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Abstract� The change�making problem is the problem of representing
a given value with the fewest coins possible� We investigate the prob	
lem of determining whether the greedy algorithm produces an opti	
mal representation of all amounts for a given set of coin denominations
� 
 c� � c� � � � � � cm� Chang and Gill ��� show that if the greedy
algorithm is not always optimal� then there exists a counterexample x in
the range

c� � x �
cm
cmcm�� � cm � �cm���

cm � cm��
�

To test for the existence of such a counterexample� Chang and Gill pro	
pose computing and comparing the greedy and optimal representations
of all x in this range� In this paper we show that if a counterexample
exists� then the smallest one lies in the range

c� � � � x � cm � cm�� �

and these bounds are tight� Moreover� we give a simple test for the ex	
istence of a counterexample that does not require the calculation of op	
timal representations� In addition� we give a complete characterization
of three	coin systems and an e�cient algorithm for all systems with a
�xed number of coins� Finally� we show that a related problem is coNP 	
complete�

� Introduction

The change�making problem is the problem of representing a given value with
the fewest coins possible from a given set of coin denominations� Unboundedly
many coins of each denomination are available�

Formally� given a �nite system c� � c� � � � � � cm � n of positive integers
�the coins� and a positive integer x� we wish to determine nonnegative integer
coe�cients xi� 	 � i � m� so as to minimize

mX

i��

xi �	�



subject to

x �
mX

i��

xici � �
�

The sequence of coe�cients x�� � � � � xm is called a representation of x� The quan�
tity �	� that we wish to minimize is called the size of the representation� A rep�
resentation is optimal if it is of minimum size� If xi � �� then we say that the
coin ci is used in the representation� We restrict our attention here to systems
containing a penny �i�e�� c� � 	�� so that every x has a representation�

The change�making problem is a form of knapsack problem� Martello and
Toth devote an entire chapter to it in their text on knapsack problems 
���
and a good summary of the state of knowledge can be found there� In general�
the problem is NP�complete when the coin values are large and represented in
binary 
��� however� it can be solved in time polynomial in the number of coins
and the value of the largest coin� In this regard� a number of algorithms have
been investigated� the simplest of which is the greedy algorithm� which repeatedly
takes the largest coin less than or equal to the amount remaining� Equivalently
and more e�ciently� for each of i � m�m � 	� � � � � 
� 	 in that order� let xi be
the integer quotient bx�cic� and set x �� x mod ci� This produces the greedy
representation in time O�m logn�� Note that this is the unique representation
x�� � � � � xm such that for all i� 	 � i � m�

i��X

j��

xjcj � ci � ���

The greedy representation is not necessarily optimal� For example� given the
system 	����� the greedy algorithm produces the representation 
���	 for the
number �� this representation is of size �� whereas the optimal representation is
��
�� of size 
� For some systems� however� the greedy algorithm always produces
an optimal representation for any given value� as a matter of practical interest�
we note that this is the case for the system 	���	��
�����	�� of American coins
and the system 	���	�����	������ of Israeli coins� The question thus arises� how
does one determine whether the greedy algorithm is always optimal for a given
system�

De�nition�� Given a system of coins� let M �x� denote the minimum size over
all representations of the number x in that system� and let G�x� denote the size
of the greedy representation of x� Following 
��� we call the system canonical if
G�x� � M �x� for all x� If a system is not canonical� then a value x for which
M �x� � G�x� is called a counterexample for the system�

Example �� For any nonnegative integer k� the system 	� 
� �� � � � � 
k is canoni�
cal� The Fibonacci system 	� 
� �� �� �� � � �� Fk is canonical� where Fk is the kth

Fibonacci number� The system 	� k� k � 	 for k � 
 is not canonical� the coun�
terexample 
k has optimal representation �� 
� � of size 
� whereas the greedy
representation is k � 	� �� 	 of size k�



Chang and Gill 
	� show that it su�ces to search for a counterexample among
the members of a certain �nite set� if no counterexample is found in this set�
then no counterexample exists and the system is canonical� The size of the set
to be checked is polynomial in the largest coin value� Speci�cally�

Theorem� Chang and Gill ���� Let 	 � c� � � � � � cm be any system of
coins� If M �x� � G�x� for all x in the range

c� � x �
cm�cmcm�� � cm � �cm���

cm � cm��
� ���

then the system is canonical�

In order to check for a counterexample in this set� Chang and Gill propose
computing the greedy and optimal representations of each element of the set and
comparing their sizes� Martello and Toth comment 
�� p� 	�
��

The proof 
of Theorem 
� is quite involved and will not be reported
here� Furthermore� application of the theorem is very onerous� calling
for optimality testing of a usually high number of greedy solutions�

Example �� Consider the system 	� 
� �� �� 	��	� �this example is taken from 
��
Example ��
� p� 	����� In order to test whether this system is canonical according
to the algorithm of Chang and Gill� we must compute and compare the sizes of
the greedy and optimal representations of all ��� values x in the range ����

In Section 
 below we give two results that simplify the process of testing for
the existence of a couterexample�

� We give tight bounds for Theorem 
� Speci�cally� we show that if a coun�
terexample exists at all� then the smallest one lies in the range

c� � 	 � x � cm � cm�� �

and these bounds are tight for an in�nity of systems� Note that the upper
bound is linear in the largest coin value� whereas ��� is cubic� Thus in order
to check the system of Example 
� we need only check a set of size 
��

� We show that it is not necessary to compute optimal representations for the
numbers in the given range as suggested by Chang and Gill� There is a much
simpler test involving only the sizes of the greedy representations� which are
trivial to compute in time O�n� using the recurrence

G�x� � 	 �G�x� c� ���

where c is the largest coin value less than or equal to x�



These results give rise to an O�mn� algorithm for testing whether a given system
of coins is canonical�

In Section � we give a characterization of systems of three coins and a simple
O�logn� test for determining when such a system in canonical�

In Section � we extend these results to systems with any �xed number of
coins�

In Section � we consider the related problem of determining whether the
greedy representation of a given number x in a given system is optimal� We
show that this problem is coNP�complete� It remains open whether there is an
algorithm that is polynomial in m and logn for testing whether a given system
is canonical�

� Optimal Bounds

In this section we derive optimal bounds for the change�making problem� Many
of our arguments hinge on the following lemma� which describes the behavior of
the function M �

Lemma	� Let 	 � c� � � � � � cm be any system of coins� For all x and coins
ci � x�

M �x� � M �x� ci� � 	 � ���

with equality holding if and only if there exists an optimal representation of x
that uses the coin ci�

Proof� Certainly ��� holds� since any optimal representation of x � ci gives a
representation of x of size M �x� ci� � 	 by adding one to the coe�cient of ci�
If in addition M �x� � M �x � ci� � 	� then the representation of x so obtained
is optimal and uses the coin ci� Conversely� given an optimal representation
of x that uses ci� we can obtain a representation of x � ci of size M �x� � 	 by
subtracting one from the coe�cient of ci� and ��� implies that this representation
is optimal�

Theorem
� Let 	 � c� � � � � � cm be any system of coins� If there exists an x
such that M �x� � G�x�� then the smallest such x lies in the range

c� � 	 � x � cm � cm�� � ���

Moreover� these bounds are tight�

Proof� Certainly M �x� � G�x� for all x � c�� since c�� c� is a canonical system�
In addition� neither c� nor c��	 provides a counterexample� since in both cases
the greedy representation is optimal� This establishes the lower bound�



To prove the upper bound� let x � cm � cm�� and assume inductively that
G�y� � M �y� for all y � x� Let ci be any coin used in some optimal representa�
tion of x� If i � m� then

G�x� � G�x� cm� � 	 by de�nition of G

� M �x� cm� � 	 by induction hypothesis

� M �x� by Lemma ��

If i � m� then

G�x� � G�x� cm� � 	 by de�nition of G

� M �x� cm� � 	 by induction hypothesis

� M �x� cm � ci� � 
 by Lemma �

� G�x� cm � ci� � 
 by de�nition of M

� G�x� ci� � 	 by de�nition of G

� M �x� ci� � 	 by induction hypothesis

� M �x� by Lemma �

� G�x� by de�nition of M �

Thus in either case G�x� � M �x��
For k � 
� the systems 	� k� 
k� 
 give an in�nity of systems for which the

smallest counterexample is c� � 
� and the systems 	� k� k � 	 give an in�nity
of systems for which the smallest counterexample is cm � cm�� � 	� Thus the
bounds ��� are tight�

Our simpli�ed algorithm is based on the observation that we can avoid com�
puting optimal representations by checking for the existence of witnesses instead
of counterexamples�

De�nition�� A witness is an x for which

G�x� � G�x� c� � 	

for some coin c � x�

Lemma�� �i� Every witness is a counterexample�
�ii� If a counterexample exists� then the smallest one is a witness�

Proof� �i� Suppose x is a witness� thus

G�x� c� � 	 � G�x�

for some coin c� Then

M �x� � M �x� c� � 	 by Lemma �

� G�x� c� � 	 by de�nition of M

� G�x� �



�ii� If x is a counterexample but not a witness� and if c is any coin used in an
optimal representation of x� then x� c is also a counterexample�

M �x� c� � M �x�� 	 by Lemma �

� G�x�� 	

� G�x� c� �

Therefore the smallest counterexample must be a witness�

The converse of Lemma ��i� is false� in the system 	� �� �� the value 	
 is a
counterexample but not a witness� In this example� the coin � is used in the
optimal representation �� �� � of 	
� therefore � � 	
�� is also a counterexample�
It is in fact the smallest counterexample� thus is also a witness�

Theorem
� For a given system to be canonical� it is necessary and su	cient
that there exist no witness in the range �
��

Proof� Immediate from Theorem � and Lemma ��

Theorem � implies that to test whether a given system is canonical� it su�ces
to check whether

G�x� � G�x� c� � 	

for all x in the range ��� and coins c � x� we need not calculate any optimal
representations� All necessary values of G�x� can be computed in time O�n�
using the recurrence ���� thus the entire algorithm takes time O�mn��

� A Characterization of Three�Coin Systems

In this section we characterize completely all systems of three coins� This char�
acterization gives a trivial O�logn� test for determining whether the system is
canonical�

Let 	 � c � d and let q and r be the quotient and remainder� respectively�
obtained from the integer division of d by c� Thus q and r are the unique integers
such that

d � qc� r � ���

� � r � c � ���

Theorem�� The system 	� c� d is not canonical if and only if � � r � c� q�

Proof� If � � r � c � q� then the value d � c � 	 is a counterexample� the
greedy representation c � 	� �� 	 is of size c � r � q� whereas the representation
r � 	� q� 	� � is of size r � q�

Conversely� suppose 	 � c � d is not canonical� and let x be the smallest
counterexample� The greedy representation of x must be of the form e� �� 	 with



� � e � c� since d� 	 � x � c � d by Theorem �� Moreover� there is a unique
optimal representation of x of the form �� k� � with k � �� since if either the
coe�cient of 	 or d were nonzero� then by Lemma � we could subtract one and
get a smaller counterexample� Since x � d� e � kc� we have

d � kc � e � �k � 	�c� �c � e�

� � �d� c� � x � �d� c�� �d� e� � c� e � c �

and since q and r are unique numbers satisfying ��� and ���� we must have
q � k � 	 and r � c � e� Since x is a counterexample� we have that k � 	 � e�
thus q � k � 	 � e and � � c � e � r� from which the desired inequalities
� � r � c� q follow�

� Large Coins

The characterization of the previous section yields a simple O�logn� algorithm
for determining whether a given system of three coins is canonical� In this section
we give an algorithm whose time complexity is O�logn� for any �xed number of
coins m� The complexity of the algorithm is O�m�
m�� logn��

Recall that bx�cc and x mod c denote the integer quotient and remainder�
respectively� obtained when dividing x by c� Thus

x � bx�ccc � x mod c

� � x mod c � c

and bx�cc and x mod c are the unique numbers for which these two statements
hold�

Let �i�x� denote the greedy representation of x in the system 	 � c� � � � � �
ci� Thus

���x� � x

�i�x� � h�i���x mod ci�� bx�cici � i � 	

where h�� zi denotes the sequence obtained by appending the integer z to the
end of the sequence ��

De�ne the equivalence relation �i
k on integers x � k by�

x �i
k y � �i�x�� �i�x� k� � �i�y� � �i�y � k� �

where � applied to the sequences �i� � denotes componentwise di�erence� Note
that x �m

cm
y for every x� y � cm� It follows from the observation

G�x�� G�x� c� �
mX

i��

��m�x� � �m�x� c��i

that if x �m
c y for a coin c� then x satis�es the property

G�x� � G�x� c� � 	 �	��



if and only if y does� Thus in order to �nd a witness� it su�ces to check �	��
for one representative x from each �m

c �class for each coin c� We will show below
�Theorem 	�� that for each coin c there are at most 
m�� �m

c �classes� and
representatives can be constructed e�ciently�

The formal statement and proof of Theorem 	� do not adequately re�ect the
intuition behind them� so we preface the formalities with the following intuitive
argument�

Fix k and consider the di�erence �m�x� � �m�x � k� of the greedy repre�
sentations of x and x � k as x increases� The last coe�cient of this di�erence�
namely bx�cmc�b�x�k��cmc� alternates periodically between two values r and
r � 	 �unless k is a multiple of cm� in which case there is only one value�� We
can thus think of x as being in one of two states� depending on the value of this
coe�cient� The state changes whenever either x or x�k skips over a multiple of
cm� In between the times when this state changes� the next�to�last coe�cient of
�m�x���m�x�k� alternates periodically between two states in a similar fashion�
but with period cm��� and so on� Thus each coin value ci� i � 
� accounts for
two states �there is only one state for c� � 	�� giving 
m�� global states�

Formally� let x� y� and c be integers� c positive� De�ne

tc�x� y� � b�x mod c� y mod c��cc � f�� 	g �

The function tc formalizes the �state� for coin c as described above� The following
lemma establishes some basic observations regarding this function�

Lemma�� The function tc satis�es the following properties�

�x� y� mod c � x mod c� y mod c� c tc�x� y�

b�x � y��cc � bx�cc� by�cc � tc�x� y�

tc�x� y� � � � x mod c � �x� y� mod c

tc�x� y� � 	 � tc�y � x��x� � � �

These properties follow immediately from the de�nitions�
Now de�ne the sets

A�
k � fkg

Aik � fbk�cicci � u j u � Ai��kmodci
g 	 fk � v j v � Ai����k�modci

g � i � 	 �

Theorem��� The set Aik contains the minimum element of each �i
k�class� In

other words� for all x � k there exists a y � Aik such that

k � y � x �		�

y �i
k x � �	
�



Proof� The proof is by induction on i� The basis is immediate from the de�nition
of A�

k and ���
For i � 	� let ti � tci � We break the proof into two cases� depending on the

value of ti�k� x� k�� First suppose ti�k� x� k� � �� Then k mod ci � x mod ci�
By the induction hypothesis� there exists a u � Ai��kmodci

such that

k mod ci � u � x mod ci �	��

u �i��
kmodci

x mod ci � �	��

Let

y � bk�cicci � u � Aik �

By �	�� and the fact that k � x� we have

k � bk�cicci � k mod ci

� bk�cicci � u �� y�

� bx�cicci � x mod ci

� x �

This establishes �		�� By Lemma �� we also have that ti�k� y � k� � �� since

k mod ci � u � y mod ci �

By �	�� and the fact that ti�k� x� k� � ti�k� y � k� � �� we have

�i���x mod ci�� �i����x� k� mod ci�

� �i���x mod ci� � �i���x mod ci � k mod ci�

� �i���u�� �i���u � k mod ci� �	��

� �i���y mod ci� � �i���y mod ci � k mod ci�

� �i���y mod ci� � �i����y � k� mod ci� �

Now suppose ti�k� x�k� � 	� By Lemma�� ti�x��k� � �� thus ��k� mod ci �
�x� k� mod ci� By the induction hypothesis� there exists a v � Ai����k�modci

such

that

��k� mod ci � v � �x� k� mod ci �	��

v �i��
��k�modci

�x� k� mod ci � �	��

Let

y � k � v � Aik �



By �	�� and the fact that k � x� we have

k � k � v �� y�

� k � �x� k� mod ci

� x �

This establishes �		�� We also have that ti�k� y � k� � 	�

k mod ci � �y � k� mod ci � k mod ci � v mod ci

� k mod ci � ��k� mod ci

� ci �

since k mod ci 
� � by Lemma �� By �	�� and the fact that ti�k� x � k� �
ti�k� y � k� � 	� we have

�i���x mod ci� � �i����x� k� mod ci�

� ���i����x� k� mod ci�� �i���x mod ci��

� ���i���v� � �i���v � ��k� mod ci�� �	��

� �i���y mod ci�� �i����y � k� mod ci� �

Now for either value of ti�k� x� k�� we have ti�k� x� k� � ti�k� y � k�� Then
by Lemma ��

bx�cic � b�x� k��cic � bk�cic � ti�k� x� k�

� bk�cic � ti�k� y � k� �	��

� by�cic � b�y � k��cic �

Thus in either case� using �	��� �	��� and �	��� we have

�i�x�� �i�x� k�

� h�i���x mod ci�� bx�cici � h�i����x� k� mod ci�� b�x� k��cici

� h�i���x mod ci� � �i����x� k� mod ci�� bx�cic � b�x� k��cici

� h�i���y mod ci� � �i����y � k� mod ci�� by�cic � b�y � k��cici

� h�i���y mod ci�� by�cici � h�i����y � k� mod ci�� b�y � k��cici

� �i�y� � �i�y � k� �

which establishes �	
��

It is easily shown by induction that the set Amk contains at most 
m�� ele�
ments� and each element of Amk is less than

mX

i��

ci � k �mn �

Moreover� the straightforward method of constructing Amk according to its in�
ductive de�nition takes time O�m
m�� logn�� Thus to check whether the system
is canonical� we need only determine �	�� for all coins c and x � Amc � There are
m
m�� such x to check� and each check takes time O�m logn��



� An NP�Completeness Result

Lueker 
�� shows that when the coin values are large and represented in binary�
the problem of �nding an optimal representation of a given x is NP�hard� Here
we show�

Theorem��� It is coNP�complete to determine� given a system of coins and
a number x represented in binary� whether the greedy representation of x is
optimal�

Proof� The problem is clearly in coNP � we can compute the greedy representa�
tion of x in linear time� then �nd a better one if it exists by guessing�

To show coNP�hardness� we will encode the problem of exact cover by three�
sets� given a set X and a family E of three�element subsets of X� can X be
represented as a disjoint union of elements of E� This problem is known to be
NP�complete �see 

���

Assume without loss of generality that X � f	� 
� � � �� �ng� Let p � n � 	�
Consider the system of coins

cA � 	 �
X

i�A

pi � A � E

cX �
�nX

i��

pi

and a penny� Let

x � n� cX �

The greedy algorithm gives a representation of x of size n � 	 consisting of cX
and n pennies� This is optimal unless there is an exact cover� in which case a
better representation is obtained by taking cA for A in the cover�

The problem of Theorem 		 di�ers from the problem of determining whether
a given system of coins is canonical in that in the former� we are asking whether
greedy is optimal for a given x� whereas in the latter� we are asking whether
greedy is optimal for all x� We know by Theorems � and 		 that both problems
are in coNP � and the former is complete� An interesting question that we have
not succeeded in answering is whether the latter is complete� or whether there
is an algorithm whose time complexity is polynomial in m and logn�
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