Definability with Bounded Number of Bound
Variables

Neil Immerman* Dexter Kozen'
Department of Computer Science Department of Computer Science
Yale University Cornell University
New Haven, Connecticut 06520 Ithaca, New York 14853
Abstract

A theory satisfies the k-variable property if every first-order formula is equivalent
to a formula with at most k& bound variables (possibly reused). Gabbay has shown
that a model of temporal logic satisfies the k-variable property for some k if and only
if there exists a finite basis for the temporal connectives over that model. We give a
model-theoretic method for establishing the k-variable property, involving a restricted
Ehrenfeucht-Fraisse game in which each player has only k& pebbles. We use the method
to unify and simplify results in the literature for linear orders. We also establish new
k-variable properties for various theories of bounded-degree trees, and in each case
obtain tight upper and lower bounds on k. This gives the first finite basis theorems for
branching-time models of temporal logic.

1 Introduction

A first-order theory ¥ satisfies the k-variable property if every first-order formula is equivalent
under ¥ to a formula with at most k& bound variables (possibly reused). For example, in an
arbitrary partial order, five bound variables are needed to express the statement “there are
at least five elements below x,” but in a linear order, two variables suffice:

Jyy<aezA(Frae<yANTyy<aeANE@rz<yA(Tyy<az)))) . (1)

The k-variable property is important in temporal logic. Gabbay [7] has shown that a
model of temporal logic satisfies the k-variable property for some k if and only if there exists
a finite basis for the first-order-expressible temporal connectives over that model, in the same
sense that V and — form a basis for the propositional connectives.

*Supported by NSF grants DCR-8603346 and CCR-8806308.
TSupported by NSF grants DCR-8602663 and CCS-8806979.

Kamp [11] showed that any Dedekind-complete linear order with arbitrary monadic pred-
icates admits a finite basis for the temporal connectives. This result was extended to other
linear time structures by Stavi [16]. Amir and Gabbay [1] showed that any definable lexico-
graphic product of time structures admitting a finite basis also admits a finite basis. This
result gave the first infinite non-linear structures admitting a finite basis, although up to
now no results have been established for trees.

The methods used by these researchers were largely syntactic. In this paper we give a
model-theoretic method for establishing the k-variable property uniformly for all models of
certain first-order theories. The method uses a variant of the Ehrenfeucht-Fraisse game [3, 5]
which allows each player only k& pebbles [9, 14, 10].

Applying this method to the theory of linear order, we are able to unify the results
of [11, 16]. We also establish new k-variable expressiveness results for various theories of
bounded-degree trees, and in each case obtain tight upper and lower bounds on k. Using
Gabbay’s result [7], these results imply the existence of a finite basis for the first-order-
expressible temporal connectives over tree models of bounded degree.

2 A Model-Theoretic Lemma

Let L be a first-order language with individual variables zy,xy,.... A partial valuation
over a structure A for L is a partial function u : {z1,25,...} — A. The domain of u is
denoted du. The cardinality of du is denoted |u|. A (k-)configuration over A, B is a pair
(u,v), where v is a partial valuation over A and v is a partial valuation over B, such that
Ou = 0v C {x1,...,25}. If L' C L, an L'-type in the variables z1,...,x is a maximal
consistent set of L’ formulas all of whose free variables are among @1,...,25. If (u,v) is a
k-configuration, then v and v are said to be L'-equivalent if they have the same L'-type; i.e.,
if for all formulas ¢ € L” with free variables in du = Jv,

AuEe iff BioEe.

Lemma 1 Let X be a setl of sentences in L. Let L', L" C L such that L' is closed under the
propositional operators. The following two conditions are equivalent:

(i) for all models A, B of ¥ and k-configurations (u,v) over A, B, if u and v are L'-

equivalent, then they are L"-equivalent;

(it) for all ¢ € L" with free variables among x1,...,xx, there exists a v € L' such that
YEe ey

Remark Informally, condition (i) means that if u and v can be distinguished by a formula
of L”, then they can be distinguished by a formula of L’. Thus, the lemma says intuitively
that L” has no more power than L’ to distinguish such u and v if and only if L’ subsumes
L" in expressive power, at least on formulas involving only free variables x1,..., zy.

Proof. (ii) — (i) is immediate.

(i) — (ii): If ¥ U{¢} is inconsistent, take ¢ = false and we are done. Otherwise, let I
be an arbitrary complete L’-type in the variables 1,..., 2 consistent with ¥ U {¢}. Then
Y UT U {~¢} is inconsistent, otherwise models A, u and B,v of ¥ U could be constructed
with du = dv = {aq,..., 21} such that A,u | ¢ and B,v | ¢, violating (i). Therefore
YUT E ¢. By compactness, there exists a ¢or € I such that ¥ = ¢r — ¢. Now ¢ is covered
by all such %, in the sense that

Y (\F/%/JF) o

where the infinitary join is taken over all L’-types I' consistent with ¥ U {¢}. Again by
compactness, there is a finite set F' of such I' such that

Lk (Vir)ee,

I'er
so we may take ¥ = Vpep ¢r. a

We are interested in a special case of the above lemma which applies to the k-variable
property.

Definition 2 Define the quantifier depth of a formula ¢ inductively, as follows.
1. If ¢ is quantifier-free, then its quantifier depth is 0.

2. The quantifier depth of ¢ V ¢ or ¢ A %) is the maximum of the quantifier depths of ¢
and .

3. The quantifier depth of = is the quantifier depth of .

4. The quantifier depth of Va ¢ or da ¢ is one greater than the quantifier depth of ¢.

For example, the quantifier depth of the formula (1) is 5.

Let n,k > 0. Define L, to be the sublanguage of L consisting of all formulas ¢ of
quantifier depth at most n containing only variables xq,...,z;. For example, the formula 1
is in Ly 5. Define

Ly = JLiw -
Thus L = U, L.
Definition 3 A first-order theory ¥ is said to satisfy the k-variable property if for all formu-

las ¢ € L with free variables among x1, ..., 2, there exists a b € Ly such that ¥ |= ¢ < 1.
O

In this special case, Lemma 1 gives

Corollary 4 The following two conditions are equivalent:

(i) for all models A, B of ¥ and k-configurations (u,v) over A, B, if u and v are Lj-

equivalent, then they are L-equivalent;

(i) ¥ satisfies the k-variable property.

3 An Ehrenfeucht-Fraisse Game with Bounded Num-
ber of Pebbles

Let ¥ be a theory in a first-order language L with equality. Assume further that in every
model of Y, every finitely generated substructure is finite; i.e., the smallest substructure
containing a given finite set is always finite. (This is a technical restriction that is used
in the proofs below.) We have reduced the problem of establishing the k-variable property
for ¥ to checking the condition of Corollary 4(i). This will done using Ehrenfeucht-Fraisse
games [3, 5].

Ehrenfeucht-Fraisse games have been used widely in theoretical computer science; see
e.g. [4, 6,8, 10, 12, 13, 17, 18]. Here we use a modified version in which the number of
pebbles is finite [9, 14, 10].

Definition 5 Let A, B be structures for L and (u,v) a k-configuration. We call (v, v) a local
isomorphism if the map u(x) — v(x), x € du, is well-defined and extends to an isomorphism
of the substructures of A and B generated by {u(z) | @ € du} and {v(z) | @ € Jv},
respectively. That is, (u,v) is a local isomorphism if the relation

{(#*,1B7) | t is a term over du} C A x B
is a bijection and respects the functions and relations of L. a

Definition 6 (The game G(u,v,k,n).) Let A, B be structures for L, n,k > 0, and (u,v)
a k-configuration. The game G/(u, v, k,n) is played by two players, I and II, who take turns
placing pebbles on elements of A and B. Player I tries to demonstrate that A and B are
nonisomorphic, and Player II tries to make A and B appear isomorphic. There are 2k
pebbles, each colored with one of £ distinct colors axq,...,x, with exactly two pebbles of
each color.

A configuration (u’,v") denotes that the two pebbles colored z; are currently occupying
u'(x;) € A and v'(x;) € B, for x; € du’ = 9v’, and that the pebbles colored x; ¢ du’ are not
currently in play. The initial configuration is (ug,v9) = (u,v). The players alternate, with
Player I first. Each round consists of a move of Player I followed by a move of Player II.
Player I can select any pebble and place it on an element of either A or B. Player II then
has to place the other pebble of the same color on an element of the other structure. Play

4

proceeds for n rounds, generating a sequence of configurations (us,v¢), 0 <t < n. Player 11
wins the game if all the (us, v;), 0 <t < n, are local isomorphisms (Definition 5). Otherwise
Player I wins. a

Definition 7 A forced win for Player II is defined by induction on n. Player II has a
forced win in G(u,v,k,0) if (u,v) is a local isomorphism. Player II has a forced win in
G(u,v,k,n + 1) if (u,v) is a local isomorphism, and for all legal moves of Player I from
configuration (u,v), there exists a legal move of Player II resulting in a configuration (v, v’)
such that Player II has a forced win in G(u/, v, k,n). Player I has a forced win if Player 11
does not. O

Intuitively, a player has a forced win if there is always a choice of moves for that player
leading to a win, no matter how well his opponent plays.

Example 8 Consider the two-pebble game G(0,0,2,n) played on the linear orders Z and
Q. Player II has a forced win, as follows. In the first round, Player II plays anywhere in
response to Player I’s move. In the second round, if Player I plays in either structure to the
left (right) of the pebble already on the board, then Player II does the same in the other
structure. Subsequently, if Player [moves a pebble in either structure, Player IT moves the
corresponding pebble in the other structure so as to maintain the relative ordering of the
pebbles in the two structures. Player Il always wins, since every configuration is a local
isomorphism.

On the other hand, Player I has a forced win in the three-pebble game G(0,0,3,3), as
follows. Player I starts by playing any point p in Z. Player II responds by playing a point
g in @. Now Player I plays p 4+ 1 in Z. Player II must play a point ¢’ of Q to the right of
q, otherwise Player I wins. Player I now plays any point of @ between ¢ and ¢', and Player
IT is stuck. Note that Player I's winning strategy is based on the fact that Q@ and Z are
distinguished by the property of density, which is expressible with three variables:

VaVz (e <z —Jdyae<y<z).

a

It is always to Player I's advantage to play a pebble not currently on the board, if possible,
and to place a pebble on an element not currently covered by another pebble, if possible;
from Player I’s point of view, the more elements of A and B that are covered, the better.
Any winning strategy for Player I that does not satisty these conditions can be mapped into
a winning strategy that does.

Lemma 9 If Player Il has a forced win in the game G(u, v, k,n), then Player Il has a forced
win in the game G(u',v', k', n'), for any n’ < n, k' <k, and v’ and v' restrictions of u and
v, respectively, to a smaller domain.

We now prove a series of lemmas that will allow us to establish the relationship between
the games G/(u, v, k,n) and the k-variable property. Lemmas 10 and 11 are technical. Lemma
12 is a generalization of [10], Theorem C.1, to structures allowing function symbols, provided
that all finitely generated substructures are finite.

Lemma 10 Let ¥ be a first-order theory such that all finitely generated substructures of
models of ¥ are finite. Then there is a uniform bound on the size of substructures generated
by k elements. That is, for all k there exists a bound by such that for any model A of ¥ and
substructure B of A generated by k elements, B contains no more than by elements.

Proof. We use a compactness argument. Define the depth of a term inductively, as

follows: constants and variables have depth 0, and a term of the form f(ty,...,t,) has
depth 1 + max{depth of #; | 1 <: < m}. Let D* denote the set of terms of depth at most
m over the variables z1,...,x;. Then DF is a finite set, although its size depends on the

number of function symbols in L and their arity.

/\ \/ s=1. (2)

seDk | teDk,

Let p,, be the formula

The formula p,, says that every element represented by a term of depth at most m 4 1 over
x1,...,2y 1s already represented by a term of depth at most m; in other words, every element
of the substructure generated by zy,...,x) is represented by a term of depth at most m.
Note that p,, is a quantifier-free formula of L over the variables zq,..., 2, and that p,
logically implies p,,41.

By the assumption that all finitely generated substructures of models of ¥ are finite, we
have

Y E \/ Pm -
m=0
By compactness, there is an n such that
YEpn-
We may therefore take b, = |DF|. 0
We say that formulas ¢ and) are equivalent under X if ¥ |= ¢ < .

Lemma 11 Under the assumption of Lemma 10, there are only finitely many inequivalent
formulas of Ly ,, under X.

Proof. This lemma is similar to [15, Lemma 13.10, p. 251], except that we are in the
presence of function symbols. By Lemma 10, there is a uniform bound on the size of sub-
structures generated by k elements in any model of ¥. This is equivalent to the statement
that there exists an m = my such that ¥ |= p,,, where p,,, is the formula (2) defined in the
proof of Lemma 10.

Consider the formula p,,. Using distributivity of A over V, rewrite p,, so that it is in

VoA t=90),

9 teDk

disjunctive form

where the outer join is over all maps
g: Dfn_l_l — Dfn

assigning a term of depth at most m to each term of depth at most m + 1. We extend each
such g to domain |J, D¥ inductively, as follows: for f(t1,...,t;) € be_l_l — DF n > m, take

g(f(ts,.. . ta)) = g(flg(tr),....9(ta))) -

This is well-defined, since all applications of g on the right hand side are to terms of smaller
depth. By repeated application of the rule of substitution of equals for equals, we have that

for all terms s over the variables zq,..., xy,
FO N t=9) = s=2g(s);
teDk
moreover, for any atomic formula R(sq,...,s4), where R is a d-ary relation symbol and
81,...,84 are terms over the variables w1, ..., xy,
E (A t=91) — (B(s1,....50) & Rlg(s1),...,9(sq))) -
teDfnJr1

From this and the fact that ¥ = p,,, we conclude that

Y E R(s1,...,84) < \/(/\ t=g(t)NR(g(s1),...,9(3q))) - (3)

9 teDk

The right hand side of (3) is a quantifier-free formula containing only terms of depth at most
m + 1, and there are only finitely many such formulas up to propositional equivalence.

It follows immediately that L;o contains only finitely many formulas up to equivalence
under 3. We next show by induction on n that the same is true for Ly ,. Assume this is true
for Ly,. Then Lj,4q consists of Boolean combinations of formulas ¢ and Jz;p for ¢ € Ly,
and 1 < < k. Up to equivalence, there are only finitely many of these. a

Lemma 12 Let ¥ be a first-order theory such that all finitely generated substructures of
models of ¥ are finite. Let A and B be models of ¥, and let (u,v) be a k-configuration. Then
Player 11 has a forced win in the game G(u,v, k,n) if and only if u and v are Ly ,-equivalent.

Proof. We prove the lemma by induction on n. For the basis, Player II has a forced win
in G(u,v,k,0)iff (u,v) is a local isomorphism iff u and v agree on all quantifier-free formulas
of L with variables among du, i.e., u and v are Ljg-equivalent. Now suppose n > 0.

7

(—) Suppose Player II has a forced win in the game G(u, v, k,n). It suffices to show that
u and v agree on all formulas of Ly, of the form Ja; ¢». Suppose A,u |= Jz; . Let a € A
such that A, u[z;/a] E . If Player I should move the pebble colored x; to a, then Player
IT has a response b € B such that Player I has a forced win in G(u[x;/a],v[z:/b], k,n — 1),
by Definition 7. Since ¢ € Ly -1, by the induction hypothesis, B, v[x;/b] |= ¢, thus B,v |=
dz; . A symmetric argument shows that if B v = Jx; ¢ then A, u = Jx; .

(«) If Player II does not have a forced win in G(u,v,k,n), then Player I does. Thus
there is a move for Player I, say the pebble colored x; to @ € A, such that for any move for
Player II, say to b € B, Player I has a forced win in the game G(ulx;/al], v[x;/b],k,n — 1).
By the induction hypothesis, there is a formula ¢, € Ljy,—1 such that A, u[z;/a] = ¢ but
B ofi/B] E s

By Lemmas 10 and 11, there are only finitely many inequivalent formulas of Ly ,,_;. Thus

AR

beB

the infinitary formula

is expressible by a formula of Ly ,_4, and

A,u |: EL%‘Z /\ 77/)5,

beB

Bv E —3a; N\ s,

beB

and dz; Ayep W 1s expressible by a formula of Lj,. Therefore u and v are not Ly,-
equivalent. a

The following theorem is an immediate consequence of Lemmas 4 and 12.

Theorem 13 ¥ satisfies the k-variable property if and only if for all A, B models of ¥ and
k-configurations (u,v) over A, B, if Player Il has a forced win in every game G(u,v,k,n),
n >0, then Player Il has a forced win in every game G(u,v,m,n), m >k, n > 0.

4 Three Variables are Necessary and Sufficient for
Linear Order

In this section we give a single proof that encompasses the results of [11, 16], illustrating the
Ehrenfeucht-Fraisse game of §3. We consider games played on linear orders with monadic
predicates.

Theorem 14 Linear order satisfies the 3-variable property and does not satisfy the 2-varia-
ble property.

Proof. For the upper bound, by Theorem 13 it suffices to show that for any 3-configuration
(u,v), if Player II has a forced win in G(u,v,3,n), then Player II has a forced win in
G(u,v, k,n), for all k. The result holds for any & <3 by Lemma 9, so assume k > 3.

We will describe Player 1I’s best strategy in G(u,v,k,n) and prove the theorem by si-
multaneous induction on n. For n = 0, the assertion that Player II has a forced win in the
game G(u,v,k,0) says that (u,v) is a local isomorphism, which follows immediately from
the assumption that Player II has a forced win in the game G/(u,v,3,0).

Suppose now that n > 0. If |u| = |v| < 3, then for any move that Player I might
make, let Player II respond according to an optimal strategy in the game G(u,v,3,n). If the
resulting configuration is (u’,v’), then by Definition 7, Player II has a forced win in the game
G(u',v",3,n — 1). By the induction hypothesis, Player II has a forced win in every game
G(u', v k,n— 1), k > 0. Again by Definition 7, since the move of Player I was arbitrary,
Player II has a forced win in G(u,v,k,n), k> 0.

If |u| = |v| = 3, renumber the variables if necessary so that u(x;) < u(xz) < u(xs) and
v(x1) < v(xg) < v(xs). (Note (u,v) is a local isomorphism, since Player II has a forced win
in G(u,v,3,0). If some u(x;) = u(x;), ¢ # j, then a pair of pebbles can be removed, and we
revert to the previous case.) Consider the pair of corresponding regions

{a € Ala<u(as)}, {b€B|b<uv(xl)}.
Associate with this pair of regions the game
G(u<7 A 37 n) ’

where u. and v are u and v, respectively, restricted to domain {1, x2}. Similarly, associate
with the pair of corresponding regions

{a € Ala>u(xz)}, {b€B|b>wv(x)}

the game

G(us,vs,3,n),

where us and vy are v and v, respectively, restricted to domain {3, 23}. By Lemma9, Player
IT has forced wins in both of these games. But |u<| = |ux>| < 3, so by a case previously
considered, Player II has a forced win in the games G(u<,v<, k,n) and G(u>,vs, k,n), k > 0.

We now describe a strategy for Player II in the game G(u,v,k,n). Assume k > n, so
that Player I never needs to remove a pebble from the board. The result follows for smaller
k by Lemma 9. Whenever Player I moves in one of the designated regions of either A or
B, Player II responds with an optimal strategy in the game associated with that region.
Player II will then move in the corresponding region in the other structure, since there is
always a pebble on u(xz). If (u',v’) is any subsequent (global) configuration, the restriction
of (u/,v") to either of the two pairs of regions is a local isomorphism, since Player II has
a forced win in the game associated with that region. Moreover, all points of the region
{a € A| a <wu(xz)} are less than all points of the region {a € A | a > u(x2)}, and similarly

for {b € B|b<v(xz)} and {b € B|b> v(xs)}. Therefore (v',v’) is a local isomorphism.
This establishes the upper bound.

To show that two variables do not suffice, we observe that Z and Q, without monadic
predicates, are [Lj-equivalent but not Ls-equivalent. This follows from Theorem 13 and
Example 8. O

5 Theories of Bounded-Degree Trees

In this section we define various theories of bounded-degree trees and establish tight upper
and lower bounds on the number of bound variables needed to define any first-order definable
formula.

Definition 15 Consider a language [with a binary relation symbol < and equality =,
possibly with extra monadic predicates. Let L™ be L augmented with a binary function
symbol 4. The atomic formula = < y is read, “z is a descendant of y” or “y is an ancestor
of x.” The function + is intended to give the least common ancestor (LCA), or least upper
bound with respect to <.

Consider the following axioms of L and L*. The axioms (i)-(vd) are expressed in the
language L, and (vi) is expressed in the language LT.

(i) “<is a partial order.”

(i

“< s a linear order above any x.”

(iii) “Every pair x, y has an LCA.”

(vd

(vi) “x +y is the LCA of & and y.”

The theories Sy € L and ST C LT describe trees of degree d. SJ consists of axioms (i)-(vi),
and Sy 1s obtalned from SC}" by omitting (vi). The theories Ty C L and TJ’ C LT describe
trees of degree at most d. These theories are obtained from S; and SJ, respectively, by

)
)
(ivd) “There is no set of d + 1 proper descendants of # whose pairwise LCA is z.”
) “Every non-leaf x has a set of d proper descendants whose pairwise LCA is x.”
)

omitting axiom (vd). O

Note that models of these theories need not be discrete; there is no notion of “child” or
“parent”.

For A a model of Ty, a,ai,a3 € A, ay,a3 < a, define a1 =, ay if a1 + a3 < a. It follows
from the axioms of Ty that =, is an equivalence relation with at most d equivalence classes,
and exactly d if A is a model of S; and «a is not a leaf. These classes are called subtrees of
a. For ¢’ < a, denote the subtree of a containing a’ by T'(a, a’). Denote the Ly ,-type of the
valuation @1 — a, €3 — @' by O ,(a,d’). This is a set of formulas of Ly, with free variables
among ry,Ty. For a subtree T' of a, define

Orn(T) = {brnla,d)|d €T}.

10

Lemma 16 Let Y be one of the theories Ty, T, Sq, ST. Let (u,v) be any k-configuration,
and let a and b be the suprema of {u(x) | * € Ju} and {v(z) | « € v}, respectively. Let
f(n) be any sufficiently fast-growing function of n, and let

), if Y =Ty or T,
), if S =S4 or S .

If Player II has a forced win in G(u,v,k, f(n)), then there is a one-one correspondence
between subtrees Ay, ..., A; of a and subtrees By, ..., B; of b such that

(i) Opn(A;) =04,(B;), 1 <<,
(i) u(z) € A; iff v(x) € B;.

Proof. For the case of Ty or T, we show first that a and b have the same number of
subtrees. If not, suppose @ has more than b. We will describe a winning strategy for Player I,
contradicting the assumption that Player II has a forced win in G(u, v, k, f(n)). Let Player |
play a pebble on a, if a is not already covered. Then Player II must play b, otherwise Player
[wins in at most one move. (It follows from T, that a« = u(x) 4 u(y) for some x,y € Ju, and
b =v(x)+ v(y).) Now let Player I successively play pebbles in as many distinct subtrees
of a as possible, leaving a pebble on a. Player II must respond by pebbling in separate
subtrees of b, otherwise Player I wins in at most one move. Thus, if the number of subtrees
of a is less than d, or if d < 4, we are done. Otherwise, since there are d pebbles, there
must be d subtrees of a, of which d — 1 have pebbles, and d — 1 subtrees of b, all of which
have pebbles. Now Player I removes the pebble from @ and places it somewhere in the last
subtree of a. Player II must play the corresponding pebble on a point in one of the subtrees
of b, otherwise Player I wins immediately. Now there exist pebbled points bg, b1, b, such that
bo + by < by + by, whereas for the corresponding points ag, aq, as, ag + a3 = a3 + ay. Thus
Player I wins in one more move by pebbling by + b; with a fourth pebble, keeping by, b;, and
by pebbled. Note that & = max(4, d) pebbles are required for this argument.

The remainder of the argument uses only max(4, (%W) pebbles and works for all four
theories under consideration. By the preceding paragraph, we may assume that ¢ and b have
the same number of subtrees. We show (i) first. Suppose there is a © such that the number
of subtrees T' of ¢ with O ,(T) = O is different from the number of subtrees of b satisfying
this property. We will again describe a winning strategy for Player I. Note that there must
be some r < (%W and O such that exactly r subtrees T of b have Oy ,,(T) = © and the number
of subtrees of a satisfying this property is strictly greater than r, or vice-versa (without loss
of generality, assume the former). As above, Player I will pebble in r + 1 subtrees of a of
type ©, and Player II will be forced to play in a subtree of b of type different from 0. Now
there are pebbles on d’, V' and at least two other points a”, §” such that ¢’ + ¢” = a and

b+ 0" = b, and

Opn(T(a,a’)) # O, (T(bb)) .

11

Let a” € T'(a,a’) such that for no v’ € T'(b,b') is Oy ,(a,a”) = 05 (b, 0"). Player I plays a
if not already played. Player Il must respond with b, otherwise Player I wins in 1 move.
Player I now plays «”. Player II must respond with some 6" < b, but whatever " is played,

Hkm(a,a") 7£ 0k7n(b, b”) .

By Lemma 12, Player I has a forced win in G((a,a”),(b,0"),k,n) and therefore also in
G(u,v,k, f(n)), by Lemma 9. This is a contradiction.
Finally, we show that

Opn(T(a,u(z))) = Opa(T(b,0(z))) .

If not, let ' € T(a,u(x;)) such that 0y ,(a,a’) € Ok ,.(T(b,v(x;))). (The opposite case is
symmetric.) Player I pebbles o’ with a pebble of color other than z;, and the argument now
proceeds as in the preceding paragraph. a

Definition 17 For a theory X, define var(X) to be the minimum k such that ¥ has the
k-variable property, if such a k exists, or oo otherwise. a

The following results determine var(X) exactly for Ty, T, Sy, and SF.

Theorem 18
3, ifd=1,
max(4,d) , ifd>1.

var(Sq) = var(S}) = { ?n.;x(ll, 47y, Zgi 17-

Proof. The bounds for d = 1 were proved in Theorem 14. For d > 1 and for ¥ any of the
four theories we are considering, define

var(Ty) = var(T}) = {

)y, S =Tyor Tf,
1), if ¥ =Sy0r ST .

Let ¢ and & be sufficiently fast-growing functions of n such that g(n) > f(h(n)) and h(n) >
g(n — 1), where f is the function of Lemma 16.

We must show that for all A and B satisfying ¥, and for all k-configurations (u,v) over
A and B, if Player II has a forced win in the games G/(u, v, k,n) for all n, then Player II has
a forced win in the games G(u, v, m,n) for all m and n. We actually show by induction on
n that if Player II has a forced win in the game G(u,v, k, g(n)), then Player II has a forced
win in the games G'(u, v, m,n) for all m.

As in Theorem 14, the basis n = 0 is immediate. Suppose now that the theorem holds
for n — 1. Assume m > n, so that Player I will never have to remove a pebble from the
board. The result will follow for smaller values of m by Lemma 9. If |u| = |v| < k, let Player
IT respond to any move of Player I with an optimal move according to Player II’s winning

12

strategy in G(u,v,k,g(n)). By Definition 7, if the resulting configuration is (u’,v’), then
Player II has a forced win in G(u',v’, k,g(n)—1), and g(n) —1 > g(n —1). By Lemma 9 and
the induction hypothesis, Player 11 has a forced win in G(u',v’;m,n — 1) for all m. Since
Player I’s move was arbitrary, this constitutes a forced win for Player Il in G(u,v,m,n).

Now suppose |u| = |v| = k. As in the proof of Theorem 14, we will break the game
G/(u, v, m,n) up into several smaller games on which Player II has a forced win, and combine
these strategies to produce a winning strategy for Player Il on G(u,v, m,n).

Let (u) be the smallest subset of A containing all the u(x) and closed under the operation
+. Let (v) be the corresponding set in B. Let a € (u), and let b be the corresponding element
of (v). Let Ay,..., A; be the subtrees of a, and let By, ..., B; be the subtrees of b, such that

Ok inn)(Ai) = Oppmy(Bi), 1<i<1,

and such that u(x) € A; iff v(x) € B;. Such a correspondence between the subtrees of a and
b exists, by Lemma 16.

If (u) MV A; # 0, let a; < a be its supremum. Let b; < b be the corresponding element of
(v) N B;. In this case we associate the game

G((a,a), (b, b), k, h(n)) (4)
with the pair of regions
Ai—{d'|d <a}, Bi— {0 | <b}.
If (u) N A; =0, let a; € A; and b; € B; such that
Oknmy(asai) = Ok (b, bi) -
In this case we associate the game
G((a,a), (b, b), k, h(n)) (5)

with the pair of corresponding regions A; and B;. Finally, if a and b are the suprema of (u)
and (v), respectively, then we associate the game

G((a), (0), k; h(n)) (6)

with the regions

A—{d'|d <a}, B—{b|b<b}.

Observe that the designated regions of A partition A, and those of B partition B. We claim
that Player II has a forced win in each of the games

G(u', vk, h(n))

associated with these regions. In case 5, this is because of the property 5 and Lemma 12; in
cases 4 and 6, it is because with k£ pebbles and at most two moves, Player I can force the

13

configuration (u',v’) from (u,v) as long as Player Il is playing optimally, thus Player II has
a forced win in G(v',v', k,g(n) — 2) and ¢g(n) — 2 > h(n). (Here we are using the property
that any uncovered a € (u) is u(x) + u(y) for some x,y € du.) Moreover, |u'| = |v'| < k.
Therefore, by a previous case, Player II has a forced win in the games

G(u',v',m,n)

for all m. We now combine optimal strategies for Player I in all these games, as in Theorem
14. Whenever Player I plays in one of the designated regions, Player II responds in the
corresponding region of the other structure, according to his best strategy in the game
associated with that region. Player II's play will always be in the correct region, since
pebbles are never removed. Let (u¢,v;) be the sequence of configurations. Since Player 11
has a forced win in each of these games, each (u,v;) restricted to each region is a local
isomorphism; and by the choice of regions, if u;(x) and u;(y) are in different regions, then
(@) < ugly) iff v(x) < vy).

The lower bounds follow from the lower bounds for linear order (Theorem 14), the lower
bounds for finite trees (Theorem 19), and the following argument that all of var(Ty), var(T5),
var(Sy), and var(S}) are at least 4 for d > 1.

Let d > 1 and let A be a full d-ary tree such that each path has order type Z + Z. (Here
“+7” denotes the partial order obtained by placing the two operands end-to-end.) Let a3 and
ay be two vertices in the lower part of A whose LCA is ay in the upper part of A. Thus the
order type of the path from ay to as and from ay to a4 is w + w®. Let a1 be the parent of
az, and let ag be the parent of a;.

Let B = A and consider the game

G((ao, as, as), (ar,as,aq),3,n) .

Player II has a forced win, since the initial configuration (u,v) is a local isomorphism (even
in the presence of 4), and for subsequent moves, as soon as Player 1 picks up a pebble,
there is an automorphism of A sending the remaining two points on the left to the remaining
two points on the right. From then on, Player Il can always play the image under that
automorphism or its inverse of the point that Player I plays.

However, Player I has a forced win in

G((Go, as, Cl4), (Cll, as, Cl4), 4, 2) .
Player I first pebbles a; = a3z + a4 with the spare pebble on the left, to which Player II must
respond with ay with the spare pebble on the right; then Player I removes the pebble on ag
on the left and plays it on aq, to which Player II has no response. a

6 Finite models

It is interesting to note how the situation changes when we restrict our attention to finite
models. Not only does var(-) change, but the models are definable up to isomorphism. In

14

this case we can give direct proofs of the upper bounds without using the Ehrenfeucht-Fraisse
games of §3.

Define Fin(X) to be the set of finite models of the theory X. For a set of structures 5,
define var(S) to be the minimum k such that S satisfies Corollary 4(i).

2, ifd=1,

Theorem 19 (i) var(Fin(1y)) = { max(3,d) , ifd> 1.

.. N Z d: o
(ii) var(Fin(Sq)) :{ fn;x@, HE i§d>;. -

2

Proof. We first establish the upper bounds. Given a finite tree A, we produce a formula
@wa(x) such that, whenever B is a tree and b € B, then ¢ 4(b) holds in B iff the subtree of B
with root & is isomorphic to A.

It A consists of a single node a, we assert that x satisfies the same monadic predicates
that a does, and that x has no proper descendants. This takes two variables.

If A contains at least two nodes, let a be the root of A and let Aq,..., A,, be the maximal
proper subtrees of A, with roots aq,...,a,,, respectively. Assume by induction on height
that the formulas @4, (x),..., ¢4, () have been constructed. As above, we first assert that
x satisfies the same monadic predicates that a does. We then assert that there exist proper
subtrees satisfying each of the @y, (2):

A Ty <@ pa(y)

=1

and that every proper subtree has a supertree satisfying one of them:

Vy<ade>y \/ wa,(x) .

=1

Each of these statements takes two variables. Together they establish the isomorphism types
of the maximal proper subtrees. For the cases T7 and 57, we are done; for the other cases, it
remains to show how to specify the number of maximal proper subtrees of each isomorphism

type.
Consider the case Ty. Observe that the predicate “y is a child of 2”7 is expressible with

three variables:
y<zAVr(y<az—z<uz).

So is the predicate “y and z are siblings”:
Va (y is a child of 2 « z is a child of z) .
If there are p < d children of a of isomorphism type A;, we can express this with the formula

dyy ...y, the y; are distinct children of «

A Nz oa(yy)
A Yz (x and y; are siblings A wa,(z)) — Vi, y; =2 .

15

This takes max(3,p 4 1) < d variables. The only case of T, not yet covered is when a has
d maximal proper subtrees, all isomorphic to A;. In this case we say that all children y of
x satisfy @4, (y), and there is a child of « with d — 1 distinct siblings. The variable & can
be used to name one of the siblings. This takes max(3,d) variables. This completes the
argument for Ty.

Now consider the case S;. Above, we specified all the isomorphism types of the maximal
proper subtrees A; of A. If all the A; are isomorphic, or if all are of distinct isomorphism
types, we are done. This exhausts the case d = 2, so let d > 3. We will show that max(3, (%W)
variables are sufficient. If all isomorphism types are satisfied by at most (%W of the A;, then as
above we can use (%W variables y; to name those a; and assert ¢4, (y;). This takes max(3, (%W)
variables. If there are m > (%W A; isomorphic to Ay, then all other isomorphism types are
covered by the preceding case; we can then assert that there are d—m < L%J distinct children
of not satisfying p4,, and then use one universally quantified variable to assert that all
other siblings satisfy ¢4,. In either case we have used max(3, [2]) variables.

We now establish the corresponding lower bounds. In each of the cases below, we produce
two finite models A and B of one of our theories ¥ such that A and B are not elementarily
equivalent, but A and B are L, equivalent, where v = var(Fin(X)) — 1. In each of the cases
below, it is fairly straightforward to determine a winning strategy for Player II for the game
G(0,0,v,n). We leave this to the reader.

(Case Ty, S, S2, v = 1.) Let A and B be arbitrary nonempty nonisomorphic models
with no monadic predicates.

(Case Ty, v = 2.) Let A be the complete binary tree of depth 2, and let B be the binary
tree of depth 2 with two nodes of depth 1, three leaves of depth 2, and no monadic predicates.

(Case Ty, v = d — 1.) Let A be the complete d-ary tree of depth 1, B the complete
(d — 1)-ary tree of depth 1, and no monadic predicates.

(Case S5, S4, v = 2.) Let A and B be complete d-ary trees of depth 2. Let M be a
monadic predicate such that one of each cluster of leaves satisfies M in A, and two of each
cluster satisfy M in B.

(Case Sok, k > 2, v =k —1.) Let B and C be complete 2k-ary trees of depth 1. Let M
be a monadic predicate true of exactly £ — 1 leaves in A and k leaves in B.

(Case Sokt1, k> 1, v =~F.) Let A and B be complete (2k + 1)-ary trees of depth 1. Let

M be a monadic predicate true of exactly k leaves in A and k£ + 1 leaves in B. a

7 Conclusion

Some interesting questions remain. One is to establish a general model-theoretic charac-
terization of those relational structures that possess the k-variable property for some k.
Another is to give natural complete sets of temporal connectives for branching-time models
of temporal logic, whose existence is implied by Gabbay’s result [7] and the results of this

paper.

16

References

1]

A. Amir and D. Gabbay, “Preservation of Expressive Completeness in Temporal Mod-
els,” Infor. and Comput. 72:1 (1987), 66-83.

J. Barwise, “On Moschovakis Closure Ordinals,” J. Symb. Logic 42 (1977), 292-296.

A. Ehrenfeucht, “An Application of Games to the Completeness Problem for Formalized
Theories,” Fund. Math. 49 (1961), 129-141.

M. M. Erimbetov, “On the Expressive Power of Programming Logics,” Proc. Conf.
Research in Theoretical Programming, Alma-Ata, 1981, 49-68 (in Russian).

R. Fraisse, “Sur les Classifications des Systems de Relations,” Publ. Sci. Univ. Alger. 1
(1954).

J. Ferrante and C. Rackoft, The Computational Complexity of Logical Theories, Springer
Lect. Notes in Math. 718, 1979.

D. Gabbay, “Expressive Functional Completeness in Tense Logic,” in: Aspects of Philo-
sophical Logic, ed. Monnich, D. Reidel, Dordrecht, 1981, 91-117.

T. Hafer and W. Thomas, “Computation Tree Logic C'T'L* and Path Quantifiers in the
Monadic Theory of the Binary Tree,” Proc. 1th Int. Colloq. Automata, Languages, and
Programming, Karlsruhe, July 1987, Springer Lect. Notes Comp. Sci. 267, 269-279.

L. Henkin, “Logical Systems Containing Only a Finite Number of Symbols,” Presses de
I’Université de Montréal, 1967.

N. Immerman, “Upper and Lower Bounds for First-Order Expressibility,” J. Comput.
Syst. Sci. 25:1 (1982), 76-98.

H. Kamp, “Tense Logic and the Theory of Linear Order,” Ph.D. thesis, Univ. of Cali-
fornia at Los Angeles, 1968.

D. Kozen, “Complexity of Boolean Algebras,” Theor. Comput. Sci. 10 (1980), 221-247.

A. R. Meyer and R. Parikh, “Definability in Dynamic Logic,” J. Comput. Syst. Seci. 23
(1981), 279-298.

B. Poizat, “Deux ou Trois Choses que Je Sais de L,,” J. Symb. Logic 47:3 (1982),
641-658.

J. G. Rosenstein, Linear Orderings. Academic Press, 1982.

J. Stavi, “Functional Completeness over the Rationals,” unpublished manuscript, Bar-

llan Univ., Ramat-Gan, Israel, 1979.

17

[17] W. Thomas, “On Chain Logic, Path Logic, and First-Order Logic over Infinite Trees,”
Proc. IEEE Symp. Logic in Computer Science 1987, Ithaca, New York, 245-256.

[18] J. Tiuryn, “Unbounded Program Memory Adds to the Expressive Power of First-Order
Programming Logics,” Infor. and Control 60 (1984), 12-35.

18

