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Abstract

Let Tx, be the set of ground terms over a finite ranked alphabet 3.
We define partial automata on Ty, and prove that the finitely gener-
ated congruences on Ty are in one-to-one correspondence (up to iso-
morphism) with the finite partial automata on T, with no inaccessible
and no inessential states. We give an application in term rewriting:
every ground term rewrite system has a canonical equivalent system
that can be constructed in polynomial time.
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1 Introduction

The Muyhill-Nerode Theorem is a classic result in the theory of finite au-
tomata. It dates to work of Myhill [13] and Nerode [14] in the late 1950s,
but is still today considered one of the most important results in the sub-
ject. It has numerous applications, especially in showing that certain sets
are regular or certain apparently stronger types of automata are really no
more powerful than finite automata. Nevertheless, its statement and proof
are elementary enough that it can be taught in introductory courses.

The Myhill-Nerode Theorem exploits a fundamental connection between
combinatorics and algebra to give a particularly satisfying characterization
of the regular sets over a finite alphabet. As presented in a standard under-
graduate text [9], it states:

Myhill-Nerode Theorem [13, 14] Let R be a set of strings over a finite
alphabet . The following three propositions are equivalent:

(i) R is accepted by a finite automaton

1) R is a union o classes of a right-mvariant equivalence relation o nite
q
index

(iii) the relation =g is of finite index, where v =gy iff

VzeY'2zeRoyzeR.

The equivalence of (i) and (ii) is generally established using the following
lemma:

Correspondence Lemma Up to isomorphism, there is a one-to-one cor-
respondence between the right-invariant equivalence relations of finite index
on Y and deterministic finite automata over ¥ with no inaccessible states.

Essentially, the states correspond to the equivalence classes, and the prop-
erty of right invariance allows the deterministic transition function to be
defined unambiguously on equivalence classes.

The Myhill-Nerode Theorem generalizes in a straightforward way to au-
tomata on finite trees. This generalization first came to light in the late



1960s, ten years after Myhill and Nerode’s work, and can be attributed to
a combination of results of Brainerd [2, 3], Eilenberg and Wright [5], and
Arbib and Give’on [1], although one must also credit Thatcher and Wright
[17] in this context with the development of the algebraic approach to au-
tomata on finite trees, which allows “conventional finite automata theory [to
go] through for the generalization—and. .. quite neatly” [17]. A particularly
easy proof of this generalization in the style of [9] can be found in [12].

In the Thatcher-Wright approach to automata on finite trees, the ele-
ments of X are assigned finite arities, and instead of strings one works with
the ground terms Ty over ¥. A deterministic finite tree automaton over X
is just a finite Y-algebra A, consisting of a finite carrier |A| and a distin-
guished n-ary function f# : |A|* — |A] for each n-ary symbol f € ¥. This
definition includes the nullary case (n = 0), in which the function symbol is
called a constant and interpreted as an element of |A|. By analogy with the
combinatorial treatment of [9], we call elements of |A| states.

Since Ty is the free Y-algebra on the empty set of generators, there exists
a unique Y-algebra homomorphism

5:TE — A

This map assigns a unique state 6(¢) to each term ¢ in an inductive fashion,
and is analogous to “running” the automaton on input ¢. A state is said to
be accessible if it is 6(t) for some term ¢.

An equivalence relation R on Tk is said to be recognized by the automaton
A if the kernel of 6 (i.e., the relation {(s,1) | 6(s) = 6(¢)}) refines R. In other
words, R is recognized by A if for any terms s,t € Ty, if 6(s) = 6(1), then
sRt. The special case of regular sets discussed above corresponds to an R
with two equivalence classes, namely the regular set and its complement. If
R is recognized by A, it is possible to partition the states of A such that the
inverse image of the partition under 6 coincides with the equivalence classes
of R; this partition of the states corresponds to the specification of a set of
final or accept states in the special case of regular sets.

For a given equivalence relation R C Ty (recognizable or not), define
s =g t if for all terms u with exactly one occurrence of a variable x and no
other variables,

ulz/s] R ule/l],



where u[z/s] denotes the term obtained by substituting s for  in u. The
relation =g generalizes the relation on strings of the same name mentioned
above.

Myhill-Nerode Theorem for trees [3, 5, 1] Let R be an equivalence
relation on Tx. The following three propositions are equivalent:

(i) R is recognizable
(ii) there exists a congruence on Ty of finite index refining R

(iii) the relation =g is of finite index.

The Myhill-Nerode theorem for strings corresponds to the special case of
a single nullary operator and several unary operators.

In the algebraic approach, the tree version of the Correspondence Lemma
reduces to an elementary fact of universal algebra: up to isomorphism, the
homomorphic images of Ty and the congruences on 7% are in one-to-one
correspondence. The correspondence is given by the quotient construction

= — Ty/=,

in which it is readily observed that the quotient is finite iff the corresponding
congruence is of finite index.

In [10, 11], we investigated the complexity of various decision problems in
Y-algebras presented by finite sets of ground equations over Ty ; that is, quo-
tients of Ty, modulo finitely generated congruences on Tx. We showed, among
other results, that every such algebra has a minimal canonical presentation
that is unique up to isomorphism.

This result has an interesting interpretation in terms of the Myhill-Nerode
Theorem. First, we note that every congruence = on Ty of finite index is
finitely generated. To see this, let U C Ty be a complete set of represen-
tatives for the =-classes, and consider the finite subrelation consisting of all
pairs in = of the form

fur...u, = u (1)

for uy,...,u,,u € U and f € ¥,,. The relation generated by the equations
(1) is surely contained in =; conversely, an easy inductive argument shows
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that every term is equivalent to the u € U in its =-class under the congruence
generated by the equations (1).

However, not every finitely generated congruence is of finite index: for
example, the identity relation on Ty is of infinite index (assuming ¥ has at
least one constant and at least one symbol of higher arity), but is generated
by the empty relation.

The question thus arises as to whether there is a more general version
of the Myhill-Nerode theorem with “finitely generated” in place of “finite
index”.

The answer to this question is mixed. On the positive side, we formulate
and prove a version of the Correspondence Lemma in this more general set-
ting. On the other hand, we construct an equivalence relation R that has no
minimal refining finitely generated congruence.

In order to formulate the first result, we need a combinatorial structure
that is to finitely generated congruences as finite tree automata are to con-
gruences of finite index. The appropriate notion is a finite partial automaton
on Tx. Simply stated, a finite partial automaton is just a finite partial -
algebra, where a partial Y-algebra is like a Y-algebra except the distinguished
operations need not be everywhere defined. We will show how a finite partial
automaton A uniquely determines a possibly infinite set of “states”. This
is done formally by a universal algebraic construction giving a certain total
extension A of A called its free total extension.

These results have an interesting application to term rewriting: every
ground term rewrite system has a canonical equivalent system which is un-
ambiguous and in which all rules are of the form fq;...q, — ¢, where
(1, -,Gn,q are auxiliary constants. By canonical we mean that the sys-
tem is minimal and unique up to isomorphism. The canonical system can be
obtained effectively from the original system in polynomial time. This gives
a method for testing the equivalence of ground term rewrite systems over a
finite signature in polynomial time.

A proof of the existence of the canonical system and a polynomial time
algorithm for deriving it appeared in [10, 11] (Lemmas 24 and 25), although
it was not stated in terms of term rewriting. Faster O(nlogn) algorithms
for this problem have recently been given by Snyder [16] and Fiilép and
Végvolgyi [7].

Partial algebras are discussed in [8]. Nondeterministic partial automata
have been considered previously in [15]. Although the approach is new, many



of the essential ideas behind the results of this paper are more or less implicit

in [10, 11].

2 Partial Algebras and Partial Automata

Partial algebras, subalgebras, homomorphisms, and congruences are dis-
cussed in [8].

Let ¥ be an arbitrary but fixed finite ranked alphabet. The rank of f € ¥
is called its arity. The set of n-ary elements of ¥ is denoted ¥,. Nullary
symbols ¢ € Yy are called constants. We usually use ¢,d, ... for constants
and f,g,... for function symbols in ¥ of any arity. The set of ground terms
over X is denoted Tx. The depth of a term is the length of the longest path
from the root to a leaf, thinking of terms as labeled trees.

Definition 2.1 A partial X-algebra (or just partial algebra for short) is a
structure

A = (|~’4|7 'A)

where | Al is a set, called the carrier of A, and -4 assigns a partial n-ary
function

FAA = JA]

to each n-ary function symbol f of ¥. By partial we mean that f4 need not
be everywhere defined. We identify nullary functions

ALAL S |4

with elements of |A|. Like functions of higher arity, ¢* may be undefined.
The partial algebra A is said to be total if all functions f4 are everywhere
defined. It is said to be finite if |A| is a finite set. O

The set Txug of ground terms over the disjoint union ¥ U (), where () is
a new set of constants, with operations

fEee(ty, o t)) = [ty t,,

is the free (total) ¥-algebra on generators ().
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Definition 2.2 A congruence on a total Y-algebra A is an equivalence re-
lation = on |A| such that fA4(a;...a,) = fA(by...b,) whenever f € ¥, and
a; = b;, 1 <i<n. I T is a binary relation on |A|, the congruence generated
by I' is the smallest congruence on | A| containing I'. For a,b € A, we write
a =b (') and say a and b are congruent modulo 1" if a and b are equivalent
modulo the congruence generated by I'. A congruence = is finitely generated
if it is generated by a finite subrelation.

An equivalence relation = is of finite index if there are only finitely many
=-classes. An equivalence relation R refines another equivalence relation S
if each S-class is a union of R-classes; equivalently, if sRt implies sS5t. O

Congruences on partial algebras are defined in [8], but for the purposes
of this paper we will only need to consider congruences on Txyg.

Definition 2.3 Let A and B be two partial Y-algebras. A (total) function
h: A — B

is a partial ¥-algebra homomorphism (or just partial homomorphism for
short) if, whenever ¢i,...,q, € A, f € ¥, and fA(q,...,q,) is defined,
then f5(h(q1),...,h(q,)) is defined and equal to A(fA(qi,...,q,)). We em-
phasize that partial homomorphisms are always total functions.

We write A C B and say that A is a partial subalgebra of B (or weak
subalgebra in the terminology of [8]) and that B is an extension of A if
|A| C |B| and the inclusion map A — B is a partial homomorphism.

A partial subalgebra A of B is said to be the induced partial subalgebra
of B on @@ C |B| (or relative subalgebra in the terminology of [8]) if |A| = @
and for all ¢1,...,¢, € Q and f € X,

) = - a0)

whenever the right hand side is defined and in (). O

Definition 2.4 If Ais a partial algebra, let Tx4) be the set of ground terms
over the disjoint union ¥ U |A|. The binary relation

AA = {(Q7fq1qn) | qis---5qn,q € |~’4|7 fe Env
(@15 - -, qn) exists and is equal to ¢}

is called the diagram of A. O



The term partial automaton is synonymous with partial algebra. When
thinking automata-theoretically, we often call elements of |A| states.

A conventional tree automaton over X in the sense of Thatcher and Wright
is just a finite total ¥-algebra A. Informally, such an automaton takes a
ground term in 7Ty as input. It starts at the leaves and moves upward,
associating a state with each subterm inductively. If the immediate subterms
t1,...,t, of the term ft;...t, are labeled with states ¢1,...,q, respectively,
then the term ft;...t, will be labeled with state fA(¢i,...,q.). Note that
the basis of the induction is included here: the state labeling the term ¢ is
ct.

Formally, the labeling function is just the unique }-algebra homomor-
phism

52T2 — ./4

from the free ¥-algebra Ty to A. By considerations of universal algebra, this
homomorphism exists and is unique. A state of A is said to be accessible if
it is in the image of T under ¢, inaccessible otherwise. Thus we would say
that the automaton A has no inaccessible states if the map ¢ is onto.

This definition extends the usual definition of automata on finite strings
in a natural way: we can think of an automaton on strings over a finite
alphabet ¥ as a tree automaton over ¥ U {0}, where O is a new constant
and elements of ¥ are assigned arity 1.

Equivalently, we can define tree automata as term rewrite systems. This
is the approach taken for example in [6]. Given an algebra A, we can consider
A4 as a ground term rewrite system on Ty 4 in which the equations are
ordered from right to left. This system is unambiguous (in the sense that
there are no overlapping redexes) and terminating, thus normal forms exist
and are unique [4]. By elementary considerations of term rewrite theory, the
terms s and ¢ are congruent modulo A 4 iff they have the same normal form.
For a total algebra A, the A 4-normal form of term ¢ is 6(¢) € |A|. For an
intruduction to term rewrite theory, see [4].

3 Free Total Extensions

A partial automaton runs inductively on a ground term in the same way as a
total automaton. However, the reader is probably already asking the obvious



question: what happens when it reaches a situation from which it cannot
continue because the appropriate f4(qi,....q,) is undefined? Informally,
whenever it encounters such a situation, it creates a new state symbolically
and moves to it. In this way a finite partial automaton A gives rise to
a possibly infinite set A of symbolic states that could be created in this
way. The construction of A from A is analogous to the construction of
algebraic extensions of fields or of the rational numbers from the integers,
where we wish to extend the structure in the freest possible way so that
certain functions are defined. We formalize this idea by the notion of free
total extension of a partial algebra.

Formally, free total extensions are defined in terms of their most salient
property, a universality property similar to that of free algebras.

Definition 3.1 A total extension A of a partial algebra A is a free total
extension if for any total algebra B and partial ¥-algebra homomorphism
h : A — B, there is a unique Y-algebra homomorphism h: A — B such that
the diagram

A \’”‘A
= B (2)
a7
commutes. O

Theorem 3.2 Flree total extensions exist and are unique up to isomorphism.
Moreover, a partial algebra A is the induced partial subalgebra of its free total
extension A on |Al.

Proof. Let Ay be the diagram of A (Definition 2.4) and take A =
Txuja/Aa. Let v(t) denote the Ayg-normal form of ¢t € Txypa), and let
[t] denote the congruence class of ¢ modulo A 4. The canonical map ¢ — [¢]
restricted to domain |A| constitutes a partial homomorphism A — .Zl, since
if fAq1,...,q,) =q, then ¢ = fq1...q, € A4, therefore

Ao, Sl = Va0 = ld]. (3)

This map is also one-to-one on A, since distinct elements of A have distinct
normal forms (v(¢) = ¢ for ¢ € |A|), therefore occupy distinct A 4-congruence
classes. By a slight abuse, we may thus consider A C A.



The partial algebra A is the induced partial subalgebra of A on |Al, since
if (3) holds with ¢1,...,¢n,q € A, then

vifg-- qn) = vle) = ¢,

thus ¢ = fqi1...¢, € Ay, therefore fA(qy,...,q,) exists and is equal to ¢.

If h: A— Bis a partial ¥-algebra homomorphism from A to any total
algebra B, then let A’ denote the unique homomorphism 7% 4 — B such
that A'(¢) = h(q) for ¢ € |A|. We wish to show that A’ factors through A,

giving the following commutative diagram:

Tsuja _n!
1Y ﬁ\x

A B
=
A /hv
For this purpose it suffices to show that if s =1 (A4) then h'(s) = h'(t). For

any equation ¢ = fqi...q, € A4, we have that f4(qi,...,q,) exists and is
equal to ¢g. Then

h'(q) = h(q)
= h(fMqs--a))
= fE(h(qr),. .. h(gn))
= [P (@), 1 (qn))
= h/(f(h---qn)'

Since A4 is contained in the kernel of A’, so is the congruence generated
by A4. Thus s = ¢ (A4) implies A'(s) = A'(t), and we have a unique map
h: A — B that agrees with & on A.

The uniqueness of A up to isomorphism follows directly from the univer-
sality property (2): if A and A’ are two free total extensions of A, then there
are unique homomorphisms between A and A in either direction, and these
must be inverses. O

We have actually shown that the construction A — A constitutes a left
adjoint to the inclusion functor from the category of total X-algebras and
Y-algebra homomorphisms to the category of partial Y-algebras and partial
Y-algebra homomorphisms.
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4 Essential Elements

To get a one-to-one correspondence in the Correspondence Lemma, we had
to delete inaccessible states from the automaton. We will have to do that
here as well, but we will also have to delete other states that are inessential
for the construction of the free total extension.

Intuitively, an element of a total ¥-algebra A is essential if it is a source
of nonfreeness. For example, ¢ is essential if ¢ = fA(p) = ¢*(r) and f # ¢,
or if ¢ = fA(g). This will imply that ¢ must be contained in any partial
subalgebra of A having A as its free total extension. Moreover, we will show
that under a mild restriction on how A is generated, the induced partial
subalgebra of A on the set of its essential elements has A as its free total
extension. Thus the induced partial subalgebra on the essential elements of
A is the unique minimal partial subalgebra of A having A as its free total
extension.

A unary function |A| — |A| is said to be definable (in A) if it is of the
form Az.t, where x € ¥ is a nullary variable, ¢ is a term over ¥ U {z}, and
the function symbols f € ¥ occurring in ¢ are interpreted as f*.

Definition 4.1 Let A be a total Y-algebra. An element ¢ € A is said to be
essential if any of the following five conditions hold:

(i q#fA(ql,...,qn) foranyn >0, fe X, and ¢1,...,¢, € A
(i) ¢ =Py pm) =9 @1, qs) and [ # g

)
)
(i) ¢ = fA(P1s--sp0) = [A(@1s- -, 40) and p; # ¢; for some i, 1 < i <n
)
)

=

(iv) ¢ = F(q) for some definable unary function F' = Ax.t on A, and ¢ # x

p = F(q) for some definable unary function ' on A and p is essential.
(Note that the definition is inductive because of this clause.)

(v

We define £A4 to be the induced partial subalgebra of A on the set of essential
elements of A. The partial algebra £A is called the essential subalgebra of A.
An element of a partial algebra A is said to be essential if it is an essential
element of A. (This definition does not conflict if A is total, since in this

case A = A.) O
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Definition 4.2 Let A be a total ¥-algebra. A subset @) C |A| is a gener-
ating set if the canonical map Txug — A is onto. The set @) is a minimal

generating set if it is a generating set and no subset of () is a generating set.
O

If A is a partial algebra, then the null set is a generating set of A ex-
actly when there are no inaccessible elements of A, i.e., when the canonical
map 1y — A is onto. Of course, in this case the null set is also a minimal
generating set. Any algebra with a finite generating set has a minimal gen-
erating set. The integers with successor give an example of an algebra with
no minimal generating set.

Lemma 4.3 Let A be a total Y-algebra possessing a minimal generating set
Q). Then every element of () is essential.

Proof. Let
5:TEUQ — ./4

be the canonical map in which é6(¢) = ¢ for ¢ € Q. For any ¢ € @, if the
only term ¢t € Ty with ¢ = 6(1) is ¢ itself, then ¢ is essential by Definition
4.1(i). Otherwise, there exists an n-ary function symbol f for some n > 0
and terms tq,...,t, € Txyg such that ¢ = 6(fty...t,). If ¢ occurs in some
term ¢;, then ¢ is essential by Definition 4.1(iv). If not, then @ — {¢} is a
generating set, contradicting the assumption that () was minimal. O

The next theorem justifies the term “essential”. It shows that the essential
elements of a total algebra B must be contained in any partial subalgebra
having B as its free total extension.

Theorem 4.4 Any partial algebra A contains all essential elements of A.
Moreover, the partial algebra EA is the induced partial subalgebra of A on
the set of essential elements of A.

Proof. Let € = EA, let t — [] be the canonical map Txyja — A, and let
v(t) denote the A 4-normal form of ¢ € Txyj4. We show first that |E] € |A.

For any e € |€], let ¢ € Txy4) be the unique term in A 4-normal form with
[t] = e.
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If e € |€] because of Definition 4.1(i), then ¢t must be e itself. Thus
e € |A|

If e € |€| because of Definition 4.1(ii), then there exist terms fsq...s,
and gty ...t, with

v(fsi...8m) = vigti...t,) = t.

Since these two terms have distinct head symbols but the same normal form,
t must coincide with e, therefore e € |A].

If e € |€| because of Definition 4.1(iii), then there exist terms fs;...s,
and fty...t, with

v(fsi...8n) = v(fti...t,) = 1
but

v(s;) # v(t)

for some 7, 1 <2 < n. Again, in order for fsy...s, and ft;...t, to have the
same normal form, ¢ must coincide with e and e € | A|.

If e € |€] because of Definition 4.1(iv), then there exists a term s with
exactly one occurrence of a variable x, but not x itself, such that

v(s[z/t]) = t.

Since s is not x itself, the depth of s[x/t] is strictly greater than the depth
of t. In order to reduce s[z/t] to ¢, since ¢ is in normal form, the occurrence
of tin s[x/t] must be an element of |A[, and this element must be e.

Finally, if e € |€] because of Definition 4.1(v), then there exists a term
s with one occurrence of a variable @ such that s[x/t] = p (A4) and p is
essential. By the induction hypothesis, p € |A], so v(s[z/t]) = p. Therefore
the occurrence of ¢ in s[z/t] must be an element of |A|, and this element
must be e.

We have shown that |E] C |A|. Since & is the induced partial subalgebra
of Aon |€| and A is the induced partial subalgebra of A on |.A| (Theorem 3.2),
it follows that the inclusion map &€ — A is a partial Y-algebra homomorphism
and that & is the induced partial subalgebra of A on |€]. O

Theorem 4.5 Lel A be a total X-algebra with essential subalgebra &€ = EA.
Then & is embedded isomorphically in A. Moreover, if A contains a minimal
generating set, then € and A are isomorphic.

13



Proof. By definition, & C A. By Theorem 3.2, there exists a unique
homomorphism £ : £ — A with h the identity on £. We wish to show that
h is injective.

Let h': Tyye) — A be the canonical map with A'(¢) = ¢ for ¢ € |E]. We
have the following commutative diagram:

Tsuel b
S

£
22/:'

A

We wish to show that for any s, € Tyye), if h'(s) = B'(t) then s =1 (A¢).

We show first that if £ € Txyg) is in Ag-normal form and /(1) = ¢ € |&],
then ¢t = ¢. Suppose for a contradiction that t = ft;...¢,, f € ¥,,, and ¢ 1s
of minimum depth. Since ¢ is in Ag-normal form, so are the ¢;, 1 < < n,
and

q = B (fti...t,)
= AW (ty), ... 0 (1))

By Definition 4.1(v), h'(t;) € |E], say A'(t;) = ¢;. Since t was of minimum
depth, t; = ¢;, 1 <7 < n. We thus have

q = fA(qlv"'vqn)v

thus

(=fq...q. € Ag,

contradicting the assumption that ¢ was in normal form.

Now let s,t € Tyyje; be in Ag-normal form, and suppose h'(s) = h'(1).
We proceed by induction on the form of s and t.

If s =q € |€], then A'(s) = A'(t) = ¢, thus s =t = ¢q. The argument is
similar for ¢ € |€]. Otherwise, assume neither s nor ¢ is in |&].

Ifs=fsy...s,, and t = gty ...t, and f # ¢, then

fA(h/(Sl),---,h/(Sm)) = A(fs1...5m)
= h'(gt1...1,)
= g*h(th),.... K (1)),
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and A'(s) € |E] by Definition 4.1(ii), contradicting the assumption that
W(s) ¢ IE)

If s = fs1...s, and t = fty...1,, and if some A'(s;) # h'(1;), then we
obtain a contradiction as in the previous case, using Definition 4.1(iii).

Thus we are left with the case s = fs1...8,,t = ft1...1,, and h'(s;) =
R'(t;), 1 < i < n. By the induction hypothesis, s; = t; (Ag), 1 <@ < n,
therefore s =t (Ag).

If A contains a minimal generating set (), then ¢ C & by Lemma 4.3,
thus &£ is also a generating set. Since &£ also generates £, the map h is onto
in this case. O

Corollary 4.6 Let A be a total Y-algebra possessing a minimal generating
set.  Up to isomorphism, the essential subalgebra EA of A is the unique
minimal partial algebra having free total extension A.

The corollary is not true in general for algebras not possessing a minimal
generating set. For example, consider a nonstandard model of the natural
numbers with 0 and successor and the usual Peano axioms over this signa-
ture. There is no minimal set generating the nonstandard elements, and
there are no essential elements. Thus the free total extension of the essential
subalgebra consists of the standard natural numbers.

5 Partial Automata and Finitely Generated
Congruences

The following theorem is our version of the Correspondence Lemma general-
ized to partial automata and finitely generated congruences.

Theorem 5.1 Up to isomorphism, there is a one-to-one correspondence be-
tween (finitely generated) congruences on Tx and (finite) partial automata
over Ty with no inaccessible and no inessential states.

Proof. We establish a one-to-one correspondence between congruences on
Ty, and partial Y-algebras with no inaccessible and no inessential elements,
and show that a congruence is finitely generated iff its corresponding partial
algebra is finite.
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For a congruence = on Ty, let £ = E(Tx/ =) be the essential subalgebra
of the quotient 7%/ =. Since the canonical map Ty, — Ty /= is onto, Ty /=
has minimal generating set (). By Theorem 4.5,

g = Tz/ =,
therefore &€ has no inessential or inaccessible elements. Thus the map
= — E(Tx/=) (4)

takes congruences on Ty to partial Y-algebras with no inaccessible and no
inessential elements.

Conversely, let A be a partial Y-algebra with no inaccessible and no
inessential elements, and let ~ 4 be the kernel of the canonical map ¢ : Ty, —
A. This construction gives a map

A o~y (5)

from partial Y-algebras with no inaccessible and no inessential elements to
congruences on 1.

We now show that the maps (4) and (5) are inverses up to isomorphism.
For any congruence = on Ty, let £ = E(Ty/ =). Then = and ~g¢ are the
same relation, since ¢ is the unique homomorphism

5:TE — gA =~ TE/E

Conversely, for any partial Y-algebra A with no inaccessible or inessential
elements, we wish to show that A and & = E(Tx/ ~4) are isomorphic. We
have by Theorem 4.4 that £A is the induced partial subalgebra of A on |€].
Since A has no inessential elements,

A = €A.

Since A has no inaccessible elements, the canonical map 6 : Ty, — A is onto,
thus

A = T/ ~g,
therefore
EA = E(Ts/ ~4) .

Finally, we show
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(i) if A is finite, then ~ 4 is finitely generated
(ii) if ' is a finite relation on Ty, then E(Ty/I') is finite.

First (i). If A is finite, then so is A4. Since 6 : Ty — A is onto, for each
q € |A| there exists an n(q) € Tx such that 6(n(¢)) = [¢]. The map n extends
uniquely to a homomorphism 5 : Txy4 — 1%, and by uniqueness of the
maps we have that the diagram

TEU|A| [ ]

771 Tsuja/Aa
s S

12

A

commutes. Thus for s,# € Txy4),

We now show that ~ 4 is generated by the finite relation

n(Aa) = {n(s),n(6)) [ (s,1) € Au}

on Ty. Certainly the congruence on Ty generated by n(A4) is contained in
~ 4 since N(A4) is, and a straightforward inductive argument on the length
of derivations in Ay shows that for any s, € Tyy 4|,

s= (A8 = nls) =nt) (n(A)) -

In particular, for s,t € Tk, we have s = n(s) and ¢t = n(t), thus

t(Aa)
t(n(Aa)) -

To show (ii), let I' be a finite relation on Ty. Define a finite partial X-
algebra A as follows. Let ¢ — [t] be the canonical map Ty, — Tx/I". Call the

Sr~at < s

—
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term ¢ present in ' if ¢ is a subterm of some u or v appearing in an equation
u=v €. Let A be the induced partial subalgebra of Tx/I" on the set

{[t] | t is present in I'} .

By Theorem 3.2, the inclusion map A — Ty /I" extends uniquely to a homo-
morphism h : A — Ts/T'. Let é be the canonical map Ty, — A. We have the

commutative diagram
Te~{!
oY \
i h

e

We show that A is an isomorphism. It is certainly onto, since [ | is. To show
that it is one-to-one, it suffices to show that ¢ is onto and for s,f € Ty,
s =1t (I') implies 6(s) = 6(1).

A straightforward inductive argument shows that 6(¢) = [¢] for ¢ present
in I': if fty...¢, is present in I', then

[t ot = fla]. . [ta] € Au,

Ts /T

therefore
S(fty...ty) = fA6(t),...,6(t,))
— At )
Since A is generated by |.AJ, 6 is onto. Now if s = ¢ € I, then [s] = [t] € |A],
and 6(s) = 6(t) = [s]. Since the relation I' is contained in the kernel of 4, so
is the congruence generated by I'. Thus s = ¢ (I') implies 6(s) = 6(1).
By Theorem 4.4, the essential subalgebra £(T%/I") is contained in A and

is therefore finite. O

The following theorem was essentially proved in [10] and [11, Lemma 25],
to which we refer the reader for the algorithm and proof of correctness.

Theorem 5.2 ([10, 11]) Given any finite relation I' on Ty, the diagram Ag
of € =E(Tx/T) can be produced from I' in polynomial time.

By Corollary 4.6, A¢ gives a canonical presentation of the finitely presented
algebra Ty /T

18



6 A Counterexample

Let R be an equivalence relation on Tx. Although the relation =g is always
the coarsest congruence on Ty refining R, it need not be finitely generated,
even if R has only two classes. We construct such an R below. Since there
always exists a finitely generated congruence refining R (namely the identity),
the analog of clause (iii) in the statement of the Myhill-Nerode Theorem fails
for partial automata.

Let ¥ = {¢, f, ¢}, where ¢ is nullary and f, ¢ are unary. (We need at least
two unary symbols or one binary symbol to construct a counterexample, since
all congruences over an alphabet with one unary symbol and no symbols of
higher arity are finitely generated.)

Let || denote the depth of term ¢. Let A C AN be the set of powers of 2
(or any nonregular set of natural numbers). Define

R = {t||t|] € A and the head symbol of ¢ is f} .

Then s =g ¢ iff either
e [s|=[t| and |s| € A, or
o |s| =|t], |s| € A, and the head symbols of s and ¢ agree.
The quotient Ty /=g looks like this:
fe

gc
The congruence =g is not finitely generated, since any finite subrelation of
=g is contained in the congruence generated by some =%, where s =% ¢ iff
|s|] = |t|] < n and s =g t. The quotient Ty /=% is a strict homomorphic
preimage of Tx /=g. It looks like this for n = 6:

fe

gc
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7 Applications to Term Rewrite Systems

Theorems 5.1 and 5.2 have the following application to term rewrite systems.
Suppose we are given a ground term rewrite system over 2. Let () be a new
set of auxiliary constants disjoint from X. Let us call a ground term rewrite
system over X U () simple if

e all rules are of the form f¢;...q, — ¢, where ¢1,...,¢,,¢ € () and
J e X

o the system is unambiguous in the sense that there are no overlapping
redexes.

A system over X U (@) is said to be equivalent to the original system over X if
they induce the same congruence on Tx.
Theorems 5.1 and 5.2 have the following interpretation in this context:

Corollary 7.1 For every ground term rewrite system I' over X, there is
a unique minimal simple system I equivalent to I'. Moreover, I can be
constructed from I' in polynomial time.

The system I is of course just Ag, where £ is the essential subalgebra of
Ts/T.

This corollary appears in [10, 11] (Lemmas 24 and 25), although not
stated in the language of term rewrite systems. Improved algorithms have
recently been obtained by Snyder [16] and Fiilop and Vagvolgyi [7]. These
algorithms run in time O(nlogn) and are the fastest known algorithms for
this problem.

It is decidable in polynomial time whether two Y-algebras presented by
finite sets of ground equations over ¥ are isomorphic [10, 11]: one tests
whether all the defining equations of one presentation are consequences of
the defining equations of the other presentation, and vice versa. Corollary
4.6 gives an alternative method: construct the essential subalgebras and test
whether they are isomorphic.
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