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Abstract. The change-making problem is the problem of representing
a given value with the fewest coins possible. We investigate the prob-
lem of determining whether the greedy algorithm produces an opti-
mal representation of all amounts for a given set of coin denominations
1=0¢ < c2< -+ < ¢m. Chang and Gill [1] show that if the greedy
algorithm is not always optimal, then there exists a counterexample  in
the range

Cm{CmCm— Cm — 3Cm—
C3§CE< m(mm1+m ml)

Cm — Cm—1
To test for the existence of such a counterexample, Chang and Gill pro-
pose computing and comparing the greedy and optimal representations
of all # in this range. In this paper we show that if a counterexample
exists, then the smallest one lies in the range

s+l < z < em+cem-1,

and these bounds are tight. Moreover, we give a simple test for the ex-
istence of a counterexample that does not require the calculation of op-
timal representations. In addition, we give a complete characterization
of three-coin systems and an efficient algorithm for all systems with a
fixed number of coins. Finally, we show that a related problem is coNP-
complete.

Introduction

The change-making problem is the problem of representing a given value with
the fewest coins possible from a given set of coin denominations. Unboundedly

many coins of each denomination are available.

Formally, given a finite system ¢; < ¢3 < -+ < ¢, = n of positive integers

(the coins) and a positive integer 2, we wish to determine nonnegative integer

coefficients x;, 1 < ¢ < m, so as to minimize

m
>
i=1



subject to

r = ixzcz (2)
i=1

The sequence of coefficients x4, ..., x,, 1s called a representation of x. The quan-
tity (1) that we wish to minimize is called the size of the representation. A rep-
resentation 1s optimal if it 18 of minimum size. If x; > 0, then we say that the
coin ¢; is used in the representation. We restrict our attention here to systems
containing a penny (i.e., ¢y = 1), so that every « has a representation.

The change-making problem is a form of knapsack problem. Martello and
Toth devote an entire chapter to it in their text on knapsack problems [4],
and a good summary of the state of knowledge can be found there. In general,
the problem is NP-complete when the coin values are large and represented in
binary [3]; however, it can be solved in time polynomial in the number of coins
and the value of the largest coin. In this regard, a number of algorithms have
been investigated, the simplest of which is the greedy algorithm, which repeatedly
takes the largest coin less than or equal to the amount remaining. Equivalently
and more efficiently: for each of ¢ = m,m — 1,...,2,1 in that order, let z; be
the integer quotient |z/c¢;], and set & := x mod ¢;. This produces the greedy
representation in time O(mlogn). Note that this is the unique representation
x1,..., 2T, such that for all 7, 1 <7 < m,

i—1
Zl‘]’Cj < ¢ . (3)
ji=1

The greedy representation is not necessarily optimal. For example, given the
system 1,3,4, the greedy algorithm produces the representation 2,0,1 for the
number 6; this representation is of size 3, whereas the optimal representation is
0,2,0 of size 2. For some systems, however, the greedy algorithm always produces
an optimal representation for any given value; as a matter of practical interest,
we note that this is the case for the system 1,5,10,25,50,100 of American coins
and the system 1,5,10,50,100,500 of Israeli coins. The question thus arises: how
does one determine whether the greedy algorithm is always optimal for a given
system?

Definition1. Given a system of coins, let M () denote the minimum size over
all representations of the number z in that system, and let G(#) denote the size
of the greedy representation of «. Following [4], we call the system canonical if
G(z) = M(=z) for all z. If a system is not canonical, then a value x for which
M(z) < G(x) is called a counterezample for the system.

Ezample 1. For any nonnegative integer k, the system 1,2,4,..., 2% is canoni-

cal. The Fibonacci system 1,2,3,5,8,..., F} is canonical, where Fy is the k*P
Fibonacci number. The system 1, %,k + 1 for & > 2 1s not canonical: the coun-
terexample 2k has optimal representation 0,2,0 of size 2, whereas the greedy
representation is £ — 1,0, 1 of size k.



Chang and Gill [1] show that it suffices to search for a counterexample among
the members of a certain finite set; if no counterexample is found in this set,
then no counterexample exists and the system is canonical. The size of the set
to be checked 1s polynomial in the largest coin value. Specifically,

Theorem 2 Chang and Gill [1]. Let 1 = ¢; < -+ < ¢ be any system of
coins. If M(x) = G(z) for all x in the range

3 < & < cm(cmcm—l +em — 3Cm—1) ’ (4)

Cm — Cm—1
then the system is canonical.

In order to check for a counterexample in this set, Chang and Gill propose
computing the greedy and optimal representations of each element of the set and
comparing their sizes. Martello and Toth comment [4, p. 142]:

The proof [of Theorem 2] is quite involved and will not be reported
here. Furthermore, application of the theorem is very onerous, calling
for optimality testing of a usually high number of greedy solutions.

Frample 2. Consider the system 1,2,4,8,10,16 (this example is taken from [4,
Example 5.2, p. 143]). In order to test whether this system is canonical according
to the algorithm of Chang and Gill, we must compute and compare the sizes of
the greedy and optimal representations of all 385 values # in the range (4).

In Section 2 below we give two results that simplify the process of testing for
the existence of a couterexample:

— We give tight bounds for Theorem 2. Specifically, we show that if a coun-
terexample exists at all, then the smallest one lies in the range

C3+1 < xr < Cm+cm—1a

and these bounds are tight for an infinity of systems. Note that the upper
bound is linear in the largest coin value, whereas (4) is cubic. Thus in order
to check the system of Example 2, we need only check a set of size 20.

— We show that it is not necessary to compute optimal representations for the
numbers in the given range as suggested by Chang and Gill. There is a much
simpler test involving only the sizes of the greedy representations, which are
trivial to compute in time O(n) using the recurrence

Gz) = 1+G(x—c) (5)

where ¢ 1s the largest coin value less than or equal to .



These results give rise to an O(mn) algorithm for testing whether a given system
of coins 1s canonical.

In Section 3 we give a characterization of systems of three coins and a simple
O(log n) test for determining when such a system in canonical.

In Section 4 we extend these results to systems with any fixed number of
coins.

In Section 5 we consider the related problem of determining whether the
greedy representation of a given number z in a given system 1s optimal. We
show that this problem is coNP-complete. It remains open whether there is an
algorithm that is polynomial in m and logn for testing whether a given system
is canonical.

2 Optimal Bounds

In this section we derive optimal bounds for the change-making problem. Many
of our arguments hinge on the following lemma, which describes the behavior of
the function M.

Lemma3. Let 1l = c¢; < -+ < ¢y, be any system of coins. For all x and coins
Ci S T,

M(z) < M(x—e)+1, (6)

with equality holding if and only if there exists an optimal representation of x
that uses the coin c;.

Proof. Certainly (6) holds, since any optimal representation of x — ¢; gives a
representation of x of size M (z — ¢;) + 1 by adding one to the coefficient of ¢;.
If in addition M (z) = M(x — ¢;) + 1, then the representation of z so obtained
is optimal and uses the coin ¢;. Conversely, given an optimal representation
of x that uses ¢;, we can obtain a representation of © — ¢; of size M(x) — 1 by
subtracting one from the coefficient of ¢;, and (6) implies that this representation
is optimal.

Theorem4. Let 1 = ¢y < - < ¢y be any system of coins. If there exists an x
such that M (z) < G(x), then the smallest such x lies in the range

ecs+1 < 2 < emtomon . (7)
Moreover, these bounds are tight.
Proof. Certainly M (z) = G(x) for all # < ¢3, since ¢, ¢o is a canonical system.

In addition, neither ¢z nor ¢3+ 1 provides a counterexample, since in both cases
the greedy representation is optimal. This establishes the lower bound.



To prove the upper bound, let z > ¢, + ¢;,_1 and assume inductively that
G(y) = M(y) for all y < x. Let ¢; be any coin used in some optimal representa-
tion of z. If # = m, then

Gx) = Gle—cpm)+1 by definition of G
= M@x—cmn)+1 by induction hypothesis
= M(x) by Lemma 3.

If ¢ < m, then

G(x) G(r—cem)+ 1 by definition of G
= M@x—cmn)+1 by induction hypothesis
< M(xr—cm—ci)+2 by Lemma 3
< Glr—cem—c¢)+2 by definition of M

G(r—¢)+1 by definition of G

= M@E—-—c¢)+1 by induction hypothesis
= M(x) by Lemma 3
< G(x) by definition of M.

Thus in either case G(z) = M (z).

For k > 2, the systems 1, k, 2k — 2 give an infinity of systems for which the
smallest counterexample is c3 + 2, and the systems 1,k,k 4+ 1 give an infinity
of systems for which the smallest counterexample is ¢, + ¢;n—1 — 1. Thus the

bounds (7) are tight.

Our simplified algorithm is based on the observation that we can avoid com-
puting optimal representations by checking for the existence of witnesses instead
of counterexamples:

Definition5. A witness 1s an z for which
G(x) > Glx—c)+1

for some coin ¢ < z.

Lemma6. (i) Every witness is a counterezample.
(ii) If a counterezample exists, then the smallest one is a witness.

Proof. (i) Suppose # is a witness; thus
Glx—c)+1 < G(x)

for some coin ¢. Then

M(z) < M@E—c)+1 by Lemma 3
< Gle—-eo)+1 by definition of M
< Gx).



(ii) If @ is a counterexample but not a witness, and if ¢ is any coin used in an
optimal representation of x, then x — ¢ is also a counterexample:

M(z—¢) = M) -1 by Lemma 3
< Gz)-1
< Gx—c).

Therefore the smallest counterexample must be a witness.

The converse of Lemma 6(i) is false: in the system 1,4,5, the value 12 is a
counterexample but not a witness. In this example, the coin 4 is used in the
optimal representation 0,3, 0 of 12, therefore 8 = 12—4 1s also a counterexample.
It is in fact the smallest counterexample, thus is also a witness.

Theorem 7. For a given system to be canonical, it is necessary and sufficient
that there exist no witness in the range (7).

Proof. Immediate from Theorem 4 and Lemma 6.

Theorem 7 implies that to test whether a given system is canonical, it suffices
to check whether

Gr) < Gle—c)+1

for all # in the range (7) and coins ¢ < x; we need not calculate any optimal
representations. All necessary values of G(x) can be computed in time O(n)
using the recurrence (5); thus the entire algorithm takes time O(mn).

3 A Characterization of Three-Coin Systems

In this section we characterize completely all systems of three coins. This char-
acterization gives a trivial O(logn) test for determining whether the system is
canonical.

Let 1 < ¢ < d and let ¢ and r be the quotient and remainder, respectively,
obtained from the integer division of d by ¢. Thus ¢ and r are the unique integers
such that

= qc+7r, (8)
0 < r < ¢. (9)

Theorem 8. The system 1,¢,d is not canonical if and only if 0 <r <c—q.

Proof. If 0 < r < ¢ — ¢, then the value d + ¢ — 1 is a counterexample: the
greedy representation ¢ — 1,0, 1 is of size ¢ > r 4 ¢, whereas the representation
r—1,¢q+ 1,0 1s of size r + ¢.

Conversely, suppose 1 < ¢ < d is not canonical, and let # be the smallest
counterexample. The greedy representation of # must be of the form e,0, 1 with



0<e<e sinced+ 1< a<c+dby Theorem 4. Moreover, there is a unique
optimal representation of x of the form 0,%,0 with & > 0, since if either the
coefficient of 1 or d were nonzero, then by Lemma 3 we could subtract one and
get a smaller counterexample. Since @ = d + ¢ = ke, we have

d = ke—e = (k—1)c+(c—e)
0 < (d+e)—2 = (d+c)—(d4+e) = c—e < ¢,
and since ¢ and r are unique numbers satisfying (8) and (9), we must have
g=k—1and r = ¢ — e. Since z is a counterexample, we have that £ < 1+ ¢,

thus ¢ = k— 1 < e and 0 < ¢ —e = r, from which the desired inequalities
0 < r < c— q follow.

4 Large Coins

The characterization of the previous section yields a simple O(logn) algorithm
for determining whether a given system of three coins is canonical. In this section
we give an algorithm whose time complexity is O(logn) for any fixed number of
coins m. The complexity of the algorithm is O(m?2™~!logn).

Recall that |z/¢| and  mod ¢ denote the integer quotient and remainder,
respectively, obtained when dividing z by ¢. Thus

r = |x/cJe+xmode
0 < zmode < ¢
and |z/c] and  mod ¢ are the unique numbers for which these two statements
hold.

Let 7;(2) denote the greedy representation of # in the system 1 =¢; < -+ <
¢;. Thus

n) = =

Yi(r) = {(yic1(z mod ¢;), |&/c;]), i>1
where (o, z) denotes the sequence obtained by appending the integer z to the
end of the sequence «.

Define the equivalence relation =} on integers x > k by:
=y = (@) =il —k) =7y —nly— k),

where — applied to the sequences ;( ) denotes componentwise difference. Note
that x =7y for every z,y > cp,. It follows from the observation

m

Gla) =Gz —c) = Y (ym(x) = ym(z =)

i=1
that if # =7* y for a coin ¢, then x satisfies the property

G(z) < Glr—c)+1 (10)



if and only if y does. Thus in order to find a witness, it suffices to check (10)
for one representative z from each =7'-class for each coin ¢. We will show below
(Theorem 10) that for each coin ¢ there are at most 2m~1 ="_classes, and
representatives can be constructed efficiently.

The formal statement and proof of Theorem 10 do not adequately reflect the
intuition behind them, so we preface the formalities with the following intuitive
argument.

Fix k and consider the difference vy (2) — ym (2 — k) of the greedy repre-
sentations of ¥ and x — k as x increases. The last coefficient of this difference,
namely |#/cm| — [(x — k)/em |, alternates periodically between two values r and
7+ 1 (unless k is a multiple of ¢, in which case there is only one value). We
can thus think of # as being in one of two states, depending on the value of this
coefficient. The state changes whenever either z or & — k skips over a multiple of
Cm- In between the times when this state changes, the next-to-last coefficient of
Ym (2) —ym (x — k) alternates periodically between two states in a similar fashion,
but with period ¢,,_1; and so on. Thus each coin value ¢;, ¢ > 2, accounts for
two states (there is only one state for ¢; = 1), giving 2™~1 global states.

Formally, let =, y, and ¢ be integers, ¢ positive. Define

t(z,y) = [(xmodc+ymode)/e] € {0,1}.

The function ¢, formalizes the “state” for coin ¢ as described above. The following
lemma establishes some basic observations regarding this function.

Lemma 9. The function t. satisfies the following properties:

(x+y)mode = amodc+ymode—ct.z,y)
Wz +y)/e] = |x/c]+ [y/c] +tc(z,y)
t(z,y) =0 zmod e < (x4 y) mode

—
te(v,y)=1 — ty+2,—2)=0.

These properties follow immediately from the definitions.
Now define the sets

Ay = {k}
Aﬁc = {I_k/cijci+u|uEA§c:nlodc,} U {k+U|U€AE:i)modc,} ) i>1.

Theorem 10. The set A}; contains the minimum element of each Eﬁc-class. In
other words, for all x > k there exists a y € A, such that

k< y < = (11)

—1

y = . (12)



Proof. The proof is by induction on 7. The basis 1s immediate from the definition
of AL and 7.

For ¢ > 1, let #; = t.,. We break the proof into two cases, depending on the
value of t;(k,z — k). First suppose t;(k,z — k) = 0. Then k mod ¢; < # mod ¢;.
By the induction hypothesis, there exists a u € A~} such that

kmode;
kmode; < u < xmode (13)
u E;:Illodc, x mod ¢; . (14)
Let
y = |k/elat+u € A%.

By (13) and the fact that £ < #, we have

k

lk/c;|e; + k mod ¢
[k/cilei+u (=y)

z/e;|e; + & mod ¢

INIA

T .

This establishes (11). By Lemma 9, we also have that ¢;(k,y — k) = 0, since
kmode; < u = ymode .

By (14) and the fact that ¢;(k, 2z — k) = t;(k,y — k) = 0, we have

Yi—1(x mod ¢;) — vi—1((# — k) mod ¢;)

= 7-1(zmod ¢;) — vi—1(2 mod ¢; — k mod ¢;)

= y—1(u) — yi—1(u — k mod ¢;) (15)
= -1y mod ¢;) —y;—1(y mod ¢; — k mod ¢;)

= 7i-1(

-1
—1(y mod ¢;) —vi—1((y — k) mod ¢;) .

Now suppose t;(k, t—k) = 1. By Lemma9, t;(x, —k) = 0, thus (k) mod ¢; <
(x — k) mod ¢;. By the induction hypothesis, there exists a v € Az:i)modc, such
that

(=k)mode¢; < v < (2—k)mode (16)
v Eé:i)modc, (x —k)mod ¢; . (17)

Let

y = k+v € AL



By (16) and the fact that & < x, we have

k< k+tv (=y)
< k+(x—k)modg
< z.

This establishes (11). We also have that ¢;(k,y — k) = 1:

kmode; +(y—k)mode; = kmode; +vmode
k mod ¢; + (—k) mod ¢

v

= G,
since kmod¢; # 0 by Lemma 9. By (17) and the fact that ¢;(k,x — k) =
ti(k,y — k) = 1, we have
Yi—1(x mod ¢;) —vi—1((# — k) mod ¢;)
= —(yi—1((# — k) mod ¢;) — vi—1(x mod ¢;))
= —(vi-1(v) = 7i-1(v = (=k) mod ¢;)) (18)
= -1y mod ¢;) — v—1((y — k) mod ¢;) .
Now for either value of ¢;(k, x — k), we have t;(k,z — k) = t;(k,y — k). Then
by Lemma 9,
lz/ci] = (& —k)/ei] = |k/ei] +ti(k, 2 —k)
Lk/ei] +ti(k,y — k) (19)
= /el = y—k)/e] .
Thus in either case, using (15), (18), and (19), we have
yi(x) = yi(w — k)

Yi—1(x mod ¢;

(x = k)/eil)
(x = k)/eil)

—k)/ei])
(y —k)/ei])

— —

). Le/ei))
)= 1@ — k) mod e7), [/e;]

3i-1(y mod ¢;) = yi-1((y — k) mod c7), [y/ei -
). ly/eil)
k

— —

) [y/eil) = (vi-1((y — k) mod ¢;),
)

7i(y) —7ily —
which establishes (12).

It is easily shown by induction that the set A7* contains at most 2™~ ele-
ments, and each element of A} is less than

m

Z ¢, < k+mn.

i=1
Moreover, the straightforward method of constructing A}® according to its in-
ductive definition takes time O(m2™~1logn). Thus to check whether the system
is canonical, we need only determine (10) for all coins ¢ and # € A7*. There are
m2m~1 such z to check, and each check takes time O(mlogn).



5 An NP-Completeness Result

Lueker [3] shows that when the coin values are large and represented in binary,
the problem of finding an optimal representation of a given x is NP-hard. Here
we show:

Theorem 11. It ts coNP-complete to determine, given a system of coins and
a number x represented in binary, whether the greedy representation of x s
optimal.

Proof. The problem is clearly in coNP: we can compute the greedy representa-
tion of # in linear time, then find a better one if it exists by guessing.

To show coNP-hardness, we will encode the problem of exact cover by three-
sets: given a set X and a family £ of three-element subsets of X, can X be
represented as a disjoint union of elements of £7 This problem is known to be
NP-complete (see [2]).

Assume without loss of generality that X = {1,2,...,3n}. Let p = n + 1.
Consider the system of coins

1+ o, A€

I€EA

3n
_ 7
cx = g p
i=1

cA

and a penny. Let
r = n-4+ecx .

The greedy algorithm gives a representation of x of size n 4+ 1 consisting of cx
and n pennies. This is optimal unless there is an exact cover, in which case a
better representation is obtained by taking c4 for A in the cover.

The problem of Theorem 11 differs from the problem of determining whether
a given system of coins is canonical in that in the former, we are asking whether
greedy is optimal for a given z, whereas in the latter, we are asking whether
greedy is optimal for all . We know by Theorems 7 and 11 that both problems
are in coNP, and the former is complete. An interesting question that we have
not succeeded in answering is whether the latter is complete, or whether there
is an algorithm whose time complexity is polynomial in m and logn.
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