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Abstract

We investigate a family of inference problems on Markov models, where many
sample paths are drawn from a Markov chain and partial information is revealed
to an observer who attempts to reconstruct the sample paths. We present algo-
rithms and hardness results for several variants of this problem which arise by
revealing different information to the observer and imposing different require-
ments for the reconstruction of sample paths. Our algorithms are analogous to the
classical Viterbi algorithm for Hidden Markov Models, which finds single most
probable sample path given a sequence of observations. Our work is motivated by
an important application in ecology: inferring bird migration paths from a large
database of observations.

1 Introduction

Hidden Markov Models (HMMs) assume a generative model for sequential data whereby a sequence
of states (orsample path) is drawn from a Markov chain in a hidden experiment. Each state generates
an output symbol from alphabetΣ, and these output symbols constitute the data orobservations. A
classical problem, solved by the Viterbi algorithm, is to find the most probable sample path given
the observations for a given Markov model. We call this thesingle path problem; it is well suited to
labeling or tagging a single sequence of data. For example, HMMs have been successfully applied
in speech recognition [1], natural language processing [2], and biological sequencing [3].

We introduce two generalizations of the single path problem for performingcollective inferenceon
Markov models, motivated by an effort to model bird migration patterns using a large database of
static observations. The eBird database hosted by the Cornell Lab of Ornithology contains millions
of bird observations from throughout North America, reported by the general public using the eBird
web application1. Observations report location, date, species and number of birds observed. The
eBird data set is very rich; the human eye can easily discern migration patterns from animations
showing the observations as they unfold over time on a map of North America2. However, the
eBird data arestatic, and they do not explicitly record movement, only the distributions at different
points in time. Conclusions about migration patterns are made by the human observer. Our goal is
to build a mathematical framework to infer dynamic migration models from the static eBird data.
Quantitative migration models are of great scientific and practical import: for example, this problem
arose out of an interdisciplinary project at Cornell University to model the possible spread of avian
influenza in North America through wild bird migration.

The migratory behavior for a species of birds can be modeled as a single generative process that
independently governs how individual birds fly between locations, giving rise to the following in-

∗This work was supported in part by ONR Grant N00014-01-1-0968 and by NSF grant CCF-0635028. The
views and conclusions herein are those of the authors and do not necessarily represent the official policies or
endorsements of these organizations or the US Government.

1http://ebird.org
2http://www.avianknowledge.net/visualization
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ference problem: a hidden experiment simultaneously draws many independent sample paths from
a Markov chain, and the observations reveal aggregate information about the collection of sample
paths at each time step. For example, the eBird data estimate the geographical distribution of a
species on successive days, but do not track individual birds.

We discuss two problems within this framework. In themultiple path problem, we assume thatM
independent sample paths are simultaneously drawn from a Markov model, and the observations
reveal the number of paths that output symbolα at timet, for eachα andt. The observer seeks
the most likely collection of paths given the observations. Thefractional path problemis a further
generalization in which paths are divisible entities. The observations reveal the fraction of paths that
output symbolα at timet, and the observer’s job is to find the most likely (in a sense to be defined
later) weighted collection of paths given the observations. Conceptually, the fractional path problem
can be derived from the multiple path problem by lettingM go to infinity; or it has a probabilistic
interpretation in terms of distributions over paths.

After discussing some preliminaries in section 2, sections 3 and 4 present algorithms for the multiple
and fractional path problems, respectively, using network flow techniques on thetrellis graphof the
Markov model. The multiple path problem in its most general form is NP-hard, but can be solved as
an integer program. The special case when output symbols uniquely identify their associated states
can be solved efficiently as a flow problem; although the single path problem is trivial in this case,
the multiple and fractional path problems remain interesting. The fractional path problem can be
solved by linear programming. In section 5, we present preliminary results on migration inference
for Archilochus colubris, the Ruby-throated Hummingbird, devoting some attention to a challenging
problem we have neglected so far: estimating species distributions from eBird observations. We
also introduce a few practical extensions to the fractional paths problem, including slack variables
allowing the solution to deviate slightly from potentially noisy observations.

We briefly mention some related work. Caruana et al. [4] and Phillips et al. [5] used machine
learning techniques to model bird distributions from observations and environmental features. For
problems on sequential data, many variants of HMMs have been proposed [3], and recently, con-
ditional random fields (CRFs) have become a popular alternative [6]. Roth and Yih [7] present an
integer programming inference framework for CRFs that is similar to our problem formulations.

2 Preliminaries

2.1 Data Model and Notation

A Markov model(V, p, Σ, σ) is a Markov chain with state setV and transition probabilitiesp(u, v)
for all u, v ∈ V . Each state generates a unique output symbol from alphabetΣ, given by the mapping
σ : V → Σ. Although some presentations allow each state to output multiple symbols with different
emission probabilities, we lose no generality assuming that each state emits a unique symbol — to
encode a model where statev output multiple symbols, we simply duplicatev for each symbol and
encode the emission probabilities into the transitions. Of course,σ need not be one-to-one. It is
useful to think ofσ as a partition of the states, lettingVα = σ−1(α) be the set of all states that
outputα. We assume each model has a distinguished start states and output symbolstart .

LetY = V T be the set of all possible sample paths of lengthT . We represent a pathy ∈ Y as a row
vectory = (y1, . . . , yT ), and a collection ofM paths as theM × T matrix Y = (yit), with each
row yi· representing an independent sample path. The transition probabilities induce a distribution
λ onY, whereλ(y) =

∏T−1
t=1 p(yt, yt+1). We will also consider arbitrary distributionsπ overY,

letting Y = (Y1, . . . , YT ) denote a random path fromπ. Then, for example, we writePrπ [Yt = u]
to be the probability underπ that thetth state isu, andEπ [f(Y )] to be the expected value off(Y )
for any functionf of a random pathY drawn fromπ. Note thatY (boldface) denotes a matrix of
M paths, whileY denotes a random path.

2.2 The Trellis Graph and Viterbi as Shortest Path

To develop our flow-based algorithms, it is instructive to build upon a shortest-path interpretation of
the Viterbi algorithm [7]. In an instance of the single path problem we are given a model(V, p, Σ, σ)
and observationsα1, . . . , αT , and we seek the most probable pathy given the observations. We call
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Figure 1: Trellis graph for Markov model with states{s, u, v, w} and alphabet{start , 0, 1}. Statesu
andv output the symbol0, and statew outputs the symbol1. (a) The bold path is feasible for the specified
observations, with probabilityp(s, u)p(u, u)p(u, w). (b) Infeasible edges have been removed (indicated by
light dashed lines), and probabilities changed to costs. The bold path has costc(s, u) + c(u, u) + c(u, w).

pathy feasibleif σ(yt) = αt for all t; then we wish to maximizeλ(y) over feasibley. The problem
is conveniently illustrated using thetrellis graphof the Markov model (Figure 1). Here, the states
are replicated for each time step, and edges connect a state at timet to its possible successors at
time t + 1, labeled with the transition probability. A feasible path must pass through partitionVαt

at stept, so we can prune all edges incident on other partitions, leaving only feasible paths. By
defining the cost of an edge asc(u, v) = − log p(u, v), and letting the path costc(y) be the sum
of its edge costs, straightforward algebra shows thatarg maxy λ(y) = arg miny c(y), i.e., the path
of maximum probability becomes the path of minimum cost under this transformation. Thus the
Viterbi algorithm finds the shortest feasible path in the trellis using edge lengthsc(u, v).

3 Multiple Path Problem

In the multiple path problem,M sample paths are drawn from the model and the observations reveal
the number of pathsNt(α) that outputα at timet, for all α andt; or, equivalently, the multisetAt

of output symbols at timet. The objective is to find the most probable collectionY that is feasible,
meaning it produces multisetsA1, . . . , AT . The probabilityλ(Y) is just the product of the path-wise
probabilities:

λ(Y) =
M∏
i=1

λ(yi) =
M∏
i=1

T−1∏
t=1

p(yi,t, yi,t+1). (1)

Then the formal specification of this problem is

max
Y

λ(Y) subject to|{i : yi,t ∈ Vα}| = Nt(α) for all α, t. (2)

3.1 Reduction to the Single Path Problem

A naive approach to the multiple path problem reduces it to the single path problem by creating a new
Markov model on state setV M where state〈v1, . . . , vM 〉 encodes an entire tuple of original states,
and the transition probabilities are given by the product of the element-wise transition probabilities:

p(〈u1, . . . , uM 〉, 〈v1, . . . , vM 〉) =
M∏
i=1

p(ui, vi).

A state from the product spaceV M corresponds to an entire column of the matrixY, and by chang-
ing the order of multiplication in (1), we see that the probability of a path in the new model is equal
to the probability of the entire collection of paths in the old model. To complete the reduction, we
form a new alphabet̂Σ whose symbols represent multisets of sizeM onΣ. Then the solution to (2)
can be found by running the Viterbi algorithm to find the most likely sequence of states fromV M

that produce output symbols (multisets)A1, . . . , AT . The running time is polynomial in|V M | and
|Σ̂|, but exponential inM .
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3.2 Graph Flow Formulation

Can we do better than the naive approach? Viewing the cost of a path as the cost of routing one
unit of flow along that path in the trellis, a minimum cost collection ofM paths is equivalent to a
minimum cost flow ofM units through the trellis — givenM paths, we can route one unit along each
to get a flow, and we can decompose any flow ofM units into paths each carrying a single unit of
flow. Thus we can write the optimization problem in (2) as the following flow integer program, with
additional constraints that the flow paths generate the correct observations. The decision variable
xt

uv indicates the flow traveling fromu to v at timet; or, the number of sample paths that transition
from u to v at timet.

(IP)

min
∑
u,v,t

c(u, v)xt
uv

s.t.
∑

u

xt
uv =

∑
w

xt+1
vw for all v, t, (3)∑

u∈Vα,v∈V

xt
uv = Nt(α) for all α, t, (4)

xt
uv ∈ N for all u, v, t.

The flow conservation constraints (3) are standard: the flow intov at time t is equal to the flow
leaving v at time t + 1. The observation constraints (4) specify thatNt(α) units of flow leave
partitionVα at timet. These also imply that exactlyM units of flow pass through each level of the
trellis, by summing over allα,∑

u,v

xt
uv =

∑
α

∑
u∈Vα,v∈V

xt
uv =

∑
α

Nt(α) = M.

Without the observation constraints, IP would be an instance of the minimum-cost flow problem [8],
which is solvable in polynomial time by a variety of algorithms [9]. However, we cannot hope to
encode the observation constraints into the flow framework, due to the following result.
Lemma 1. The multiple path problem is NP-hard.

The proof of Lemma 1 is by reduction from SET COVER, and is omitted. One may use a general
purpose integer program solver to solve IP directly; this may be efficient in some cases despite the
lack of polynomial time performance guarantees. In the following sections we discuss alternatives
that are efficiently solvable.

3.3 An Efficient Special Case

In the special case whenσ is one-to-one, the output symbols uniquely identify their generating
states, so we may assume thatΣ = V , and the output symbol is always the name of the current state.
To see how the problem IP simplifies, we now haveVu = {u} for all u, so each partition consists of
a single state, and the observations completely specify the flow through each node in the trellis:∑

v

xt
uv = Nt(u) for all u, t. (4′)

Substituting the new observation constraints (4′) for timet+1 into the RHS of the flow conservation
constraints (3) for timet yield the following replacements:∑

u

xt
uv = Nt+1(v) for all v, t. (3′)

This gives an equivalent set of constraints, each of which refers only to variablesxt
uv for a single

t. Hence the problem can be decomposed intoT − 1 disjoint subproblems fort = 1, . . . , T − 1.
The tth subproblem IPt is given in Figure 2(a), and illustrated on the trellis in Figure 2(b). State
u at timet has a supply ofNt(u) units of flow coming from the previous step, and we must route
Nt+1(v) units of flow to statev at timet+1, so we place a demand ofNt+1(v) at the corresponding
node. Then the problem reduces to finding a minimum cost routing of the supply from timet to meet
the demand at timet + 1, solved separately for allt = 1, . . . , T − 1. The problem IPt an instance
of the transportation problem [10], a special case of the minimum-cost flow problem. There are a
variety of efficient algorithms to solve both problems [8,9], or one may use a general purpose linear
program (LP) solver; any basic solution to the LP relaxation of IPt is guaranteed to be integral [8].
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Figure 2:(a) The definition of subproblem IPt. (b) Illustration on the trellis.

4 Fractional Paths Problem

In the fractional paths problem, a path is a divisible entity. The observations specifyqt(α), the
fraction of paths that outputα at time t, and the observer choosesπ(y) fractional units of each
pathy, totaling one unit, such thatqt(α) units outputα at time t. The objective is to maximize∏

y∈Y λ(y)π(y). Put another way,π is a distribution over paths such thatPrπ [Yt ∈ Vα] = qt(α),
i.e.,qt specifies the marginal distribution over symbols at timet. By taking the logarithm, an equiv-
alent objective is to maximizeEπ [log λ(Y )], so we seek the distributionπ that maximizes the ex-
pected log-probability of a pathY drawn fromπ. Conceptually, the fractional paths problem arises
by lettingM →∞ in the multiple paths problem and normalizing to letqt(α) = Nt(α)/M specify
the fraction of paths that outputα at timet. Operationally, the fractional paths problem is modeled
by the LP relaxation of IP, which routes one splittable unit of flow through the trellis.

(RELAX)

min
∑
u,v,t

c(u, v)xt
uv

s.t.
∑

u

xt
uv =

∑
w

xt+1
vw for all v, t,∑

u∈Vα

∑
v∈V

xt
uv = qt(α) for all α, t, (5)

xt
uv ≥ 0 for all u, v, t.

It is easy to see that a single-unit flowx corresponds to a probability distributionπ. Givenπ, let
xt

uv = Prπ [Yt = u, Yt+1 = v]; thenx is a flow because the probability a path entersv at time t
is equal to the probability it leavesv at timet + 1. Conversely, givenx, any path decomposition
assigning flowπ(y) to eachy ∈ Y is a probability distribution because the total flow is one. In gen-
eral, the decomposition is not unique, but any choice yields a distributionπ with the same objective
value. Furthermore, under this correspondence,x satisfies the marginal constraints (5) if and only if
π has the correct marginals:∑

u∈Vα

∑
v∈V

xt
uv =

∑
u∈Vα

∑
v∈V

Pr [Yt = u, Yt+1 = v] =
∑

u∈Vα

Pr [Yt = u] = Pr [Yt ∈ Vα] .

Finally, we can rewrite the objective function in terms of paths:∑
u,v,t

c(u, v)xt
uv =

∑
y∈Y

π(y)c(y) = Eπ [c(Y )] = Eπ [− log λ(Y )] .

By switching signs and changing from minimization to maximization, we see that RELAX solves
the fractional paths problem. This problem is very similar to maximum entropy or minimum cross
entropy modeling, but the details are slightly different: such a model would typically find the dis-
tribution π with the correct marginals that minimizes the cross entropy or Kullback-Leibler di-
vergence [11] betweenλ and π, which, after removing a constant term, reduces to minimizing
Eλ [− log π(Y )]. Like IP, the RELAX problem also decomposes into subproblems in the case when
σ is one-to-one.
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5 Modeling Bird Migration

Launched in 2002, eBird is one of severalcitizen scienceprojects run by the Cornell Lab of Or-
nithology, designed to leverage the data gathering power of the public while educating and engaging
citizen scientists on bird conservation issues. On the eBird website, birdwatchers submit check-
lists of birds they observe during an outing, indicating the number of birds for each species, along
with the location, date, time, and some additional information. Our data set consists of the428,648
completechecklists from1995 through2007, meaning the reporter listed all species observed. This
means we can infer a count of zero, or anegative observation, for any species not listed. Using a
USGS land cover map image of North America, we preprocess the data to assign each observation
to the pixel in which it occurred. The map is615 × 600 pixels, with each pixel approximately15
km on a side. All years of data are aggregated into one.

Our migration inference consists of two parts: (1) using eBird data to estimate species distributions
during successive time periods and (2) inferring migration paths from species distributions using the
fractional paths problem. For both problems, we divide the map into grid cells that are15 pixels
on a side and divide the year into weeks, letting our state setU be the set of all grid cells with at
least10% land mass (non-water pixels) and lettingt = 1, . . . , 52 represent the week of the year.
We present results forArchilochus colubris, the Ruby-throated Hummingbird, chosen as a common
bird with relatively good eBird coverage. To date, we have produced visualizations for discussion
with experts and comparison with written migration accounts. In future work we plan to evaluate
our methods independently using datasets for which we can obtain reference data.

5.1 Estimating Species Distributions from eBird

Our first goal is to estimateqt(u), the fraction of birds in grid cellu during weekt. Given enough
observations, we estimateqt(u) using the average number of birds per checklist, a quantity we call
the rate rt(u). However, even for a bird with good eBird coverage, there are cells with few or no
observations during a given time period. To fill these gaps, we use theharmonic energy minimization
technique [12], which imposes a graph structure connecting the data according to similarity, and
determines unknown values from nearby nodes in the graph. There are many possible interpretations
of this technique [12,13]; we describe it in terms of random walks.

The technique builds a weighted graph on data pointsz where edge weightswzz′ represent similarity,
and learns a functionf(z) on the points. Points with known values are boundary points and their
valuef(z) is fixed; other points are interior points. For an interior pointz, the value is determined
as the expected value of the following random experiment. Perform a random walk starting fromz,
following outgoing edges with probability proportional to their weight. When a boundary pointz′ is
reached, terminate the walk and accept the valuef(z′). Interior points are influenced by boundary
points in proportion to “nearness”, as measured by the probability of hitting in an absorbing random
walk. We derive a measure of confidence inf(z) from the same experiment: leth(z) be the expected
number of steps for the random walk fromz to hit the boundary (thehitting timeof the boundary
[14]). Whenh(z) is small,z is close to the boundary so we are more confident inf(z).

Our graph structure is a3-dimensional lattice on the pointsut, whereut represents cellu during
week t. The connections for pointut are illustrated in Figure 4. We exclude the edge between
cellsut, vt when the line connecting the centers ofu andv is more than half water. All edges have
weight 1, except for edges connectingut to ut−1 andut+1, which have weight1/4, to prioritize
spatial similarity over temporal similarity. All lattice pointsut are interior points; connected tout

are boundary nodes for each observation with value equal to the number of birds observed. This
achieves a “soft” boundary for lattice points: ifut has many observations, the random walk from
ut will almost surely reach an observation in the first step, andf(ut) will be very close tort(u),
the average of the observations; nodes with few or no observations are more heavily influenced by
neighbors. As a conservative measure, each node is also connected to a sink with boundary value0,
to prevent values from propagating over very long distances.

We computeh and f iteratively [13], takingf(ut) as an approximation for the ratert(u), and
multiplying by the land mass of cellu to get q̂t(u), a (relative) estimate for the number of birds
in each cell. Finally, since we want the fraction of birds from each time period in a given cell, we
normalizeq̂ for eacht, taking,qt(u) = q̂t(u)/

∑
u q̂t(u).
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Figure 3: Range of Ruby-throated Hum-
mingbird. From BNA [15].

. . .
Observations Sink

ut−1 ut ut+1

Figure 4: Illustration of local connectivity
for lattice pointut

Week 10 Week 20 Week 30 Week 40
3/5 5/14 7/28 10/01

Figure 5:Ruby-throated Hummingbird migration. See text for description.

5.2 Migration Inference

Since the values forqt(u) are estimated, we introduce slack variablesδt
u into the marginal constraints

(5), obtaining ∑
u∈Vα

∑
v∈V

xt
uv = qt(u) + δt

u for all α, t. (5′)

To ensure that the new marginalsq′t(u) = qt(u) + δt
u form a valid probability distribution for allt,

we add constraints that
∑

u δt
u = 0 for all t , andδt

u ≥ −qt(u) for all u, t, preserving the properties
thatq′t is nonnegative and sums to1. We also found it useful to impose upper boundsδt

u ≤ 2qt(u)
so no single value can increase by more than a factor of3. Finally, we add the term

∑
u,t γt

u|δt
u| into

the objective function to charge for the slack, using a standard LP trick [8] to model the absolute
value term.

For transition costs, we used squared distance (measured in pixels between grid cell centers):
c(u, v) = d(u, v)2, corresponding to Gaussian transition probabilitiesp(u, v) ∝ exp(d(u, v)2/σ2).
To reduce problem size, we omitted variablesxt

uv from the LP whend(u, v) > 90, effectively set-
ting p(u, v) = 0. For the slack costs, we charged according to the confidence estimatesh(ut) by
settingγt

u = γ0/h(ut) to be inversely proportional to hitting time, withγ0 ≈ 261 chosen so the av-
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erage cost for a unit of slack was the same as moving40 pixels. Our final linear program, which was
solved using the MOSEK optimization toolbox, had78,521 constraints and3,031,116 variables.

Figure 5 displays the migration paths our model inferred for the Ruby-throated Hummingbird for
the four weeks indicated. The top row shows the distribution and paths inferred by the model; grid
cells colored in darker shades of red have more birds (higher values forq′t(u)). Blue arrows indicate
flight paths (xt

uv) between the week shown and the following week, with line width in proportion to
xt

uv. In the bottom row, scatter plots of the raw data are given for comparison. Yellow dots indicate
negative observations; blue squares indicate positive observations, with area proportional to count.
Locations with both positive and negative observations appear dark gray.

These results are consitent with both seasonal ranges (Figure 3), and what is currently known about
migration routes. In the summary paragraph on migration from theArchilochus colubrisspecies
account in Birds of North America, Robinson et al. write “Many fly across Gulf of Mexico, but
many also follow coastal route. Routes may differ for north- and southbound birds.” Our model for
weeks10 and40 suggests that more southbound birds follow the coastal route.

6 Conclusion

Observational databases like eBird are a rich source of information about bird migration, but are
static in nature and require inference to build dynamic migration models. Motivated by this problem,
we developed an inference framework for Markov models that makes collective inferences about
many independent sample paths drawn from a Markov chain. We demonstrated the effectiveness of
our framework with results on the migration patterns of the Ruby-throated Hummingbird.
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