G under the maps f !, ac-
cording to Theorem 26.

Step (1) is a transitive closure computation on edges. Step (2) determines
the sets V[uv] from this information, which by Theorem 27 gives all normal
sets. Step (3) involves the construction of the Hasse diagram of the inclusion
relation on normal sets. Step (4) first computes a representation of the
quotient graph (A, F)/7, where 7 is the set of descendants of A in the tree
of normal sets. This is a maximal proper kernel, by Lemmas 13 and 16. If
(A,E)/7 is a simple graph of type (i), then any arbitrary ordering among
the m! possible orderings of the m vertices of (A, F)/7 gives a transitive
orientation. If (A, F)/7 is a simple graph of type (ii), then there is only
one transitive orientation, namely as an antichain. If (A, E)/x is a simple
graph of type (iii), then there are only two possible transitive orientations,
corresponding to the two implication classes of (A, E)/7. Finally, (5) is a
matter of notation. All these computations can easily be done in NC' using
standard algorithms. We have proved

Theorem 29 There is an NC algorithm for checking if a given graph G =
(V, E) is a comparability graph, and if so, for obtaining a transitive orienta-
tion of its edges.

A stronger result can be shown: there is an NC' algorithm for enumerating
all transitive orientations of a given undirected graph. By this we mean that
there are NC' circuits which, given an undirected graph and a binary number
k, produce the k' transitive orientation in some ordering. This can be
obtained from the Gallai decomposition. We leave the details to the reader.
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4 Interval Graphs

In this section we give an NC' algorithm for the following problem.
Input: An undirected graph G = (V, E).

Output: An interval graph representation of G, or an indication that no
such representation exists.

Definition 30 (Gilmore and Hoffmann [6]) Let o be a linearly ordered
finite set. An interval o of o is any set of contiguous elements of . Let
I be a set of intervals on o. The pair (o0,1) is an interval representation of
the undirected graph G = (V, F) if there exists a bijection f : V' — I such
that wv € E iff the intervals f(u) and f(v) intersect. An undirected graph
G = (V, F) is an interval graph iff it has an interval representation. O

Define an incomparability graph to be an undirected graph G whose com-
plement G° is a comparability graph. The following characterization imme-
diately gives us an NC algorithm for checking if G is an interval graph:

Theorem 31 (Gilmore and Hoffmann [6]) G is an interval graph iff
(i) G is an incomparability graph, and
(i1) every cycle of length four in G has a diagonal.

Our NC algorithm for obtaining an interval representation for G is essen-
tially a parallelization of the sequential algorithm of Gilmore and Hoffman
[6], using the transitive orientation algorithm of Section 3. We give below
this sequential algorithm:

1. Transitively orient the edges of G°.

2. qFind a set of maximal cliques in G such that every vertex and every
edge is in at least one such clique. Let this set of cliques be denoted o.
For each pair of cliques Cy, C5 € o, there is an edge of G° connecting
some vertex in C to some vertex in Cs (otherwise Cy U Cy would be a
clique). Gilmore and Hoffman prove that under the orientation assigned
in step 1, either all such edges are directed from C; to Cjy, or else all
are directed from C5 to Ci. Moreover, if we define C; < (s if these
edges are directed from C to Cy, then this linearly orders o [6].
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3. For any vertex v € G, let a(v) be the set of maximal cliques to which
v belongs. These cliques will be contiguous, and thus will form an
interval of o [6]. Let I be the set of all the intervals corresponding to
the vertices of G. Then (o, I) is an interval representation of G.

We will now parallelize this algorithm:
1. Transitively orient G° using Theorem 29.

2. Do in parallel for each edge uv € G: find a maximal clique C,v con-
taining wwv.

3. Remove redundant cliques. Let o be the list of cliques remaining.

4. Do in parallel for each pair C;,C; € o, ¢ < j: examine in parallel all
pairs of vertices u € C;, v € (}, and consult the orientation obtained
in step 1 to determine the order of C; and C;. This gives the linear
order on o.

5. Do in parallel for each vertex v € G: obtain the interval a(v). This
will yield the set of intervals I.

To accomplish step 2, we can use the parallel maximal clique algorithm
of Karp and Wigderson [10], or the more efficient algorithm of Luby [14]. We
thus obtain:

Theorem 32 There ts an NC algorithm which checks if a given graph G =
(V,E) is an interval graph, and if so obtains an interval representation for
it.

5 Parallel Matching Algorithms

We will use Theorem 29 to obtain parallel maximum matchings in incompa-
rability graphs. Recall that an incomparability graph is an undirected graph
G whose complement G° is a comparability graph, and that interval graphs
form a subclass of incomparability graphs.

Our algorithm will make use of a fast parallel algorithm for the two-
processor scheduling problem. This problem can be stated as follows:

15



Input: A directed acyclic graph G = (V, E) whose vertices represent unit
time jobs and whose edges specify precedence constraints among the
jobs.

Output: An optimal schedule for the jobs on two identical processors sat-
isfyqing all the precedence constraints.

Two jobs which are scheduled in the same time unit on the two proces-
sors are said to be paired. The connection between this problem and the
maximum matching problem is established by the following theorem:

Theorem 33 (Fujii, Kasami, and Ninomiya [3]) Let G = (V,E) be a
directed, acyclic graph, and let Gx© be the complement of its transitive closure.
Then the paired jobs in an optimal schedule for G form a mazximum matching
n G*°.

This theorem enabled [3] to obtain a fast sequential algorithm for two-
processor scheduling, using a maximum matching algorithm as a subroutine.
We will do the reverse.

Vazirani and Vazirani [19] gave a Random NC' algorithm for the two-
processor scheduling problem, using the RNC matching algorithm of Karp,
Upfal, and Wigderson [9] as a subroutine. This gave a weaker version of
Theorem 34 below which showed the maximum matching problem for interval
graphs to be in RNC'. This was the first non-trivial class of graphs for which
maximum matchings could be obtained fast in parallel. It was subsumed by
[9], who showed that the general matching problem was in NC.

More recently, Helmbold and Mayr [8] have obtained an NC' algorithm
for two-processor scheduling. This allows us to dispense with randomization
in the case of incomparability graphs.

Theorem 34 There is an NC' algorithm which, given an incomparability
graph G = (V, E'), obtains a maximum matching in it.

Proof. Given an incomparability graph G, first obtain a transitive orien-
tation of G° using Theorem 29. The resulting graph is then a transitively
closed acyclic digraph; compute an optimal two-processor schedule for it us-
ing Theorem 33. By [3], the list of paired jobs will be a maximum matching
in G. O
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