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Abstract

A theory satis�es the k�variable property if every �rst�order formula is equivalent
to a formula with at most k bound variables �possibly reused�� Gabbay has shown
that a model of temporal logic satis�es the k�variable property for some k if and only
if there exists a �nite basis for the temporal connectives over that model� We give a
model�theoretic method for establishing the k�variable property� involving a restricted
Ehrenfeucht�Fraisse game in which each player has only k pebbles� We use the method
to unify and simplify results in the literature for linear orders� We also establish new
k�variable properties for various theories of bounded�degree trees� and in each case
obtain tight upper and lower bounds on k� This gives the �rst �nite basis theorems for
branching�time models of temporal logic�

� Introduction

A �rst�order theory � satis�es the k�variable property if every �rst�order formula is equivalent
under � to a formula with at most k bound variables �possibly reused�� For example� in an
arbitrary partial order� �ve bound variables are needed to express the statement 	there are
at least �ve elements below x�
 but in a linear order� two variables su�ce�

�y y � x � ��x x � y � ��y y � x � ��x x � y � ��y y � x���� � �
�

The k�variable property is important in temporal logic� Gabbay ��� has shown that a
model of temporal logic satis�es the k�variable property for some k if and only if there exists
a �nite basis for the �rst�order�expressible temporal connectives over that model� in the same
sense that � and � form a basis for the propositional connectives�
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Kamp �

� showed that any Dedekind�complete linear order with arbitrary monadic pred�
icates admits a �nite basis for the temporal connectives� This result was extended to other
linear time structures by Stavi �
��� Amir and Gabbay �
� showed that any de�nable lexico�
graphic product of time structures admitting a �nite basis also admits a �nite basis� This
result gave the �rst in�nite non�linear structures admitting a �nite basis� although up to
now no results have been established for trees�

The methods used by these researchers were largely syntactic� In this paper we give a
model�theoretic method for establishing the k�variable property uniformly for all models of
certain �rst�order theories� The method uses a variant of the Ehrenfeucht�Fraisse game ��� ��
which allows each player only k pebbles ��� 
�� 
���

Applying this method to the theory of linear order� we are able to unify the results
of �

� 
��� We also establish new k�variable expressiveness results for various theories of
bounded�degree trees� and in each case obtain tight upper and lower bounds on k� Using
Gabbay�s result ���� these results imply the existence of a �nite basis for the �rst�order�
expressible temporal connectives over tree models of bounded degree�

� A Model�Theoretic Lemma

Let L be a �rst�order language with individual variables x�� x�� � � �� A partial valuation
over a structure A for L is a partial function u � fx�� x�� � � �g � A� The domain of u is
denoted �u� The cardinality of �u is denoted juj� A �k��con�guration over A�B is a pair
�u� v�� where u is a partial valuation over A and v is a partial valuation over B� such that
�u � �v � fx�� � � � � xkg� If L� � L� an L��type in the variables x�� � � � � xk is a maximal
consistent set of L� formulas all of whose free variables are among x�� � � � � xk� If �u� v� is a
k�con�guration� then u and v are said to be L��equivalent if they have the same L��type� i�e��
if for all formulas � � L� with free variables in �u � �v�

A�u j� � i� B� v j� � �

Lemma � Let � be a set of sentences in L� Let L�� L�� � L such that L� is closed under the
propositional operators� The following two conditions are equivalent�

�i� for all models A�B of � and k�con�gurations �u� v� over A�B� if u and v are L��
equivalent� then they are L���equivalent�

�ii� for all � � L�� with free variables among x�� � � � � xk� there exists a � � L� such that
� j� �� ��

Remark Informally� condition �i� means that if u and v can be distinguished by a formula
of L��� then they can be distinguished by a formula of L�� Thus� the lemma says intuitively
that L�� has no more power than L� to distinguish such u and v if and only if L� subsumes
L�� in expressive power� at least on formulas involving only free variables x�� � � � � xk�
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Proof� �ii� � �i� is immediate�
�i� � �ii�� If � 	 f�g is inconsistent� take � � false and we are done� Otherwise� let �

be an arbitrary complete L��type in the variables x�� � � � � xk consistent with � 	 f�g� Then
� 	 � 	 f��g is inconsistent� otherwise models A�u and B� v of � 	 � could be constructed
with �u � �v � fx�� � � � � xkg such that A�u j� � and B� v j� ��� violating �i�� Therefore
�	� j� �� By compactness� there exists a �� � � such that � j� �� � �� Now � is covered
by all such ��� in the sense that

� j� �
�
�

���� �

where the in�nitary join is taken over all L��types � consistent with � 	 f�g� Again by
compactness� there is a �nite set F of such � such that

� j� �
�
��F

���� � �

so we may take � �
W
��F ��� �

We are interested in a special case of the above lemma which applies to the k�variable
property�

De�nition � De�ne the quanti�er depth of a formula � inductively� as follows�


� If � is quanti�er�free� then its quanti�er depth is ��

�� The quanti�er depth of � � � or � � � is the maximum of the quanti�er depths of �
and ��

�� The quanti�er depth of �� is the quanti�er depth of ��

�� The quanti�er depth of 
x � or �x � is one greater than the quanti�er depth of ��

�

For example� the quanti�er depth of the formula �
� is ��
Let n� k � �� De�ne Lk�n to be the sublanguage of L consisting of all formulas � of

quanti�er depth at most n containing only variables x�� � � � � xk� For example� the formula 

is in L���� De�ne

Lk �
�
n

Lk�n �

Thus L �
S
k Lk�

De�nition � A �rst�order theory � is said to satisfy the k�variable property if for all formu�
las � � L with free variables among x�� � � � � xk� there exists a � � Lk such that � j� �� ��

�
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In this special case� Lemma 
 gives

Corollary � The following two conditions are equivalent�

�i� for all models A�B of � and k�con�gurations �u� v� over A�B� if u and v are Lk�
equivalent� then they are L�equivalent�

�ii� � satis�es the k�variable property�

� An Ehrenfeucht�Fraisse Game with Bounded Num�

ber of Pebbles

Let � be a theory in a �rst�order language L with equality� Assume further that in every
model of �� every �nitely generated substructure is �nite� i�e�� the smallest substructure
containing a given �nite set is always �nite� �This is a technical restriction that is used
in the proofs below�� We have reduced the problem of establishing the k�variable property
for � to checking the condition of Corollary ��i�� This will done using Ehrenfeucht�Fraisse
games ��� ���

Ehrenfeucht�Fraisse games have been used widely in theoretical computer science� see
e�g� ��� �� �� 
�� 
�� 
�� 
�� 
��� Here we use a modi�ed version in which the number of
pebbles is �nite ��� 
�� 
���

De�nition � Let A�B be structures for L and �u� v� a k�con�guration� We call �u� v� a local
isomorphism if the map u�x� �� v�x�� x � �u� is well�de�ned and extends to an isomorphism
of the substructures of A and B generated by fu�x� j x � �ug and fv�x� j x � �vg�
respectively� That is� �u� v� is a local isomorphism if the relation

f�tA�u� tB�v� j t is a term over �ug � A
B

is a bijection and respects the functions and relations of L� �

De�nition � 	The game G�u� v� k� n�
� Let A�B be structures for L� n� k � �� and �u� v�
a k�con�guration� The game G�u� v� k� n� is played by two players� I and II� who take turns
placing pebbles on elements of A and B� Player I tries to demonstrate that A and B are
nonisomorphic� and Player II tries to make A and B appear isomorphic� There are �k
pebbles� each colored with one of k distinct colors x�� � � � � xk� with exactly two pebbles of
each color�

A con�guration �u�� v�� denotes that the two pebbles colored xi are currently occupying
u��xi� � A and v��xi� � B� for xi � �u� � �v�� and that the pebbles colored xi �� �u� are not
currently in play� The initial con�guration is �u�� v�� � �u� v�� The players alternate� with
Player I �rst� Each round consists of a move of Player I followed by a move of Player II�
Player I can select any pebble and place it on an element of either A or B� Player II then
has to place the other pebble of the same color on an element of the other structure� Play
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proceeds for n rounds� generating a sequence of con�gurations �ut� vt�� � � t � n� Player II
wins the game if all the �ut� vt�� � � t � n� are local isomorphisms �De�nition ��� Otherwise
Player I wins� �

De�nition � A forced win for Player II is de�ned by induction on n� Player II has a
forced win in G�u� v� k� �� if �u� v� is a local isomorphism� Player II has a forced win in
G�u� v� k� n � 
� if �u� v� is a local isomorphism� and for all legal moves of Player I from
con�guration �u� v�� there exists a legal move of Player II resulting in a con�guration �u�� v��
such that Player II has a forced win in G�u�� v�� k� n�� Player I has a forced win if Player II
does not� �

Intuitively� a player has a forced win if there is always a choice of moves for that player
leading to a win� no matter how well his opponent plays�

Example 
 Consider the two�pebble game G��� �� �� n� played on the linear orders Z and
Q� Player II has a forced win� as follows� In the �rst round� Player II plays anywhere in
response to Player I�s move� In the second round� if Player I plays in either structure to the
left �right� of the pebble already on the board� then Player II does the same in the other
structure� Subsequently� if Player I moves a pebble in either structure� Player II moves the
corresponding pebble in the other structure so as to maintain the relative ordering of the
pebbles in the two structures� Player II always wins� since every con�guration is a local
isomorphism�

On the other hand� Player I has a forced win in the three�pebble game G��� �� �� ��� as
follows� Player I starts by playing any point p in Z� Player II responds by playing a point
q in Q� Now Player I plays p � 
 in Z� Player II must play a point q� of Q to the right of
q� otherwise Player I wins� Player I now plays any point of Q between q and q�� and Player
II is stuck� Note that Player I�s winning strategy is based on the fact that Q and Z are
distinguished by the property of density� which is expressible with three variables�


x
z �x � z � �y x � y � z� �

�

It is always to Player I�s advantage to play a pebble not currently on the board� if possible�
and to place a pebble on an element not currently covered by another pebble� if possible�
from Player I�s point of view� the more elements of A and B that are covered� the better�
Any winning strategy for Player I that does not satisfy these conditions can be mapped into
a winning strategy that does�

Lemma � If Player II has a forced win in the game G�u� v� k� n�� then Player II has a forced
win in the game G�u�� v�� k�� n��� for any n� � n� k� � k� and u� and v� restrictions of u and
v� respectively� to a smaller domain�
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We now prove a series of lemmas that will allow us to establish the relationship between
the gamesG�u� v� k� n� and the k�variable property� Lemmas 
� and 

 are technical� Lemma

� is a generalization of �
��� Theorem C�
� to structures allowing function symbols� provided
that all �nitely generated substructures are �nite�

Lemma �� Let � be a �rst�order theory such that all �nitely generated substructures of
models of � are �nite� Then there is a uniform bound on the size of substructures generated
by k elements� That is� for all k there exists a bound bk such that for any model A of � and
substructure B of A generated by k elements� B contains no more than bk elements�

Proof� We use a compactness argument� De�ne the depth of a term inductively� as
follows� constants and variables have depth �� and a term of the form f�t�� � � � � tm� has
depth 
 � maxfdepth of ti j 
 � i � mg� Let Dk

m denote the set of terms of depth at most
m over the variables x�� � � � � xk� Then Dk

m is a �nite set� although its size depends on the
number of function symbols in L and their arity�

Let �m be the formula �
s�Dk

m��

�
t�Dk

m

s � t � ���

The formula �m says that every element represented by a term of depth at most m� 
 over
x�� � � � � xk is already represented by a term of depth at mostm� in other words� every element
of the substructure generated by x�� � � � � xk is represented by a term of depth at most m�
Note that �m is a quanti�er�free formula of L over the variables x�� � � � � xk� and that �m
logically implies �m���

By the assumption that all �nitely generated substructures of models of � are �nite� we
have

� j�
��

m��

�m �

By compactness� there is an n such that

� j� �n �

We may therefore take bk � jDk
nj� �

We say that formulas � and � are equivalent under � if � j� �� ��

Lemma �� Under the assumption of Lemma 	
� there are only �nitely many inequivalent
formulas of Lk�n under ��

Proof� This lemma is similar to �
�� Lemma 
��
�� p� ��
�� except that we are in the
presence of function symbols� By Lemma 
�� there is a uniform bound on the size of sub�
structures generated by k elements in any model of �� This is equivalent to the statement
that there exists an m � mk such that � j� �m� where �m is the formula ��� de�ned in the
proof of Lemma 
��
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Consider the formula �m� Using distributivity of � over �� rewrite �m so that it is in
disjunctive form �

g

�
t�Dk

m��

t � g�t� �

where the outer join is over all maps

g � Dk
m�� � Dk

m

assigning a term of depth at most m to each term of depth at most m� 
� We extend each
such g to domain

S
nD

k
n inductively� as follows� for f�t�� � � � � td� � Dk

n�� �Dk
n� n 	 m� take

g�f�t�� � � � � td�� � g�f�g�t��� � � � � g�td��� �

This is well�de�ned� since all applications of g on the right hand side are to terms of smaller
depth� By repeated application of the rule of substitution of equals for equals� we have that
for all terms s over the variables x�� � � � � xk�

j� �
�

t�Dk
m��

t � g�t��� s � g�s� �

moreover� for any atomic formula R�s�� � � � � sd�� where R is a d�ary relation symbol and
s�� � � � � sd are terms over the variables x�� � � � � xk�

j� �
�

t�Dk

m��

t � g�t�� � �R�s�� � � � � sd�� R�g�s��� � � � � g�sd��� �

From this and the fact that � j� �m� we conclude that

� j� R�s�� � � � � sd� �
�
g

�
�

t�Dk
m��

t � g�t� �R�g�s��� � � � � g�sd��� � ���

The right hand side of ��� is a quanti�er�free formula containing only terms of depth at most
m� 
� and there are only �nitely many such formulas up to propositional equivalence�

It follows immediately that Lk�� contains only �nitely many formulas up to equivalence
under �� We next show by induction on n that the same is true for Lk�n� Assume this is true
for Lk�r� Then Lk�r�� consists of Boolean combinations of formulas � and �xi� for � � Lk�r

and 
 � i � k� Up to equivalence� there are only �nitely many of these� �

Lemma �� Let � be a �rst�order theory such that all �nitely generated substructures of
models of � are �nite� Let A and B be models of �� and let �u� v� be a k�con�guration� Then
Player II has a forced win in the game G�u� v� k� n� if and only if u and v are Lk�n�equivalent�

Proof� We prove the lemma by induction on n� For the basis� Player II has a forced win
in G�u� v� k� �� i� �u� v� is a local isomorphism i� u and v agree on all quanti�er�free formulas
of Lk with variables among �u� i�e�� u and v are Lk���equivalent� Now suppose n 	 ��
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��� Suppose Player II has a forced win in the game G�u� v� k� n�� It su�ces to show that
u and v agree on all formulas of Lk�n of the form �xi �� Suppose A�u j� �xi �� Let a � A
such that A�u�xi
a� j� �� If Player I should move the pebble colored xi to a� then Player
II has a response b � B such that Player II has a forced win in G�u�xi
a�� v�xi
b�� k� n� 
��
by De�nition �� Since � � Lk�n��� by the induction hypothesis� B� v�xi
b� j� �� thus B� v j�
�xi �� A symmetric argument shows that if B� v j� �xi � then A�u j� �xi ��

��� If Player II does not have a forced win in G�u� v� k� n�� then Player I does� Thus
there is a move for Player I� say the pebble colored xi to a � A� such that for any move for
Player II� say to b � B� Player I has a forced win in the game G�u�xi
a�� v�xi
b�� k� n � 
��
By the induction hypothesis� there is a formula �b � Lk�n�� such that A�u�xi
a� j� �b but
B� v�xi
b� j� ��b�

By Lemmas 
� and 

� there are only �nitely many inequivalent formulas of Lk�n��� Thus
the in�nitary formula �

b�B

�b

is expressible by a formula of Lk�n��� and

A�u j� �xi
�
b�B

�b �

B� v j� ��xi
�
b�B

�b �

and �xi
V
b�B �b is expressible by a formula of Lk�n� Therefore u and v are not Lk�n�

equivalent� �

The following theorem is an immediate consequence of Lemmas � and 
��

Theorem �� � satis�es the k�variable property if and only if for all A�B models of � and
k�con�gurations �u� v� over A�B� if Player II has a forced win in every game G�u� v� k� n��
n � �� then Player II has a forced win in every game G�u� v�m� n�� m � k� n � ��

� Three Variables are Necessary and Su�cient for

Linear Order

In this section we give a single proof that encompasses the results of �

� 
��� illustrating the
Ehrenfeucht�Fraisse game of x�� We consider games played on linear orders with monadic
predicates�

Theorem �� Linear order satis�es the ��variable property and does not satisfy the ��varia�
ble property�
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Proof� For the upper bound� by Theorem 
� it su�ces to show that for any ��con�guration
�u� v�� if Player II has a forced win in G�u� v� �� n�� then Player II has a forced win in
G�u� v� k� n�� for all k� The result holds for any k � � by Lemma �� so assume k 	 ��

We will describe Player II�s best strategy in G�u� v� k� n� and prove the theorem by si�
multaneous induction on n� For n � �� the assertion that Player II has a forced win in the
game G�u� v� k� �� says that �u� v� is a local isomorphism� which follows immediately from
the assumption that Player II has a forced win in the game G�u� v� �� ���

Suppose now that n 	 �� If juj � jvj � �� then for any move that Player I might
make� let Player II respond according to an optimal strategy in the game G�u� v� �� n�� If the
resulting con�guration is �u�� v��� then by De�nition �� Player II has a forced win in the game
G�u�� v�� �� n � 
�� By the induction hypothesis� Player II has a forced win in every game
G�u�� v�� k� n � 
�� k 	 �� Again by De�nition �� since the move of Player I was arbitrary�
Player II has a forced win in G�u� v� k� n�� k 	 ��

If juj � jvj � �� renumber the variables if necessary so that u�x�� � u�x�� � u�x�� and
v�x�� � v�x�� � v�x��� �Note �u� v� is a local isomorphism� since Player II has a forced win
in G�u� v� �� ��� If some u�xi� � u�xj�� i �� j� then a pair of pebbles can be removed� and we
revert to the previous case�� Consider the pair of corresponding regions

fa � A j a � u�x��g� fb � B j b � v�x��g �

Associate with this pair of regions the game

G�u�� v�� �� n� �

where u� and v� are u and v� respectively� restricted to domain fx�� x�g� Similarly� associate
with the pair of corresponding regions

fa � A j a � u�x��g� fb � B j b � v�x��g

the game
G�u�� v�� �� n� �

where u� and v� are u and v� respectively� restricted to domain fx�� x�g� By Lemma �� Player
II has forced wins in both of these games� But ju�j � ju�j � �� so by a case previously
considered� Player II has a forced win in the games G�u�� v�� k� n� and G�u�� v�� k� n�� k 	 ��

We now describe a strategy for Player II in the game G�u� v� k� n�� Assume k 	 n� so
that Player I never needs to remove a pebble from the board� The result follows for smaller
k by Lemma �� Whenever Player I moves in one of the designated regions of either A or
B� Player II responds with an optimal strategy in the game associated with that region�
Player II will then move in the corresponding region in the other structure� since there is
always a pebble on u�x��� If �u�� v�� is any subsequent �global� con�guration� the restriction
of �u�� v�� to either of the two pairs of regions is a local isomorphism� since Player II has
a forced win in the game associated with that region� Moreover� all points of the region
fa � A j a � u�x��g are less than all points of the region fa � A j a � u�x��g� and similarly
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for fb � B j b � v�x��g and fb � B j b � v�x��g� Therefore �u�� v�� is a local isomorphism�
This establishes the upper bound�

To show that two variables do not su�ce� we observe that Z and Q� without monadic
predicates� are L��equivalent but not L��equivalent� This follows from Theorem 
� and
Example �� �

� Theories of Bounded�Degree Trees

In this section we de�ne various theories of bounded�degree trees and establish tight upper
and lower bounds on the number of bound variables needed to de�ne any �rst�order de�nable
formula�

De�nition �� Consider a language L with a binary relation symbol � and equality ��
possibly with extra monadic predicates� Let L� be L augmented with a binary function
symbol �� The atomic formula x � y is read� 	x is a descendant of y
 or 	y is an ancestor
of x�
 The function � is intended to give the least common ancestor �LCA�� or least upper
bound with respect to ��

Consider the following axioms of L and L�� The axioms �i���vd� are expressed in the
language L� and �vi� is expressed in the language L��

�i� 	� is a partial order�


�ii� 	� is a linear order above any x�


�iii� 	Every pair x� y has an LCA�


�ivd� 	There is no set of d� 
 proper descendants of x whose pairwise LCA is x�


�vd� 	Every non�leaf x has a set of d proper descendants whose pairwise LCA is x�


�vi� 	x� y is the LCA of x and y�


The theories Sd � L and S�
d � L� describe trees of degree d� S�

d consists of axioms �i���vi��
and Sd is obtained from S�

d by omitting �vi�� The theories Td � L and T�
d � L� describe

trees of degree at most d� These theories are obtained from Sd and S�
d � respectively� by

omitting axiom �vd�� �

Note that models of these theories need not be discrete� there is no notion of 	child
 or
	parent
�

For A a model of Td� a� a�� a� � A� a�� a� � a� de�ne a� �a a� if a� � a� � a� It follows
from the axioms of Td that �a is an equivalence relation with at most d equivalence classes�
and exactly d if A is a model of Sd and a is not a leaf� These classes are called subtrees of
a� For a� � a� denote the subtree of a containing a� by T �a� a��� Denote the Lk�n�type of the
valuation x� �� a� x� �� a� by �k�n�a� a��� This is a set of formulas of Lk�n with free variables
among x�� x�� For a subtree T of a� de�ne

�k�n�T � � f�k�n�a� a
�� j a� � Tg �
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Lemma �� Let � be one of the theories Td� T
�
d � Sd� S

�
d � Let �u� v� be any k�con�guration�

and let a and b be the suprema of fu�x� j x � �ug and fv�x� j x � �vg� respectively� Let
f�n� be any su
ciently fast�growing function of n� and let

k �

�
max��� d� � if � � Td or T�

d �
max��� dd

�
e� � if � � Sd or S�

d �

If Player II has a forced win in G�u� v� k� f�n��� then there is a one�one correspondence
between subtrees A�� � � � � Al of a and subtrees B�� � � � � Bl of b such that

�i� �k�n�Ai� � �k�n�Bi�� 
 � i � l�

�ii� u�x� � Aj i� v�x� � Bj�

Proof� For the case of Td or T�
d � we show �rst that a and b have the same number of

subtrees� If not� suppose a has more than b� We will describe a winning strategy for Player I�
contradicting the assumption that Player II has a forced win in G�u� v� k� f�n��� Let Player I
play a pebble on a� if a is not already covered� Then Player II must play b� otherwise Player
I wins in at most one move� �It follows from Td that a � u�x��u�y� for some x� y � �u� and
b � v�x� � v�y��� Now let Player I successively play pebbles in as many distinct subtrees
of a as possible� leaving a pebble on a� Player II must respond by pebbling in separate
subtrees of b� otherwise Player I wins in at most one move� Thus� if the number of subtrees
of a is less than d� or if d � �� we are done� Otherwise� since there are d pebbles� there
must be d subtrees of a� of which d � 
 have pebbles� and d � 
 subtrees of b� all of which
have pebbles� Now Player I removes the pebble from a and places it somewhere in the last
subtree of a� Player II must play the corresponding pebble on a point in one of the subtrees
of b� otherwise Player I wins immediately� Now there exist pebbled points b�� b�� b� such that
b� � b� � b� � b�� whereas for the corresponding points a�� a�� a�� a� � a� � a� � a�� Thus
Player I wins in one more move by pebbling b�� b� with a fourth pebble� keeping b�� b�� and
b� pebbled� Note that k � max��� d� pebbles are required for this argument�

The remainder of the argument uses only max��� dd�e� pebbles and works for all four
theories under consideration� By the preceding paragraph� we may assume that a and b have
the same number of subtrees� We show �i� �rst� Suppose there is a � such that the number
of subtrees T of a with �k�n�T � � � is di�erent from the number of subtrees of b satisfying
this property� We will again describe a winning strategy for Player I� Note that there must
be some r � dd�e and � such that exactly r subtrees T of b have �k�n�T � � � and the number
of subtrees of a satisfying this property is strictly greater than r� or vice�versa �without loss
of generality� assume the former�� As above� Player I will pebble in r � 
 subtrees of a of
type �� and Player II will be forced to play in a subtree of b of type di�erent from �� Now
there are pebbles on a�� b� and at least two other points a��� b�� such that a� � a�� � a and
b� � b�� � b� and

�k�n�T �a� a
��� �� �k�n�T �b� b

��� �







Let a�� � T �a� a�� such that for no b�� � T �b� b�� is �k�n�a� a��� � �k�n�b� b���� Player I plays a
if not already played� Player II must respond with b� otherwise Player I wins in 
 move�
Player I now plays a��� Player II must respond with some b�� � b� but whatever b�� is played�

�k�n�a� a
��� �� �k�n�b� b

��� �

By Lemma 
�� Player I has a forced win in G��a� a���� �b� b���� k� n� and therefore also in
G�u� v� k� f�n��� by Lemma �� This is a contradiction�

Finally� we show that

�k�n�T �a� u�x��� � �k�n�T �b� v�x��� �

If not� let a� � T �a� u�xi�� such that �k�n�a� a�� �� �k�n�T �b� v�xi���� �The opposite case is
symmetric�� Player I pebbles a� with a pebble of color other than xi� and the argument now
proceeds as in the preceding paragraph� �

De�nition �� For a theory �� de�ne var��� to be the minimum k such that � has the
k�variable property� if such a k exists� or � otherwise� �

The following results determine var��� exactly for Td� T
�
d � Sd� and S�

d �

Theorem �


var�Td� � var�T�
d � �

�
� � if d � 
�
max��� d� � if d 	 
 �

var�Sd� � var�S�
d � �

�
� � if d � 
�
max��� dd

�
e� � if d 	 
 �

Proof� The bounds for d � 
 were proved in Theorem 
�� For d 	 
 and for � any of the
four theories we are considering� de�ne

k �

�
max��� d� � if � � Td or T�

d �
max��� dd�e� � if � � Sd or S�

d �

Let g and h be su�ciently fast�growing functions of n such that g�n�� f�h�n�� and h�n��
g�n� 
�� where f is the function of Lemma 
��

We must show that for all A and B satisfying �� and for all k�con�gurations �u� v� over
A and B� if Player II has a forced win in the games G�u� v� k� n� for all n� then Player II has
a forced win in the games G�u� v�m� n� for all m and n� We actually show by induction on
n that if Player II has a forced win in the game G�u� v� k� g�n��� then Player II has a forced
win in the games G�u� v�m� n� for all m�

As in Theorem 
�� the basis n � � is immediate� Suppose now that the theorem holds
for n � 
� Assume m 	 n� so that Player I will never have to remove a pebble from the
board� The result will follow for smaller values of m by Lemma �� If juj � jvj � k� let Player
II respond to any move of Player I with an optimal move according to Player II�s winning


�



strategy in G�u� v� k� g�n��� By De�nition �� if the resulting con�guration is �u�� v��� then
Player II has a forced win in G�u�� v�� k� g�n��
�� and g�n��
 	 g�n�
�� By Lemma � and
the induction hypothesis� Player II has a forced win in G�u�� v��m� n � 
� for all m� Since
Player I�s move was arbitrary� this constitutes a forced win for Player II in G�u� v�m� n��

Now suppose juj � jvj � k� As in the proof of Theorem 
�� we will break the game
G�u� v�m� n� up into several smaller games on which Player II has a forced win� and combine
these strategies to produce a winning strategy for Player II on G�u� v�m� n��

Let hui be the smallest subset of A containing all the u�x� and closed under the operation
�� Let hvi be the corresponding set in B� Let a � hui� and let b be the corresponding element
of hvi� Let A�� � � � � Al be the subtrees of a� and let B�� � � � � Bl be the subtrees of b� such that

�k�h	n
�Ai� � �k�h	n
�Bi� � 
 � i � l �

and such that u�x� � Ai i� v�x� � Bi� Such a correspondence between the subtrees of a and
b exists� by Lemma 
��

If hui �Ai �� �� let ai � a be its supremum� Let bi � b be the corresponding element of
hvi �Bi� In this case we associate the game

G��a� ai�� �b� bi�� k� h�n�� ���

with the pair of regions

Ai � fa� j a� � aig � Bi � fb� j b� � big �

If hui � Ai � �� let ai � Ai and bi � Bi such that

�k�h	n
�a� ai� � �k�h	n
�b� bi� �

In this case we associate the game

G��a� ai�� �b� bi�� k� h�n�� ���

with the pair of corresponding regions Ai and Bi� Finally� if a and b are the suprema of hui
and hvi� respectively� then we associate the game

G��a�� �b�� k� h�n�� ���

with the regions
A� fa� j a� � ag � B � fb� j b� � bg �

Observe that the designated regions of A partition A� and those of B partition B� We claim
that Player II has a forced win in each of the games

G�u�� v�� k� h�n��

associated with these regions� In case �� this is because of the property � and Lemma 
�� in
cases � and �� it is because with k pebbles and at most two moves� Player I can force the
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con�guration �u�� v�� from �u� v� as long as Player II is playing optimally� thus Player II has
a forced win in G�u�� v�� k� g�n�� �� and g�n� � � 	 h�n�� �Here we are using the property
that any uncovered a � hui is u�x� � u�y� for some x� y � �u�� Moreover� ju�j � jv�j � k�
Therefore� by a previous case� Player II has a forced win in the games

G�u�� v��m� n�

for all m� We now combine optimal strategies for Player II in all these games� as in Theorem

�� Whenever Player I plays in one of the designated regions� Player II responds in the
corresponding region of the other structure� according to his best strategy in the game
associated with that region� Player II�s play will always be in the correct region� since
pebbles are never removed� Let �ut� vt� be the sequence of con�gurations� Since Player II
has a forced win in each of these games� each �ut� vt� restricted to each region is a local
isomorphism� and by the choice of regions� if ut�x� and ut�y� are in di�erent regions� then
ut�x� � ut�y� i� vt�x� � vt�y��

The lower bounds follow from the lower bounds for linear order �Theorem 
��� the lower
bounds for �nite trees �Theorem 
��� and the following argument that all of var�Td�� var�T

�
d ��

var�Sd�� and var�S�
d � are at least � for d 	 
�

Let d 	 
 and let A be a full d�ary tree such that each path has order type Z �Z� �Here
	�
 denotes the partial order obtained by placing the two operands end�to�end�� Let a� and
a� be two vertices in the lower part of A whose LCA is a� in the upper part of A� Thus the
order type of the path from a� to a� and from a� to a� is � � �R� Let a� be the parent of
a�� and let a� be the parent of a��

Let B � A and consider the game

G��a�� a�� a��� �a�� a�� a��� �� n� �

Player II has a forced win� since the initial con�guration �u� v� is a local isomorphism �even
in the presence of ��� and for subsequent moves� as soon as Player I picks up a pebble�
there is an automorphism of A sending the remaining two points on the left to the remaining
two points on the right� From then on� Player II can always play the image under that
automorphism or its inverse of the point that Player I plays�

However� Player I has a forced win in

G��a�� a�� a��� �a�� a�� a��� �� �� �

Player I �rst pebbles a� � a�� a� with the spare pebble on the left� to which Player II must
respond with a� with the spare pebble on the right� then Player I removes the pebble on a�
on the left and plays it on a�� to which Player II has no response� �

� Finite models

It is interesting to note how the situation changes when we restrict our attention to �nite
models� Not only does var��� change� but the models are de�nable up to isomorphism� In
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this case we can give direct proofs of the upper bounds without using the Ehrenfeucht�Fraisse
games of x��

De�ne Fin��� to be the set of �nite models of the theory �� For a set of structures S�
de�ne var�S� to be the minimum k such that S satis�es Corollary ��i��

Theorem �� �i� var�Fin�Td�� �

�
� � if d � 
�
max��� d� � if d 	 
 �

�ii� var�Fin�Sd�� �

�
� � if d � 
 or ��
max��� dd�e � if d 	 � �

Proof� We �rst establish the upper bounds� Given a �nite tree A� we produce a formula
�A�x� such that� whenever B is a tree and b � B� then �A�b� holds in B i� the subtree of B
with root b is isomorphic to A�

If A consists of a single node a� we assert that x satis�es the same monadic predicates
that a does� and that x has no proper descendants� This takes two variables�

If A contains at least two nodes� let a be the root of A and let A�� � � � � Am be the maximal
proper subtrees of A� with roots a�� � � � � am� respectively� Assume by induction on height
that the formulas �A��x�� � � � � �Am�x� have been constructed� As above� we �rst assert that
x satis�es the same monadic predicates that a does� We then assert that there exist proper
subtrees satisfying each of the �Ai�x��

m�
i��

�y � x �Ai�y�

and that every proper subtree has a supertree satisfying one of them�


y � x �x � y
m�
i��

�Ai�x� �

Each of these statements takes two variables� Together they establish the isomorphism types
of the maximal proper subtrees� For the cases T� and S�� we are done� for the other cases� it
remains to show how to specify the number of maximal proper subtrees of each isomorphism
type�

Consider the case Td� Observe that the predicate 	y is a child of z
 is expressible with
three variables�

y � z � 
x �y � x� z � x� �

So is the predicate 	y and z are siblings
�


x �y is a child of x� z is a child of x� �

If there are p � d children of a of isomorphism type Ai� we can express this with the formula

�y� � � ��yp the yj are distinct children of x
�
Vp
j�� �Ai�yj�

� 
x �x and y� are siblings � �Ai�x���
Wp
j�� yj � x �
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This takes max��� p � 
� � d variables� The only case of Td not yet covered is when a has
d maximal proper subtrees� all isomorphic to A�� In this case we say that all children y of
x satisfy �A��y�� and there is a child of x with d � 
 distinct siblings� The variable x can
be used to name one of the siblings� This takes max��� d� variables� This completes the
argument for Td�

Now consider the case Sd� Above� we speci�ed all the isomorphism types of the maximal
proper subtrees Ai of A� If all the Ai are isomorphic� or if all are of distinct isomorphism
types� we are done� This exhausts the case d � �� so let d � �� We will show that max��� dd

�
e�

variables are su�cient� If all isomorphism types are satis�ed by at most dd
�
e of the Ai� then as

above we can use dd
�
e variables yj to name those ai and assert �Ai�yj�� This takes max��� dd

�
e�

variables� If there are m 	 dd
�
e Ai isomorphic to A�� then all other isomorphism types are

covered by the preceding case� we can then assert that there are d�m � bd
�
c distinct children

of x not satisfying �A� � and then use one universally quanti�ed variable to assert that all
other siblings satisfy �A�� In either case we have used max��� dd

�e� variables�
We now establish the corresponding lower bounds� In each of the cases below� we produce

two �nite models A and B of one of our theories � such that A and B are not elementarily
equivalent� but A and B are Lv equivalent� where v � var�Fin����� 
� In each of the cases
below� it is fairly straightforward to determine a winning strategy for Player II for the game
G��� �� v� n�� We leave this to the reader�

�Case T�� S�� S�� v � 
�� Let A and B be arbitrary nonempty nonisomorphic models
with no monadic predicates�

�Case T�� v � ��� Let A be the complete binary tree of depth �� and let B be the binary
tree of depth � with two nodes of depth 
� three leaves of depth �� and no monadic predicates�

�Case Td� v � d � 
�� Let A be the complete d�ary tree of depth 
� B the complete
�d� 
��ary tree of depth 
� and no monadic predicates�

�Case S�� S�� v � ��� Let A and B be complete d�ary trees of depth �� Let M be a
monadic predicate such that one of each cluster of leaves satis�es M in A� and two of each
cluster satisfy M in B�

�Case S�k� k 	 �� v � k � 
�� Let B and C be complete �k�ary trees of depth 
� Let M
be a monadic predicate true of exactly k � 
 leaves in A and k leaves in B�

�Case S�k��� k 	 
� v � k�� Let A and B be complete ��k � 
��ary trees of depth 
� Let
M be a monadic predicate true of exactly k leaves in A and k � 
 leaves in B� �

	 Conclusion

Some interesting questions remain� One is to establish a general model�theoretic charac�
terization of those relational structures that possess the k�variable property for some k�
Another is to give natural complete sets of temporal connectives for branching�time models
of temporal logic� whose existence is implied by Gabbay�s result ��� and the results of this
paper�
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