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Programs increasingly rely on randomization in applications such as cryptography and machine learning.

Analyzing randomized programs has been a fruitful research direction, but there is a gap when programs also

exploit nondeterminism (for concurrency, efficiency, or algorithmic design). In this paper, we introduceDemonic
Outcome Logic for reasoning about programs that exploit both randomization and nondeterminism. The logic

includes several novel features, such as reasoning about multiple executions in tandem and manipulating

pre- and postconditions using familiar equational laws—including the distributive law of probabilistic choices

over nondeterministic ones. We also give rules for loops that both establish termination and quantify the

distribution of final outcomes from a single premise. We illustrate the reasoning capabilities of Demonic

Outcome Logic through several case studies, including the Monty Hall problem, an adversarial protocol for

simulating fair coins, and a heuristic based probabilistic SAT solver.
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1 Introduction
Randomization is critical in sensitive software domains such as cryptography and machine learning.

While it is difficult to establish correctness of these systems alone, the difficulty is increased

as they become distributed, since nondeterminism is introduced by scheduling the concurrent

processes. Verification techniques exist for reasoning about programs that are both randomized and

nondeterministic using expectations [Morgan et al. 1996a] and refinement [Tassarotti and Harper

2019], but there are currently no logics that allow for specifying and reasoning about the multiple

probabilistic executions that arise from this combination of effects.

In program logics such as Hoare Logic [Hoare 1969], preconditions and postconditions are

propositions about the start and end states of the program. When moving to a probabilistic setting,

it is not enough for these propositions to merely describe states, they must also quantify how likely

the program is to end up in each of those states, as correctness is a property of the distribution
of outcomes. Several logics exist for reasoning about purely probabilistic programs in this way,

including Probabilistic Hoare Logic [Corin and den Hartog 2006; den Hartog 1999, 2002], Ellora
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[Barthe et al. 2018], Outcome Logic [Zilberstein 2024; Zilberstein et al. 2023, 2024b], and Quantitative

Weakest Hyper Pre [Zhang et al. 2024]. The benefits of reasoning about multiple executions are:

Outcomes.As opposed to expectation reasoning, program logics can describemultiple outcomes in

a single specification, giving a more comprehensive account of the distribution of behaviors. This

is displayed in Section 6.2, where we prove that a program simulates a fair coin by enumerating

the outcomes and showing that they are uniformly distributed.

Compositionality. Inference rules allow us to reason about programs in a compositional, but also

concise way. This is evident in our termination rules (Section 5), which have fewer premises

compared to similar rules in other reasoning systems.

This paper introduces Demonic Outcome Logic, a program logic for reasoning about randomized
nondeterministic programs—programs that have both probabilistic and nondeterministic choice

operators. This work builds both on Outcome Logic—which can be used to reason about random-

ization or nondeterminism, but not both together—and a large body of work on the semantics of

randomized nondeterministic programs [He et al. 1997; Jacobs 2008; Morgan et al. 1996a,b; Tix et al.

2009; Varacca 2002]. Our contributions can be grouped in four categories, as follows:

(1) From Equations to Propositions. Semantic objects to capture both randomization and nondeter-

minism are often described in terms of equations, stating properties of relevant operators such

as idempotence and distributivity. In logic, implications are used to manipulate assertions and

facilitate reasoning. In our proposed program logic, we want to bring these worlds together

and have logical implications mirror the equational laws. The challenge is that—as we will see

in Sections 2.1 and 4.1—the equations do not immediately hold as implications, so a carefully

designed assertion language is needed in which the laws indeed hold.

(2) Demonic Outcome Logic. This paper presents the first program logic for reasoning about

distributions of outcomes with both randomization and nondeterminism. Making the logic

demonic—meaning that the postcondition applies to every nondeterministic possibility—allowed

us to create simple and convenient inference rules.

While our logic has similarities to Weakest Pre-Expectation calculi, Demonic Outcome Logic

involves some key differences. Demonic Outcome Logic can reason about many executions

together, which allows us to specify the distribution of outcomes rather than just quantitative

properties of that distribution. This is demonstrated in Section 6.2, where a program is specified

in terms of multiple distinct outcomes and Section 6.3, where case analysis is done over

multiple nondeterministic executions. It was necessary to develop new sound rules for this

more expressive form of reasoning and idempotence of the logical connectives proved crucial

in ways that do not appear in prior work.

(3) Loops and Termination. Our rules for reasoning about loops in Section 5 allow us to prove

termination, while simultaneously specifying the precise distribution of outcomes upon termi-

nation. This goes beyond prior work on expectation based reasoning [McIver and Morgan 2005;

McIver et al. 2018], where termination is established with a propositional invariant describing

only a singe outcome. Our rules also have fewer premises, making them simpler to apply in

our experience.

(4) Case Studies. We investigate three case studies in Section 6 to demonstrate the applicability of

our logic. For example, we present a protocol to simulate a fair coin flip given a coin whose

bias is continually altered by an adversary, and show that this program terminates with the

outcomes being uniformly distributed. We also prove that a probabilistic SAT solver terminates,

even if some of the heuristics involved are adversarially chosen.
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We begin in Section 2 by outlining the challenges of reasoning about randomized nondeterminism,

and how this informed the design of Demonic Outcome Logic. Next, in Section 3, we describe the

denotational model that we use for semantics of programs. In Section 4, we introduce Demonic

Outcome Logic and the inference rules for reasoning about sequential programs. We discuss

reasoning about loops in Section 5. We examine three case studies in Section 6 to demonstrate the

utility of the logic. Finally, we discuss related work and conclude in Sections 7 and 8.

2 An Overview of Demonic, Outcome-Based Reasoning
The issue of combining randomization and nondeterminism is one of the most difficult and subtle

challenges in program semantics. In this section, we outline the desired properties of a logic for

that purpose and how the design of that logic intersects with prior work on semantics.

Most applications of randomized nondeterminism take a demonic view of nondeterminism,

wherein the nondeterminism is controlled by an adversary, and the program is correct only if the

distribution of outcomes satisfies a certain post-condition, regardless of how the adversary might

have resolved the nondeterminism. One such domain is verification of distributed cryptographic

protocols, where the probability that an adversary can guess a secret message must be negligible

regardless of how the scheduler interleaves the concurrent processes.

To demonstrate the complex interaction between demonic non-determinism and probabilistic

choice, we consider an example in which an adversary tries to guess the outcome of a fair coin

flip. The coin flip is represented by the program 𝑥 B flip
(
1

2

)
, whose denotation is a singleton set

containing a distribution of outcomes in which 𝑥 = true and 𝑥 = false both occur with probability
1

2
.

The adversarial choice is performed by the program 𝑦 ← B, where B = {true, false}. Operationally,
we presume that the adversary can make this choice in any way it pleases, including by flipping

a biased coin. That means that the adversary can force 𝑦 to be true, it can force 𝑦 to be false, or

it can make both outcomes possible with any probability. Denotationally, the semantics of these

programs is a map J𝐶K : Σ→ 2D(Σ) from states Σ to sets of distributions of states, shown below.

q
𝑥 B flip

(
1

2

)y
(𝜎) =

{
𝜎 [𝑥 B true ] ↦→ 1

2

𝜎 [𝑥 B false] ↦→ 1

2

}
J𝑦 ← BK(𝜎) =

{
𝜎 [𝑦 B true ] ↦→ 𝑝

𝜎 [𝑦 B false] ↦→ 1 − 𝑝

��� 𝑝 ∈ [0, 1] }
Now, we consider two variants of composing these programs, shown below. On the left is a variant

in which the adversary picks last and on the right is a variant in which the adversary picks first.

𝑥 B flip
(
1

2

)
# 𝑦 ← B 𝑦 ← B # 𝑥 B flip

(
1

2

)
We wish to know the probability that 𝑥 = 𝑦. In the program on the left, the value of 𝑥 is fixed before

the adversary makes its choice, meaning that it can choose a distribution in which 𝑥 = 𝑦 with any

probability 𝑝 ∈ [0, 1]. However, in the program on the right, the adversary chooses first, and so the

later coin flip will ensure that 𝑥 = 𝑦 with probability exactly
1

2
.

We will examine how to prove this fact using program logics. First, in Section 2.1 we will lay out

the semantic properties of random and nondeterministic choices using equations, and we will show

how those equations inform propositional reasoning about outcomes. Next, in Section 2.2, we will

see how to make such propositional inferences about program behavior using our new logic. We

will then overview how to reason about more complicated looping programs in Section 2.3.

2.1 From Equational Laws to Propositional Reasoning
Equational theories are a useful tool for defining the behavior of programatic operators in terms

of laws that must be upheld. This has been studied extensively in the context of semantics of

probabilistic nondeterminism [Bonchi et al. 2019, 2021b, 2022; Mio and Vignudelli 2020; Mislove

2000; Tix 2000], where equations are used to describe properties of nondeterminism, random choice,
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and the interaction between the two. We will now explore the link between equational theories

and propositional reasoning about program outcomes. As we explain in this section, care has to be

taken to craft a model in which the desired properties of program operations can be used not only

to establish equality of semantic objects, but also as logical implications.

In the following, the variables 𝑋 , 𝑌 , and 𝑍 denote the outcomes of a program. The nondetermin-

istic choice operator—denoted 𝑋 & 𝑌—is an adversarial choice between the outcomes 𝑋 and 𝑌 . It

should be idempotent, commutative, and associative, as captured by the following equations:

𝑋 & 𝑋 = 𝑋 𝑋 & 𝑌 = 𝑌 & 𝑋 (𝑋 & 𝑌 ) & 𝑍 = 𝑋 & (𝑌 & 𝑍 )

That is, choosing between 𝑋 and 𝑋 is equivalent to making no choice at all, and the ordering of

choices makes no difference. The probabilistic choice operator 𝑋 ⊕𝑝 𝑌 , where 𝑝 ∈ [0, 1], represents
a random choice where 𝑋 and 𝑌 occur with probability 𝑝 and 1 − 𝑝 , respectively. This operator
obeys similar laws, with probabilities adjusted appropriately.

𝑋 ⊕𝑝 𝑋 = 𝑋 𝑋 ⊕𝑝 𝑌 = 𝑌 ⊕1−𝑝 𝑋 (𝑋 ⊕𝑝 𝑌 ) ⊕𝑞 𝑍 = 𝑋 ⊕𝑝𝑞 (𝑌 ⊕ (1−𝑝 )𝑞
1−𝑝𝑞

𝑍 )

In addition, the following distributive law requires that random choices distribute over nondeter-

ministic ones, much like multiplication distributes over addition in standard arithmetic.

𝑋 ⊕𝑝 (𝑌 & 𝑍 ) = (𝑋 ⊕𝑝 𝑌 ) & (𝑋 ⊕𝑝 𝑍 )

This law corresponds to our interpretation of demonic nondeterminism. On the left-hand side of

the equation, we first randomly choose to execute either 𝑋 or 𝑌 &𝑍 , and then—if the second option

is taken—the nondeterministic choice is resolved. Applying this axiom as a rewrite rule from left to

right would push the nondeterministic choice to the top above the probabilistic choice.

Traditionally, equational theories have been used to decide equality between programs [Kozen

1997]. Here, we repurpose the equations for propositional reasoning about program outcomes. That

is, if 𝜑 ,𝜓 , and 𝜗 are assertions about outcomes, then 𝜑 &𝜓 asserts that 𝜑 and𝜓 are two possible

nondeterministic outcomes, and 𝜑 ⊕𝑝 𝜓 asserts that 𝜑 occurs with probability 𝑝 and𝜓 occurs with

probability 1 − 𝑝 . This is inspired by Outcome Logic [Zilberstein et al. 2023], but there are now two

types of outcomes (probabilistic and non-deterministic). We want to rewrite the desired equations

above as logical equivalences, e.g. the distributive law would be transformed to:

𝜑 ⊕𝑝 (𝜓 & 𝜗) ⇔ (𝜑 ⊕𝑝 𝜓 ) & (𝜑 ⊕𝑝 𝜗)

However, one has to be careful. For example, as we illustrate below, the idempotence property

𝜑 & 𝜑 ⇔ 𝜑 only holds as an implication in a carefully crafted model.

One benefit of propositional reasoning vs equational reasoning is the ability to weaken assertions.
For instance, returning to the coin flip example, the following proposition precisely captures the

result of the program in which the adversary chooses first, where ⌈𝑃⌉ means that 𝑃 occurs with

probability 1 (almost surely).

(⌈𝑦 = true⌉ ∧ (⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉)) & (⌈𝑦 = false⌉ ∧ (⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉)) (1)

But the precise values of 𝑥 and 𝑦 are cumbersome to remember, and obfuscate the property that we

want to convey. Instead, we can weaken the assertion to record only whether 𝑥 = 𝑦 or 𝑥 ≠ 𝑦.

(⌈𝑥 = 𝑦⌉ ⊕ 1

2

⌈𝑥 ≠ 𝑦⌉) & (⌈𝑥 ≠ 𝑦⌉ ⊕ 1

2

⌈𝑥 = 𝑦⌉)

It is now tempting to use commutativity of ⊕ 1

2

and idempotence of & to perform the following

simplification, concisely asserting the probability that the adversary can determine the value of 𝑥 .

(⌈𝑥 = 𝑦⌉ ⊕ 1

2

⌈𝑥 ≠ 𝑦⌉) & (⌈𝑥 = 𝑦⌉ ⊕ 1

2

⌈𝑥 ≠ 𝑦⌉) ⇒ ⌈𝑥 = 𝑦⌉ ⊕ 1

2

⌈𝑥 ≠ 𝑦⌉ (2)
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However, care had be taken to craft a model in which implication (2) is valid. Unlike the idempotence

equation 𝑋 & 𝑋 = 𝑋—which applies when the exact same set of distributions appears on each

side—the implication version (2) operates on approximations of those sets of distributions. Recall
from (1) that 𝑥 = 𝑦 is satisfied by 𝑥 = 𝑦 = true on the left hand side of the &, whereas it is satisfied

by 𝑥 = 𝑦 = false on the right, so even though both sets of distributions satisfy 𝑥 = 𝑦 ⊕ 1

2

𝑥 ≠ 𝑦, they

are not equal. The full details of this example are shown in Zilberstein et al. [2024a, §A.1].

In Section 4.1, we give a full account of how our demonic logic supports idempotence and all of

the other properties that were stated equationally above. These properties do not hold by default,

but rather required some intentional choices in the design of the logic. In particular, as we will detail

in Section 4.1, the assertion language will not include disjunctions or existential quantification. The

result is a deductive system that is able to express more intuitive and concise specifications.

2.2 Program Logics and Compositionality
Inspired by Hoare Logic, our goal is to develop a logic where programs are specified in terms of pre-

and postconditions using triples of the form ⟨𝜑⟩ 𝐶 ⟨𝜓⟩. Here, 𝜑 and𝜓 are outcome assertions from

Section 2.1, whose models are distributions of states. Since the program 𝐶 is nondeterministic—

and is interpreted as a map into sets of distributions—the postcondition 𝜓 must be satisfied by

every distribution in that resulting set. We call this logic Demonic Outcome Logic, as it supports

probabilistic reasoning in the style of Outcome Logic [Zilberstein 2024; Zilberstein et al. 2023,

2024b] with the crucial addition of demonic nondeterminism.

Compositional reasoning—the ability to analyze a complex program in terms of its subprograms—

is the hallmark of program logics. This is exemplified by the inference rule for sequential composi-

tion; we infer the behavior of a composite program from the behavior of its constituent parts.

⟨𝜑⟩ 𝐶1 ⟨𝜗⟩ ⟨𝜗⟩ 𝐶2 ⟨𝜓⟩

⟨𝜑⟩ 𝐶1 #𝐶2 ⟨𝜓⟩
Seq

The soundness of this rule is not a given in the randomized nondeterminism setting. It relies on

being able to define the semantics J𝐶1 #𝐶2K in terms of J𝐶1K and J𝐶2K. As we have already seen

at the beginning of Section 2, the semantics is a map from states to sets of distributions of states:

J𝐶K : Σ→ 2D(Σ) . We compose the semantics of program fragments using a lifted version, known

as the Kleisli extension J𝐶K† : 2D(Σ) → 2D(Σ) . If 2D(−) were a monad, then we would have the

compositionality property to guarantee the soundness of the Seq rule: J𝐶1 #𝐶2K† = J𝐶2K† ◦ J𝐶1K†.
Unfortunately, as originally shown by Varacca and Winskel [2006] (see also Parlant [2020]; Zwart

and Marsden [2019]), no such composition operator exists.

But compositionality can be retained by requiring the sets of distributions to be convex [Jacobs

2008; Mislove 2000; Morgan et al. 1996b; Tix 1999]. That is, whenever two distributions 𝜇 and 𝜈 are

in the set of outcomes, then all convex combinations (𝑝 ·𝜇+ (1−𝑝) ·𝜈 for 𝑝 ∈ [0, 1]) are also in the set
of possible results. Convexity corresponds to our operational interpretation of nondeterminism—the

adversary may flip biased coins to resolve choices [Varacca 2002, Theorem 6.12]. Returning to the

coin flip example, we can derive the following specifications for the primitive operations.

⟨⌈true⌉⟩ 𝑦 ← B ⟨⌈𝑦 = true⌉ & ⌈𝑦 = false⌉⟩
⟨⌈𝑦 = true⌉⟩ 𝑥 B flip

(
1

2

)
⟨⌈𝑥 = 𝑦⌉ ⊕ 1

2

⌈𝑥 ≠ 𝑦⌉⟩
⟨⌈𝑦 = false⌉⟩ 𝑥 B flip

(
1

2

)
⟨⌈𝑥 ≠ 𝑦⌉ ⊕ 1

2

⌈𝑥 = 𝑦⌉⟩

That is, the adversarial choice results in two nondeterministic outcomes, separated by &. Executing

the probabilistic choice in either of those states yields two further probabilistic outcomes.

Since the first command splits the execution into two outcomes, we need one more type of

composition in order to stitch these together into a specification for the composite program. That
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is, we need the ability to decompose the precondition and analyze the program with each resulting

sub-assertion individually. We may also wish to do the same for probabilistic choices.

⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩

⟨𝜑1 & 𝜑2⟩ 𝐶 ⟨𝜓1 &𝜓2⟩
ND Split

⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩

⟨𝜑1 ⊕𝑝 𝜑2⟩ 𝐶 ⟨𝜓1 ⊕𝑝 𝜓2⟩
Prob Split

Using Seq, ND Split, and the idempotence rule (2), we derive the triple below on the left (shown

fully in Zilberstein et al. [2024a, §A.2]). A similar derivation for the reversed version yields the

triple on the right.

⟨⌈true⌉⟩ ⟨⌈true⌉⟩
𝑦 ← B # 𝑥 B flip

(
1

2

)
#

𝑥 B flip
(
1

2

)
𝑦 ← B

⟨⌈𝑥 = 𝑦⌉ ⊕ 1

2

⌈𝑥 ≠ 𝑦⌉⟩ ⟨⌈𝑥 = 𝑦⌉ & ⌈𝑥 ≠ 𝑦⌉⟩

If the adversary picks first, then it can only guess the value of 𝑥 with probability
1

2
. But if the

coin flip is first, we only know that 𝑥 = 𝑦 occurs with some probability. In fact, 𝑥 = 𝑦 & 𝑥 ≠ 𝑦 is

equivalent to true, so it certainly does not give us a robust security guarantee, leaving open the

possibility that the adversary can guess 𝑥 .

2.3 Reasoning about Loops
Reasoning about loops is challenging in any program logic, and Demonic Outcome Logic is no

exception. When reasoning about probabilistic loops, one often wants to prove not only that some

property holds upon termination, but also that the program almost surely terminates—the probability
of nontermination is 0. An example of an almost surely terminating program is shown below. It is

an adversarial random walk, where the agent steps towards 0 with probability
1

2
, otherwise the

adversary moves the agent to an arbitrary position between 1 and 5.

while 𝑥 > 0 do
(𝑥 B 𝑥 − 1) ⊕ 1

2

(𝑥 ← {1, . . . , 5})

It may seem surprising that this program almost surely terminates; after all, the adversary can

always choose the worst possible option of resetting the position to 5. However, as the number of

iterations goes to infinity, the probability of decrementing 𝑥 five times in a row goes to 1.

Demonic Outcome Logic has a simple inference rule for proving almost sure termination, inspired

by a rule of McIver and Morgan [2005], which uses ranking functions to quantify how close the

loop is to termination. The rule states that the program almost surely terminates if the rank strictly

decreases on each iteration with probability bounded away from 0, while also preserving some

invariant 𝑃 .

⟨⌈𝑃 ∧ 𝑒 ∧ 𝑒rank = 𝑛⌉⟩ 𝐶 ⟨⌈𝑃 ∧ 𝑒rank < 𝑛⌉ ⊕𝑝 ⌈𝑃⌉⟩, 𝑝 > 0

⟨⌈𝑃⌉⟩ while 𝑒 do 𝐶 ⟨⌈𝑃 ∧ ¬𝑒⌉⟩
Bounded Rank

We prove the soundness of this rule in Section 5. To instantiate it for the program above, we use

the invariant 𝑃 ≜ 0 ≤ 𝑥 ≤ 5, the ranking function 𝑒rank ≜ 𝑥 , and the probability 𝑝 = 1

2
. This means

that 𝑥 is always between 0 and 5 and the value of 𝑥 strictly decreases with probability
1

2
in each

iteration of the loop. Applying the inference, we get the following specification for the program.

⟨⌈0 ≤ 𝑥 ≤ 5⌉⟩ while 𝑥 > 0 do (𝑥 B 𝑥 − 1) ⊕ 1

2

(𝑥 ← {1, . . . , 5}) ⟨⌈𝑥 = 0⌉⟩

This says that the program terminates in a state satisfying 𝑥 = 0 with probability 1 (i.e., almost

surely). Compared to the rule of McIver and Morgan [2005]—which is based on weakest pre-
expectations—our approach has two key advantages. First, in the pre-expectation approach, the
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preservation of the invariant and the decrease in rank are verified separately, whereas our rule

combines the two in a single premise. Second, our rules allow the invariant to have multiple

outcomes, allowing them to express a distribution of end states, rather than a single assertion. A

concrete example of this appears in Section 6.2.

We have now seen the key ideas behind Demonic Outcome Logic, including how equational laws

translate to propositional reasoning over pre- and postconditions, the challenges in making the

logic compositional, and strategies for analyzing loops to establish almost sure termination. We

now proceed by making these ideas formal, starting in Section 3 where we define the program

semantics, and continuing with Sections 4 and 5 where we define the logic and rules for analyzing

loops. In Section 6 we examine case studies to show how the logic is used.

3 Denotational Semantics for Probabilistic Nondeterminism
In this section, we present the semantics of a simple imperative language with both probabilistic

and nondeterministic choice operators, originally due to He et al. [1997] and Morgan et al. [1996a].

The syntax of the language, below, includes familiar constructs such as no-ops, variable assignment,

sequential composition, if-statements, and while-loops, plus two kinds of branching choice.

Cmd ∋ 𝐶 F skip (No-op)

| 𝑥 B 𝑒 (Variable Assignment)

| 𝐶1 #𝐶2 (Sequential Composition)

| 𝐶1 &𝐶2 (Nondeterministic Choice)

| 𝐶1 ⊕𝑒 𝐶2 (Probabilistic Choice)

| if 𝑒 then 𝐶1 else 𝐶2 (Conditional)

| while 𝑒 do 𝐶 (While Loop)

Expressions 𝑒 ∈ Exp range over typical arithmetic and Boolean operations, and we evaluate these

expressions in the usual way. Nondeterministic choice𝐶1 &𝐶2 represents a program that arbitrarily

chooses to execute either 𝐶1 or 𝐶2, whereas probabilistic choice 𝐶1 ⊕𝑒 𝐶2, in which 𝑒 evaluates to

a rational probability 𝑝 , represents a program in which 𝐶1 is executed with probability 𝑝 and 𝐶2

with probability 1 − 𝑝 . In the remainder of this section, we precisely describe the semantics of the

language, building on the informal account given in Section 2.

3.1 States, Probability Distributions, and Convex Sets
Before we present the semantics, we review some preliminary definitions. We begin by describing

the program states 𝜎 ∈ Σ ≜ Var→ Val, which are mappings from a finite set of variables 𝑥 ∈ Var to
values 𝑣 ∈ Val. Values consist of Booleans and rational numbers, making the set of states countable.

To define the semantics, we will work with discrete probability distributions over states.

Definition 3.1 (Discrete Probability Distribution). Let D(𝑋 ) ≜ 𝑋 → [0, 1] be the set of discrete
probability distributions on 𝑋 . The support of a distribution 𝜇 is the set of elements to which 𝜇

assigns nonzero probability supp(𝜇) ≜ {𝑥 ∈ 𝑋 | 𝜇 (𝑥) > 0}. We only consider proper distributions

such that the total probability mass |𝜇 | = ∑
𝑥 ∈supp(𝜇) 𝜇 (𝑥) is 1.

We denote the the Dirac distribution centered at a point 𝑥 ∈ 𝑋 by 𝛿𝑥 , with 𝛿𝑥 (𝑥) = 1 and

𝛿𝑥 (𝑦) = 0 if 𝑥 ≠ 𝑦. Addition and scalar multiplication are lifted to distributions pointwise:

(𝜇1 + 𝜇2) (𝑥) = 𝜇1 (𝑥) + 𝜇2 (𝑥) (𝑝 · 𝜇) (𝑥) = 𝑝 · 𝜇 (𝑥)
The semantics of our language will be based on nonempty subsets of distributionsD(Σ⊥), where ⊥
is a special element symbolizing divergence and Σ⊥ = Σ∪ {⊥}. We will need three closure properties
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to make the semantics well-defined: convexity, topological closure, and up-closure. We begin by

describing convexity, which makes the semantics of sequential composition associative, and the

overall program semantics compositional (Section 2.2).

Definition 3.2 (Convex Sets). A set 𝑆 ⊆ D(𝑋 ) of distributions is convex if 𝜇 ∈ 𝑆 and 𝜈 ∈ 𝑆 implies

that 𝑝 · 𝜇 + (1 − 𝑝) · 𝜈 ∈ 𝑆 for every 𝑝 ∈ [0, 1].

In order to formally define the semantics of while loops, we will have to compute certain fixpoints

(explained fully in Section 3.3), which requires us to restrict our semantic domain to up-closed sets.

Definition 3.3 (Up-closed Sets). A set 𝑆 ⊆ D(Σ⊥) is up-closed 𝜇 ∈ 𝑆 and 𝜇 ⊑D 𝜈 implies 𝜈 ∈ 𝑆 . The
order ⊑D ⊆ D(Σ⊥) × D(Σ⊥) is defined as 𝜇 ⊑D 𝜈 iff ∀𝜎 ∈ Σ. 𝜇 (𝜎) ≤ 𝜈 (𝜎). The up-closure of a
set 𝑆 is the set ↑𝑆 ≜ {𝜈 | 𝜇 ∈ 𝑆, 𝜇 ⊑D 𝜈}. Thus 𝑆 is up-closed iff 𝑆 = ↑𝑆 .

Note that 𝜇 ⊑D 𝜈 implies that 𝜈 (⊥) ≤ 𝜇 (⊥), and that 𝛿⊥ is the bottom of this order, since

𝛿⊥ (𝜎) = 0 for all 𝜎 ∈ Σ, therefore 𝛿⊥ (𝜎) ≤ 𝜇 (𝜎) for any 𝜇 ∈ D(Σ⊥). If 𝜇 (⊥) = 0, then 𝜇 is already

maximal and so ↑{𝜇} = {𝜇}, but if 𝜇 (⊥) > 0, then 𝜇 can be made larger by reassigning probability

mass from ⊥ to proper states, e.g., 𝛿⊥ ⊑D 𝛿𝜎 . As a consequence, ↑{𝛿⊥} = D(Σ⊥), the set of all
distributions. Up-closure means that we cannot be sure whether a program truly diverges, or

instead exhibits erratic nondeterministic behavior, which is a common limitation of the Smyth

powerdomain [Søndergaard and Sestoft 1992]. However, the program logic that we develop in this

paper is concerned with proving almost sure termination of programs, so the loss of precision in

the semantics when nontermination might occur does not affect the accuracy of our logic.

Finally, we require sets to be closed in the usual topological sense. A subset ofD(𝑋 ) is closed if it

is closed in the product topology [0, 1]𝑋 , where [0, 1] has the Euclidean topology. So closure means

that a set 𝑆 contains all of its limit points. This will later help us to ensure that the semantics is

Scott continuous by precluding unbounded nondeterminism. More precisely, it will not be possible

to define a primitive command 𝑥 B ⋆, which surely terminates and nondeterministically selects a

value for 𝑥 from an infinite set (such as N). While this is certainly a limitation of the semantics,

it is a typical one; an impossibility result due to Apt and Plotkin [1986] showed that it is not

possible to define a semantics that both determines whether a program terminates and also allows

unbounded nondeterminism. This corresponds to Dijkstra’s [1976] operational observation that

a machine cannot choose between infinitely many branches in a finite amount of time, so any

computation with infinitely many nondeterministic outcomes may not terminate. We now have all

the ingredients to define our semantic domain:

C(𝑋 ) ≜
{
𝑆 ⊆ D(𝑋⊥) | 𝑆 is nonempty, convex, (topologically) closed, and up-closed

}
C is a functor and, interestingly from a semantics point of view, a monad [Jacobs 2008]. For any

𝑓 : 𝑋 → C(𝑌 ), the Kleisli extension 𝑓 † : C(𝑋 ) → C(𝑌 ) and unit operation 𝜂 : 𝑋 → C(𝑋 ) are
defined as follows:

𝜂 (𝑥) ≜ ↑{𝛿𝑥 } 𝑓 † (𝑆) ≜


∑︁
𝑥 ∈supp(𝜇)

𝜇 (𝑥) · 𝜈𝑥
��� 𝜇 ∈ 𝑆,∀𝑥 ∈ supp(𝜇). 𝜈𝑥 ∈ 𝑓⊥ (𝑥)


Where for any function 𝑓 : 𝑋 → C(𝑌 ), we define 𝑓⊥ : 𝑋⊥ → C(𝑌 ) such that 𝑓⊥ (𝑥) = 𝑓 (𝑥) for
𝑥 ∈ 𝑋 and 𝑓⊥ (⊥) = ↑{𝛿⊥}. The C monad presented here has subtle differences to that of Jacobs

[2008]—it is composed with an error monad to handle ⊥, and the unit performs an up-closure—but

it still upholds the monad laws, shown below, which we prove in Zilberstein et al. [2024a, §B.2].

𝜂† = id 𝑓 † ◦ 𝜂 = 𝑓 (𝑓 † ◦ 𝑔)† = 𝑓 † ◦ 𝑔†

It was also shown by He et al. [1997] that 𝑓 † preserves up-closedness and convexity.
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JskipK (𝜎) ≜ 𝜂 (𝜎)
J𝑥 B 𝑒K (𝜎) ≜ 𝜂 (𝜎 [𝑥 B J𝑒K (𝜎)])

J𝐶1 #𝐶2K (𝜎) ≜ J𝐶2K† (J𝐶1K (𝜎))
J𝐶1 &𝐶2K (𝜎) ≜ J𝐶1K (𝜎) & J𝐶2K (𝜎)

J𝐶1 ⊕𝑒 𝐶2K (𝜎) ≜ J𝐶1K (𝜎) ⊕J𝑒K(𝜎) J𝐶2K (𝜎)

Jif 𝑒 then 𝐶1 else 𝐶2K (𝜎) ≜
{

J𝐶1K (𝜎) if J𝑒K (𝜎) = true
J𝐶2K (𝜎) if J𝑒K (𝜎) = false

Jwhile 𝑒 do 𝐶K (𝜎) ≜ lfp
(
Φ⟨𝐶,𝑒 ⟩

)
(𝜎)

where Φ⟨𝐶,𝑒 ⟩ (𝑓 ) (𝜎) ≜
{

𝑓
†
⊥ (J𝐶K (𝜎)) if J𝑒K (𝜎) = true
𝜂 (𝜎) if J𝑒K (𝜎) = false

Fig. 1. Denotational Semantics for programs J𝐶K : Σ→ C(Σ), where J𝑒K : Σ→ Val is the interpretation of
expressions, defined in the obvious way.

The last ingredient we need (for the semantics of loops) is an order on C(Σ):

𝑆 ⊑C 𝑇 iff ∀𝜈 ∈ 𝑇 . ∃𝜇 ∈ 𝑆. 𝜇 ⊑D 𝜈

This order, due to Smyth [1978], is not generally antisymmetric, but in this case it is antisymmetric

because the sets in C are up-closed. In fact, due to up-closure, the Smyth order is equivalent

to reverse subset inclusion 𝑆 ⊑C 𝑇 iff 𝑆 ⊇ 𝑇 . The bottom element of C(Σ) in this order is

𝜂 (⊥) = ↑{𝛿⊥} = D(Σ⊥), the set of all distributions. Operationally, this means that nontermination

is identified with total uncertainty about the program outcome. As we unroll loops to obtain tighter

and tighter approximations of their semantics, we rule out more and more possible behaviors.

In addition, we note that ⟨C(Σ), ⊑C⟩ is a directed complete partial order (dcpo), meaning that all

increasing chains of elements 𝑆1 ⊑C 𝑆2 ⊑C · · · have a supremum. Since 𝑆 ⊑C 𝑇 is equivalent to

𝑆 ⊇ 𝑇 , then suprema are given by standard set intersection. So, to show that ⟨C(Σ), ⊑C⟩ is a dcpo
we need to show that any chain 𝑆1 ⊇ 𝑆2 ⊇ · · · has a supremum (i.e., intersection) in C(Σ). McIver

and Morgan [2005, Lemma B.4.4], showed that D(Σ) is compact using Tychonoff’s Theorem, and

therefore it is well known that such a chain has a nonempty intersection. The remaining properties

(convexity, closure, up-closure) are well known to be preserved by intersections too.

3.2 Semantics of Sequential Commands
We are now ready to define the semantics, shown in Figure 1.We interpret commands denotationally

as maps from states to convex sets of distributions, i.e., J𝐶K : Σ → C(Σ). No-ops and variable

assignment are defined as point-mass distributions. Sequential composition is a Klesili composition.

The probabilistic and nondeterministic choice operations are defined in terms of new operators:

𝑆 ⊕𝑝 𝑇 ≜ {𝑝 · 𝜇 + (1 − 𝑝) · 𝜈 | 𝜇 ∈ 𝑆, 𝜈 ∈ 𝑇 } 𝑆 &𝑇 ≜
⋃

𝑝∈[0,1]𝑆 ⊕𝑝 𝑇

As expected, probabilistic branching chooses an element of J𝐶1K (𝜎) with probability 𝑝 = J𝑒K (𝜎),
and chooses an element of J𝐶2K (𝜎) with probability 1 − 𝑝 . Nondeterministic choices are equivalent

to a union of all the possible probabilistic choices between𝐶1 and𝐶2. If we think of nondeterminism

being resolved by a scheduler, this operationally corresponds to the scheduler picking a bias 𝑝

(which could be 0 or 1, corresponding to certainty), then flipping a coin with bias 𝑝 to decide which

command to execute [Segala and Lynch 1994; Varacca 2002].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 19. Publication date: January 2025.



19:10 Noam Zilberstein, Dexter Kozen, Alexandra Silva, and Joseph Tassarotti

He et al. [1997] showed that all of these operations preserve up-closedness and convexity and

Morgan et al. [1996a] showed that they preserve topological closure (Morgan et al. refer to this as

Cauchy Closure) and non-emptiness.

Conditional statements are defined in the standard way. A branch is taken deterministically

depending on whether the guard 𝑒 evaluates to true or false. As syntactic sugar, we define special

syntax for biased coin flips and nondeterministic choice from a nonempty finite set 𝑆 = {𝑣1, . . . , 𝑣𝑛}:

𝑥 B flip(𝑒) ≜ (𝑥 B true) ⊕𝑒 (𝑥 B false) 𝑥 ← 𝑆 ≜ (𝑥 B 𝑣1) & · · · & (𝑥 B 𝑣𝑛)

3.3 Semantics of Loops
Loops are interpreted as the least fixed point of Φ⟨𝐶,𝑒 ⟩ (see Figure 1), which essentially means that:

Jwhile 𝑒 do 𝐶K = Jif 𝑒 then (𝐶 # while 𝑒 do 𝐶)K

We will use the Kleene fixed point theorem to prove that a least fixed point exists. To do so, we

first define an ordering on functions ⊑•C ⊆ (Σ → C(Σ)) × (Σ → C(Σ)), which is the pointwise

extension of the order ⊑C from Section 3.1 and is defined as follows:

𝑓 ⊑•C 𝑔 iff ∀𝜎 ∈ Σ. 𝑓 (𝜎) ⊑C 𝑔(𝜎) iff ∀𝜎 ∈ Σ. 𝑓 (𝜎) ⊇ 𝑔(𝜎)

Clearly, the function ⊥•C (𝜎) ≜ 𝜂 (⊥) is the bottom of this order, since 𝜂 (⊥) is the bottom of ⊑C .
The characteristic function Φ⟨𝐶,𝑒 ⟩ is also Scott continuous in this order, meaning that it preserves

suprema of directed sets [Zilberstein et al. 2024a, Lemma B.12]:

sup

𝑓 ∈𝐷
Φ⟨𝐶,𝑒 ⟩ (𝑓 ) = Φ⟨𝐶,𝑒 ⟩ (sup𝐷)

So, by the Kleene fixed point theorem, we conclude that the least fixed point exists, and is charac-

terized as the supremum of the iterates of Φ⟨𝐶,𝑒 ⟩ over all the natural numbers.

lfp
(
Φ⟨𝐶,𝑒 ⟩

)
(𝜎) =

(
sup

𝑛∈N
Φ𝑛
⟨𝐶,𝑒 ⟩

(
⊥•C

) )
(𝜎) =

⋂
𝑛∈N

Φ𝑛
⟨𝐶,𝑒 ⟩

(
⊥•C

)
(𝜎)

These iterates are defined as 𝑓 0 ≜ id and 𝑓 𝑛+1 ≜ 𝑓 ◦ 𝑓 𝑛 , where ◦ is function composition.

4 Demonic Outcome Logic
We now present Demonic Outcome Logic, a new logic for reasoning about programs that are

both randomized and nondeterministic. This logic has constructs for reasoning about probabilistic

branching, inspired by Outcome Logic (OL) [Zilberstein et al. 2023] and probabilistic Hoare logics

[Barthe et al. 2018; den Hartog 2002]. In addition, nondeterminism is treated demonically: the
postcondition must hold regardless of how the nondeterminism is resolved.

4.1 Outcome Assertions
Outcome assertions 𝜑,𝜓 ∈ Prop are used in pre- and postconditions of triples in Demonic Outcome

Logic. The syntax is shown below, where 𝑝 ∈ [0, 1] is a probability, and 𝑃,𝑄 ∈ Atom are atoms.

Prop ∋ 𝜑 F ⊤ | ⊥ | 𝜑 ∧𝜓 | 𝜑 ⊕𝑝 𝜓 | 𝜑 &𝜓 | ⌈𝑃⌉ 𝑝 ∈ [0, 1]
Atom ∋ 𝑃 F true | false | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | ¬𝑃 | 𝑒1 = 𝑒2 | 𝑒1 ≤ 𝑒2 | · · ·

Atomic assertions 𝑃,𝑄 ∈ Atom describe states, and are interpreted using L−M : Atom→ 2Σ, giving

the set of states satisfying 𝑃 , defined as usual. The satisfaction relation ⊨ ⊆ D(Σ⊥) × Prop defined

in Figure 2 relates each assertion to probability distributions 𝜇 ∈ D(Σ⊥) (not sets distributions). As
explained in Section 4.2, this corresponds to the logic’s demonic treatment of nondeterminism.
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𝜇 ⊨ ⊤ always

𝜇 ⊨ ⊥ never

𝜇 ⊨ 𝜑 ∧𝜓 iff 𝜇 ⊨ 𝜑 and 𝜇 ⊨ 𝜓
𝜇 ⊨ 𝜑 ⊕𝑝 𝜓 iff ∃𝜇1, 𝜇2. 𝜇 = 𝑝 · 𝜇1 + (1 − 𝑝) · 𝜇2 and 𝜇1 ⊨ 𝜑 and 𝜇2 ⊨ 𝜓
𝜇 ⊨ 𝜑 &𝜓 iff 𝜇 ⊨ 𝜑 ⊕𝑝 𝜓 for some 𝑝 ∈ [0, 1]
𝜇 ⊨ ⌈𝑃⌉ iff supp(𝜇) ⊆ L𝑃M

Fig. 2. Definition of the satisfaction relation ⊨ ⊆ D(Σ⊥) × Prop for Outcome Assertions.

As expected, ⊤ is satisfied by any distribution, whereas ⊥ is satisfied by nothing. The logical

conjunction 𝜑 ∧𝜓 is true iff both conjuncts are true. If a distribution 𝜇 satisfies the probabilistic

outcome conjunction𝜑⊕𝑝𝜓 , then 𝜇 must be a convex combination with parameter 𝑝 of a distribution

satisfying 𝜑 and one satisfying𝜓 . Similarly, 𝜇 ⊨ 𝜑 &𝜓 means that 𝜇 is some convex combination

(where the parameter is existentially quantified) of distributions satisfying 𝜑 and 𝜓 . Finally, a

distribution satisfies ⌈𝑃⌉ if its support is contained in L𝑃M. Note that 𝑃 can only describe states

(and not ⊥), so 𝜇 ⊨ ⌈𝑃⌉ implies that 𝜇 (⊥) = 0, i.e., that the program that generated 𝜇 almost surely

terminated. This is a crucial difference between true and ⊤; whereas true guarantees almost sure

termination, ⊤ is satisfied by any distribution.

As an example, ⌈𝑥 = 1⌉ ⊕ 1

3

⌈𝑥 = 2⌉ means that the event 𝑥 = 1 occurs with probability
1

3
and

the event 𝑥 = 2 occurs with probability
2

3
. On the other hand, ⌈𝑥 = 1⌉ & ⌈𝑥 = 2⌉ means that 𝑥 = 1

occurs with some probability 𝑝 and 𝑥 = 2 occurs with probability 1 − 𝑝 . Given that we represent

nondeterminism as convex union, 𝜑 &𝜓 characterizes nondeterministic choice. In addition, we

can forget about the probabilities of outcomes by weakening 𝜑 ⊕𝑝 𝜓 ⇒ 𝜑 &𝜓 . As a shorthand,

we will often write&
𝑛
𝑘=1

𝜑𝑘 instead of 𝜑1 & · · · & 𝜑𝑛 for finite & conjunctions of assertions. Unlike

in standard Outcome Logic [Zilberstein et al. 2023], 𝜑 &𝜓 does not imply that both 𝜑 and𝜓 are

realizable via an actual trace; for example if 𝜇 ⊨ ⌈𝑥 = 1⌉ & ⌈𝑥 = 2⌉, it is possible that the event
𝑥 = 1 occurs with probability 0 according to 𝜇. This is an intentional choice, as it allows us to retain

desirable propositional properties such as idempotence of &, as explained in Section 2.1.

Echoing the equational laws from Section 2.1, outcome assertions can be manipulated using the

following implications, where 𝜑 ⇒ 𝜓 means that if 𝜇 ⊨ 𝜑 then 𝜇 ⊨ 𝜓 for all 𝜇 ∈ D(Σ⊥). These
implications are not included in the syntax of Prop, since they are not allowed to be used in the

pre- and postconditions of triples.

𝜑 & 𝜑 ⇔ 𝜑 𝜑 ⊕𝑝 𝜑 ⇔ 𝜑 (Idempotence)

𝜑 &𝜓 ⇔ 𝜓 & 𝜑 𝜑 ⊕𝑝 𝜓 ⇔ 𝜓 ⊕1−𝑝 𝜑 (Commutativity)

𝜑 & (𝜓 & 𝜗) ⇔ (𝜑 &𝜓 ) & 𝜗 (𝜑 ⊕𝑝 𝜓 ) ⊕𝑞 𝜗 ⇔ 𝜑 ⊕𝑝𝑞 (𝜓 ⊕ (1−𝑝 )𝑞
1−𝑝𝑞

𝜗) (Associativity)

𝜑 ⊕𝑝 (𝜓 & 𝜗) ⇔ (𝜑 ⊕𝑝 𝜓 ) & (𝜑 ⊕𝑝 𝜗) (Distributivity)

We remark that these laws depend on what is—and, crucially, what is not—included in the assertion

language. As we saw in Section 2.1, idempotence is delicate due to the fact that assertions are

only approximations of the distributions that they model. Despite this, idempotence turns out to

be crucial to the usability of the logic, as the soundness of several inference rules depends on it

(e.g., Nondet and Bounded Variant). The idempotence laws would be invalidated if the syntax

included disjunctions or existential quantification. For example, in the following implication, 𝑥

having value 1 or 2 each with probability
1

2
does not imply that 𝑥 is always 1 or always 2.

⌈𝑥 = 1⌉⊕ 1

2

⌈𝑥 = 2⌉ =⇒ (⌈𝑥 = 1⌉∨⌈𝑥 = 2⌉)⊕ 1

2

(⌈𝑥 = 1⌉∨⌈𝑥 = 2⌉) ≠⇒ ⌈𝑥 = 1⌉∨⌈𝑥 = 2⌉
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Note that the first implication is valid since ⌈𝑥 = 1⌉ ⇒ ⌈𝑥 = 1⌉ ∨ ⌈𝑥 = 2⌉ and weakening can be

applied inside of ⊕𝑝 as follows: ⌈𝑃⌉ ⇒ ⌈𝑃 ′⌉ ⊢ ⌈𝑃⌉ ⊕𝑝 ⌈𝑄⌉ ⇒ ⌈𝑃 ′⌉ ⊕𝑝 ⌈𝑄⌉.
We do not believe that the exclusion of disjunctions and existential quantification poses a severe

restriction in practice. Existentials are often used to quantify over the values of certain program

variables; in Demonic Outcome Logic, we quantify over values in a different way. In a typical logic,

pre- and postconditions are predicates over individual states, so ∃𝑣 : 𝑇 .𝑥 = 𝑣 asserts that the value

of 𝑥 takes on some value from the set 𝑇 . In our case, we use predicates over distributions, so it is

more appropriate to say&𝑣∈𝑇 ⌈𝑥 = 𝑣⌉, which asserts that the value of 𝑥 is in 𝑇 for every state in

the support of the distribution. We use this technique in Section 6.2.

4.2 Semantics of Triples
Similar to Hoare Logic and Outcome Logic [Zilberstein et al. 2023], specifications in Demonic

Outcome Logic are triples of the form ⟨𝜑⟩ 𝐶 ⟨𝜓⟩. Intuitively, the semantics of these triples is that if

states are initially distributed according to a distribution 𝜇 ∈ D(Σ⊥) that satisfies 𝜑 , then after the

program𝐶 is run, the resulting states will be distributed according to some distribution 𝜈 ∈ D(Σ⊥)
that satisfies 𝜓 , regardless of how nondeterministic choices in 𝐶 are resolved. We formalize the

semantics of triples, denoted by ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩, as follows.

Definition 4.1 (Semantics of Demonic Outcome Triples).

⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ iff ∀𝜇 ∈ D(Σ⊥). 𝜇 ⊨ 𝜑 =⇒ ∀𝜈 ∈ J𝐶K† (↑{𝜇}) . 𝜈 ⊨ 𝜓

We note that when limited to basic assertions 𝑃,𝑄 ∈ Atom, ⊨ ⟨⌈𝑃⌉⟩ 𝐶 ⟨⌈𝑄⌉⟩ is semantically

equivalent to a total correctness Hoare triple [Manna and Pnueli 1974] (albeit, in a language with

randomization). That is, for any start state 𝜎 ∈ L𝑃M, the program will terminate in a state 𝜏 ∈ L𝑄M.

4.3 Inference Rules
The inference rules for reasoning about non-looping commands are shown in Figure 3 (we will

revisit loops in Section 5). We write ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ to mean that a triple is derivable using these rules.

This relates to the semantics of triples via the following soundness theorem, which is proved by

induction on the derivation [Zilberstein et al. 2024a, §C.2].

Theorem 4.2 (Soundness).

⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ =⇒ ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩

Now, we will describe the rules in more depth.

Sequential and Probabilistic Commands. Many of the rules for analyzing commands are as expected.

The Skip rule simply preserves the precondition, as no-ops do not affect the distribution of outcomes.

The Assign rule uses standard backward substitution, where 𝜑 [𝑒/𝑥] is the assertion obtained by

syntactically substituting 𝑒 for all occurrences of 𝑥 . The Seq rule allows us to analyze sequences of

commands compositionally, and relies on the fact that J𝐶K† (𝑆) = ⋃
𝜇∈𝑆 J𝐶K† (↑{𝜇}) for soundness.

In order to analyze a probabilistic choice 𝐶1 ⊕𝑒 𝐶2 using Prob, the precondition 𝜑 must contain

enough information to ascertain that the expression 𝑒 evaluates to a precise probability 𝑝 ∈ [0, 1].
If 𝑒 is a literal 𝑝 , then this restriction is trivial since 𝜑 ⇒ ⌈𝑝 = 𝑝⌉ for any 𝜑 . The postcondition then

joins the outcomes of the two branches using ⊕𝑝 . Similarly, the rules for analyzing if statements

require that the precondition selects one of the two branches deterministically. If1 applies when

the precondition forces the true branch to be taken and If2 applies when it forces the false branch.

We will soon see derived rules that allow both branches to be analyzed in a single rule.
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Commands

⟨𝜑⟩ skip ⟨𝜑⟩
Skip

⟨𝜑 [𝑒/𝑥]⟩ 𝑥 B 𝑒 ⟨𝜑⟩
Assign

⟨𝜑⟩ 𝐶1 ⟨𝜗⟩ ⟨𝜗⟩ 𝐶2 ⟨𝜓⟩

⟨𝜑⟩ 𝐶1 #𝐶2 ⟨𝜓⟩
Seq

𝜑 ⇒ ⌈𝑒 = 𝑝⌉ ⟨𝜑⟩ 𝐶1 ⟨𝜓1⟩ ⟨𝜑⟩ 𝐶2 ⟨𝜓2⟩

⟨𝜑⟩ 𝐶1 ⊕𝑒 𝐶2 ⟨𝜓1 ⊕𝑝 𝜓2⟩
Prob

⟨⌈𝑃⌉⟩ 𝐶1 ⟨𝜓1⟩ ⟨⌈𝑃⌉⟩ 𝐶2 ⟨𝜓2⟩

⟨⌈𝑃⌉⟩ 𝐶1 &𝐶2 ⟨𝜓1 &𝜓2⟩
Nondet

𝜑 ⇒ ⌈𝑒⌉ ⟨𝜑⟩ 𝐶1 ⟨𝜓⟩

⟨𝜑⟩ if 𝑒 then 𝐶1 else 𝐶2 ⟨𝜓⟩
If1

𝜑 ⇒ ⌈¬𝑒⌉ ⟨𝜑⟩ 𝐶2 ⟨𝜓⟩

⟨𝜑⟩ if 𝑒 then 𝐶1 else 𝐶2 ⟨𝜓⟩
If2

Structural Rules

⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩

⟨𝜑1 ⊕𝑝 𝜑2⟩ 𝐶 ⟨𝜓1 ⊕𝑝 𝜓2⟩
Prob Split

⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩

⟨𝜑1 & 𝜑2⟩ 𝐶 ⟨𝜓1 &𝜓2⟩
ND Split

𝜑 ′⇒ 𝜑 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ 𝜓 ⇒ 𝜓 ′

⟨𝜑 ′⟩ 𝐶 ⟨𝜓 ′⟩
Conseqence

⟨𝜑⟩ 𝐶 ⟨𝜓⟩ mod(𝐶) ∩ fv(𝑃) = ∅
⟨𝜑 ∧ ⌈𝑃⌉⟩ 𝐶 ⟨𝜓 ∧ ⌈𝑃⌉⟩

Constancy

Fig. 3. Inference rules for non-looping commands in Demonic Outcome Logic.

Structural Rules. The bottom of Figure 3 also contains structural rules, which do not depend on

the program command. The Prob Split and ND Split rules allow us to deconstruct pre- and

postconditions in order to build derivations compositionally. As we will see shortly, these rules are

necessary to analyze nondeterministic choices, since the Nondet rule requires the precondition to

be a basic assertion ⌈𝑃⌉. They are also useful for analyzing if statements, since the If1 and If2 rules

require the precondition to imply the truth and falsity of the guard, respectively. The soundness of

these rules relies on the following equality [Zilberstein et al. 2024a, Lemma C.2].

J𝐶K† (𝑆1 ⊕𝑝 𝑆2) = J𝐶K† (𝑆1) ⊕𝑝 J𝐶K† (𝑆2)

Next, we have the usual rule of Conseqence, which allows the precondition to be strengthened

and the postcondition to be weakened. These implications are semantic ones; we do not provide

proof rules to dispatch them beyond the laws at the end of Section 4.1.

Finally, the rule of Constancy allows us to conjoin additional information 𝑃 about the program

state, so long as it does not involve any of the modified program variables. We let mod(𝐶) denote
the set of variables modified by the program 𝐶 , defined inductively on its structure. One subtlety is

that possibly nonterminating programs must be considered to modify all the program variables,

meaning that Constancy only applies to terminating programs. However, this restriction does

not matter much in practice, since all the loop rules we present in Section 5 guarantee almost sure

termination. In addition fv(𝑃) is the set of variables occurring free in 𝑃 . Just like the frame rule

from Outcome Separation Logic, 𝑃 is a basic assertion rather than an outcome assertion, since this

extra information concerns only the local state and not the branching behavior of the program

[Zilberstein et al. 2024b]. The soundness of Constancy is considerably simpler than that of the

frame rule, since it does not deal with dynamically allocated pointers and aliasing.

Nondeterministic Branching. The Nondet rule can only be applied if the precondition is a basic

assertion 𝑃 . If the precondition contained information about probabilistic outcomes, then this rule

would be unsound. To demonstrate why this is the case, let us revisit the coin flip game:

𝑥 B flip
(
1

2

)
# 𝑦 ← B
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If we imagine that nondeterminism is controlled by an adversary, then it is always possible for the

adversary to guess the coin flip, that is, to force 𝑥 and 𝑦 to be equal. However, if we allowed the

precondition in the Nondet rule to contain probabilistic outcomes, then we could derive the triple

below, stating that 𝑥 = 𝑦 always occurs with probability
1

2
, which is untrue.

.

.

.

⟨ ⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉ ⟩ 𝑦 B true ⟨ ⌈𝑥 = 𝑦⌉ ⊕ 1

2

⌈𝑥 ≠ 𝑦⌉ ⟩

.

.

.

⟨ ⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉ ⟩ 𝑦 B false ⟨ ⌈𝑥 ≠ 𝑦⌉ ⊕ 1

2

⌈𝑥 = 𝑦⌉ ⟩
········

⟨ ⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉ ⟩ 𝑦 ← B ⟨( ⌈𝑥 = 𝑦⌉ ⊕ 1

2

⌈𝑥 ≠ 𝑦⌉) & ( ⌈𝑥 ≠ 𝑦⌉ ⊕ 1

2

⌈𝑥 = 𝑦⌉) ⟩
Nondet (incorrect usage)

⟨ ⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉ ⟩ 𝑦 ← B ⟨ ⌈𝑥 = 𝑦⌉ ⊕ 1

2

⌈𝑥 ≠ 𝑦⌉ ⟩
Conseqence

Instead—as shown below—we must de-structure the precondition using Prob Split, and then apply

Nondet twice, using each of the basic assertions (⌈𝑥 = true⌉ and ⌈𝑥 = false⌉) as preconditions.
This has the effect of expanding each basic outcome inside of the ⊕ 1

2

. After applying idempotence

in the postcondition, we see that 𝑥 = 𝑦 occurs with unknown probability, which does not preclude

that the adversary could force it to occur. In fact, the postcondition is equivalent to true.

.

.

.

⟨ ⌈𝑥 = true⌉ ⟩ 𝑦 ← B ⟨ ⌈𝑥 = 𝑦⌉ & ⌈𝑥 ≠ 𝑦⌉ ⟩
Nondet

.

.

.

⟨ ⌈𝑥 = false⌉ ⟩ 𝑦 ← B ⟨ ⌈𝑥 ≠ 𝑦⌉ & ⌈𝑥 = 𝑦⌉ ⟩
Nondet

⟨ ⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉ ⟩ 𝑦 ← B ⟨( ⌈𝑥 = 𝑦⌉ & ⌈𝑥 ≠ 𝑦⌉) ⊕ 1

2

( ⌈𝑥 ≠ 𝑦⌉ & ⌈𝑥 = 𝑦⌉) ⟩
Prob Split

⟨ ⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉ ⟩ 𝑦 ← B ⟨ ⌈𝑥 = 𝑦⌉ & ⌈𝑥 ≠ 𝑦⌉ ⟩
Conseqence

Requiring basic assertions as the precondition may seem restrictive, but the Nondet rule can still

be applied in all scenarios by deconstructing the precondition, as we saw in Section 2.2 [Zilberstein

et al. 2024a, §A.2]. The soundness of Nondet fundamentally depends on idempotence. In the

proof, we show that if 𝜇 ⊨ 𝑃 , then 𝜈 ⊨ 𝜓1 &𝜓2 for each 𝜈 ∈ J𝐶1 &𝐶2K (𝜎) and 𝜎 ∈ supp(𝜇). Any
distribution in J𝐶1 &𝐶2K† (↑{𝜇}) is therefore a convex combination of distributions, all of which

satisfy𝜓1 &𝜓2. We collapse that convex combination using, e.g., (𝜓1 &𝜓2) ⊕𝑝 (𝜓1 &𝜓2) ⇒ 𝜓1 &𝜓2

(see Lemma C.5 for the more general property). Soundness must be established in this way, since

J𝐶1 &𝐶2K† (𝑆) ≠ J𝐶1K† (𝑆) & J𝐶2K† (𝑆) and so:

J𝐶1K† (𝑆) ⊨ 𝜓1 and J𝐶2K† (𝑆) ⊨ 𝜓2 ⇏ J𝐶1 &𝐶2K† (𝑆) ⊨ 𝜓1 &𝜓2

On the other hand, J𝐶1 &𝐶2K (𝜎) = J𝐶1K (𝜎) & J𝐶2K (𝜎), so we can analyze nondeterministic

branching compositionally only when starting from a single state.

Derived Rules. In addition to the rules in Figure 3, we also provide some derived rules for convenience

in common scenarios. All the derivations are shown in Zilberstein et al. [2024a, §C.3]. The first

rules pertain to conditional statements. These rules use Prob Split and ND Split to deconstruct

the pre- and postconditions in order to analyze both branches of the conditional statement. These

are similar to the rules found in Ellora [Barthe et al. 2018] and Outcome Logic [Zilberstein 2024].

𝜑1⇒⌈𝑒 ⌉
𝜑2⇒⌈¬𝑒 ⌉ ⟨𝜑1⟩ 𝐶1 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶2 ⟨𝜓2⟩

⟨𝜑1 ⊕𝑝 𝜑2⟩ if 𝑒 then 𝐶1 else 𝐶2 ⟨𝜓1 ⊕𝑝 𝜓2⟩

𝜑1⇒⌈𝑒 ⌉
𝜑2⇒⌈¬𝑒 ⌉ ⟨𝜑1⟩ 𝐶1 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶2 ⟨𝜓2⟩

⟨𝜑1 & 𝜑2⟩ if 𝑒 then 𝐶1 else 𝐶2 ⟨𝜓1 &𝜓2⟩

In addition, if the precondition of the conditional statement is a basic assertion 𝑃 , then we can

use the typical conditional rule from Hoare logic. This relies on the Hahn decomposition theorem:

⌈𝑃⌉ ⇒ ⌈𝑃 ∧ 𝑒⌉ & ⌈𝑃 ∧ ¬𝑒⌉, that is, if 𝜇 ⊨ 𝑃 , then 𝜇 can be separated into two portions where 𝑒
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is true and false, respectively. Due to idempotence, we can simplify the postconditions using the

consequence𝜓 &𝜓 ⇒ 𝜓 .

⟨⌈𝑃 ∧ 𝑒⌉⟩ 𝐶1 ⟨𝜓⟩ ⟨⌈𝑃 ∧ ¬𝑒⌉⟩ 𝐶2 ⟨𝜓⟩

⟨⌈𝑃⌉⟩ if 𝑒 then 𝐶1 else 𝐶2 ⟨𝜓⟩

Finally, we provide rules for analyzing the coin flip and nondeterministic selection syntactic sugar

introduced in Section 3.2. The flip rule is derived using a straightforward application of Prob. The

rule for nondeterministic selection is proven by induction on the size of 𝑆 (recall that 𝑆 is finite).

𝜑 ⇒ ⌈𝑒 = 𝑝⌉ 𝑥 ∉ fv(𝜑)
⟨𝜑⟩ 𝑥 B flip(𝑒) ⟨𝜑 ∧ (⌈𝑥 = true⌉ ⊕𝑝 ⌈𝑥 = false⌉)⟩ ⟨⌈true⌉⟩ 𝑥 ← 𝑆 ⟨&𝑣∈𝑆 ⌈𝑥 = 𝑣⌉⟩

Although the precondition of the nondeterministic selection rule is true, it can be used in conjunction
with the rule of Constancy so that any basic assertion 𝑃 can be the precondition. Beyond that, to

extend to any precondition 𝜑 , de-structuring rules must be applied just like with the Nondet rule.

Remark 1 (Completeness). We have not explored completeness of Demonic Outcome Logic, even
for the loop-free fragment. One reason for this is that the derivations witnessed by the completeness
proofs for similar probabilistic logics do not mimic the sort of derivations that one would produce by
hand. For example, in Ellora [Barthe et al. 2018], the completeness proof involves quantifying over
the (infinitely many) distributions that could satisfy the precondition, then showing that a derivation
of the strongest postcondition is possible given any fixed one of those distributions. The complexity
comes not only from loops, but also purely sequential constructs like probabilistic branching and if
statements. To see examples of where this complexity arises, see Zilberstein [2024, Definition 3.5], or
Dardinier and Müller [2024, Example 1].

5 Analyzing Loops
In this section, we discuss proof rules for analyzing loops. We are inspired by work on weakest

pre-expectations [Kaminski 2019; McIver and Morgan 2005; McIver et al. 2018], where probabilistic

loop analysis has been studied extensively, but will argue in this section that our program logic

approach has two advantages.

Fewer Conditions to Check. The weakest pre-expectation proof rules involve multiple checks,

which include both sub-invariants and super-invariants and computing expected values of ranking

functions. In contrast, in Demonic OL all the proof rules revolve around just one construct—outcome

triples—and the premises of the rules can accordingly be consolidated.

Multiple Outcomes. It is often useful to specify programs in terms of their distinct outcomes, which

we achieve using the assertions from Section 4.1. Pre-expectation calculi can only represent multiple

outcomes by carrying out several distinct derivations, whereas Demonic OL can do so in one shot.

5.1 Almost Sure Termination
As we mentioned in Section 3.3, our semantics based on the Smyth powerdomain is suitable for total

correctness—specifications implying that the program terminates. Since we are in a probabilistic

setting, it makes sense to talk about a finer notion of termination—almost sure termination—meaning

that the program terminates with probability 1. In terms of our program semantics, a program

almost surely terminates if ⊥ does not appear in the support of any of its resultant distributions.

Definition 5.1 (Almost Sure Termination). A program 𝐶 almost surely terminates on input 𝜎 iff

∀𝜇 ∈ J𝐶K (𝜎). ⊥ ∉ supp(𝜇)
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In addition, 𝐶 universally almost surely terminates if it almost surely terminates on all 𝜎 ∈ Σ.

Going further, we show how almost sure termination is established in Demonic Outcome Logic.

Theorem 5.2. A program 𝐶 almost surely terminates starting from any state satisfying 𝑃 if:

⊨ ⟨⌈𝑃⌉⟩ 𝐶 ⟨⌈true⌉⟩
As a corollary, 𝐶 universally almost surely terminates if ⊨ ⟨⌈true⌉⟩ 𝐶 ⟨⌈true⌉⟩.

Proof. The triple ⊨ ⟨⌈𝑃⌉⟩ 𝐶 ⟨⌈true⌉⟩ means that if 𝜎 ∈ L𝑃M, that is, if 𝛿𝜎 ⊨ ⌈𝑃⌉, then supp(𝜇) ⊆
LtrueM = Σ for all 𝜇 ∈ J𝐶K (𝜎). Since ⊥ ∉ Σ, supp(𝜇) ⊆ Σ iff ⊥ ∉ supp(𝜇). □

Following from Theorem 5.2, if ⟨⌈𝑃⌉⟩ 𝐶 ⟨𝜓⟩ holds, then 𝐶 almost surely terminates as long as

𝜓 ⇒ ⌈true⌉, which is simple to check in many cases. For example, if𝜓 is formed as a collection of

atoms𝑄1, . . . , 𝑄𝑛 joined by & and ⊕𝑝 connectives, then the program almost surely terminates since

⌈𝑄𝑖⌉ ⇒ ⌈true⌉ holds trivially, and connectives can be collapsed using idempotence of & and ⊕𝑝 .

5.2 The Zero-One Law
McIver and Morgan [2005] showed that under certain conditions, probabilistic programs must

terminate with probability either 0 or 1. In this circumstance, almost sure termination can be

established simply by showing that the program terminates with nonzero probability.

The original rule of McIver and Morgan [2005, §2.6] used a propositional invariant 𝑃 to describe

all reachable states after each iteration of the loop. We generalize their rule by using an outcome

assertion 𝜑 as the invariant, so that in addition to describing which states are reachable, we can

also describe how those reachable states are distributed. Our version of the rule is stated below.

𝜑 ⇒ ⌈𝑒⌉ 𝜓 ⇒ ⌈¬𝑒⌉ ⟨𝜑⟩ 𝐶 ⟨𝜑 &𝜓⟩ ⟨𝜑⟩ while 𝑒 do 𝐶 ⟨⌈¬𝑒⌉ ⊕𝑝 ⊤⟩ 𝑝 > 0

⟨𝜑⟩ while 𝑒 do 𝐶 ⟨𝜓⟩
Zero-One

Given some loop while 𝑒 do 𝐶 , the first step of the Zero-One law is to come up with an invariant

pair 𝜑 and𝜓 , where 𝜑 represents the distribution of states where the guard 𝑒 remains true and𝜓

represents the distribution of states in which the loop has terminated. More precisely, 𝜑 ⇒ ⌈𝑒⌉ and
𝜓 ⇒ ⌈¬𝑒⌉. Next, we must prove that this is an invariant pair, by proving the following triple.

⟨𝜑⟩ 𝐶 ⟨𝜑 &𝜓⟩ (3)

That is, if the initial states are distributed according to 𝜑 , then loop body 𝐶 will reestablish 𝜑 with

some probability 𝑞 and will terminate (in𝜓 ) with probability 1 − 𝑞. In the limit,𝜓 will describe the

entire distribution of terminating outcomes [Zilberstein et al. 2024a, Lemma D.2], although we do

not yet know if the loop almost surely terminates. We can establish almost sure termination if 𝜑

guarantees some nonzero probability of termination, as represented by the following triple.

⟨𝜑⟩ while 𝑒 do 𝐶 ⟨⌈¬𝑒⌉ ⊕𝑝 ⊤⟩ where 𝑝 > 0 (4)

That is, for every 𝜇 ⊨ 𝜑 , the loop will always terminate (with ¬𝑒 holding) with probability at least

𝑝 > 0. From (3), we know that on the 𝑖th iteration of the loop, there is some probability 𝑞𝑖 of

reestablishing the invariant 𝜑 , in which case the loop will continue to execute. This means that the

total probability of nontermination is the product of all the 𝑞𝑖 . In general, it is possible for such an

infinite product to converge to a nonzero probability, however, from (4) we know that every tail of

that product must be at most 1 − 𝑝 , which is strictly less than 1.

P[nonterm] = 𝑞1 × 𝑞2 × 𝑞3 × · · · × 𝑞𝑛 × 𝑞𝑛+1 × · · ·︸            ︷︷            ︸
≤1−𝑝

= 0
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This implies that the product of the 𝑞𝑖 must go to 0, so that the loop almost surely terminates. The

full soundness proof is available in Zilberstein et al. [2024a, §D.1].

5.3 Proving Termination with Variants and Ranking Functions
Although the Zero-One law provides a means for proving almost sure termination, it can be

difficult to use directly, because one still must establish a minimum probability of termination. In
this section, we provide some inference rules derived from Zero-One that are easier to apply. The

first rule uses a bounded family of variants (𝜑𝑛)𝑁𝑛=0, where 𝜑0 ⇒ ¬𝑒 and 𝜑𝑛 ⇒ 𝑒 for 1 ≤ 𝑛 ≤ 𝑁 .

The index 𝑛 can be thought of as a rank, so that we get closer to termination as 𝑛 descends towards

zero. The premise of the rule is that the rank must decrease by at least 1 with probability 𝑝 > 0 on

each iteration. We represent this formally using the following triple.

⟨𝜑𝑛⟩ 𝐶 ⟨(&𝑛−1
𝑘=0

𝜑𝑘 ) ⊕𝑝 (&𝑁
𝑘=0

𝜑𝑘 )⟩
The assertion&

𝑛−1
𝑘=0

𝜑𝑘 is an aggregation of all the variants with rank strictly lower than𝑛, essentially

meaning that the states must be distributed according to those variants, but without specifying their

relative probabilities. Note that, e.g., 𝜑𝑛−1 ⇒ &
𝑛−1
𝑘=0

𝜑𝑘 , so it is possible to establish this assertion

if the rank always decreases by exactly 1. So, the postcondition states that with probability 𝑝 the

rank decreases by at least 1. That means that&
𝑁
𝑘=0

𝜑𝑘 must hold with probability 1 − 𝑝 , meaning

that the rank can increase too, as long as that increase is not too likely.

In order to establish a minimum termination probability, we note that starting at 𝜑𝑛 , it takes at

most 𝑁 steps to reach rank 0, therefore the loop terminates with probability at least 𝑝𝑁 , which is

greater than 0 since 𝑝 > 0 and 𝑁 is finite. Putting this all together, we get the following rule.

𝜑0 ⇒ ⌈¬𝑒⌉ ∀𝑛 ∈ {1, . . . , 𝑁 }. 𝜑𝑛 ⇒ ⌈𝑒⌉ ⟨𝜑𝑛⟩ 𝐶 ⟨(&𝑛−1
𝑘=0

𝜑𝑘 ) ⊕𝑝 (&𝑁
𝑘=0

𝜑𝑘 )⟩
⟨&

𝑁
𝑘=0

𝜑𝑘⟩ while 𝑒 do 𝐶 ⟨𝜑0⟩
Bounded Variant

As a special case of the Bounded Variant rule, we can derive the variant rule of McIver and

Morgan [2005, Lemma 7.5.1]. Instead of recording the rank with a family of outcome assertions, we

will instead use an integer-valued expression 𝑒rank. This can be thought of as a ranking function,

since J𝑒rankK : Σ→ Z gives us a rank for each state 𝜎 ∈ Σ. In addition, the propositional invariant

𝑃 describes the reachable states after each iteration of the loop. Finally, as long as the invariant

holds and the loop guard is true, 𝑒rank must be bounded between ℓ and ℎ, in other words ⌈𝑃 ∧ 𝑒⌉ ⇒
⌈ℓ ≤ 𝑒rank ≤ ℎ⌉. The premise of the rule is that each iteration of the loop must strictly decrease the

rank with probability at least 𝑝 > 0. That is, for any 𝑛:

⟨⌈𝑃 ∧ 𝑒 ∧ 𝑒rank = 𝑛⌉⟩ 𝐶 ⟨⌈𝑃 ∧ 𝑒rank < 𝑛⌉ ⊕𝑝 ⌈𝑃⌉⟩
Given that the rank is integer-valued and strictly decreasing, it must fall below the lower bound

ℓ within at most ℎ − ℓ + 1 steps, at which point 𝑒 becomes false since ⌈𝑃 ∧ 𝑒⌉ ⇒ ⌈ℓ ≤ 𝑒rank⌉. So
the loop terminates with probability at least 𝑝ℎ−ℓ+1, and so by the Zero-One law, it almost surely

terminates. In Zilberstein et al. [2024a, §D.2], we show how this rule is derived from Bounded

Variant by letting 𝜑0 ≜ ⌈𝑃 ∧ ¬𝑒⌉ and 𝜑𝑛 ≜ ⌈𝑃 ∧ 𝑒 ∧ 𝑒rank = ℓ + 𝑛 − 1⌉ for 1 ≤ 𝑛 ≤ ℎ − ℓ + 1. The
full rule is shown below:

⌈𝑃 ∧ 𝑒⌉ ⇒ ⌈ℓ ≤ 𝑒rank ≤ ℎ⌉ ∀𝑛. ⟨⌈𝑃 ∧ 𝑒 ∧ 𝑒rank = 𝑛⌉⟩ 𝐶 ⟨⌈𝑃 ∧ 𝑒rank < 𝑛⌉ ⊕𝑝 ⌈𝑃⌉⟩
⟨⌈𝑃⌉⟩ while 𝑒 do 𝐶 ⟨⌈𝑃 ∧ ¬𝑒⌉⟩

Bounded Rank

As an example application of the rule, recall the following resetting random walk, where the agent

moves left with probability
1

2
, otherwise it resets to a position chosen by an adversary.

while 𝑥 > 0 do
(𝑥 B 𝑥 − 1) ⊕ 1

2

(𝑥 ← {1, . . . , 5})
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When starting in a state where 0 ≤ 𝑥 ≤ 5, this program almost surely terminates. Although there

are uncountably many nonterminating traces, the probability of nontermination is zero. Even in

the worst case in which the adversary always chooses 5, the agent eventually moves left in five

consecutive iterations with probability 1. In fact, the program terminates in finite expected time, as

it is a Bernoulli process. Using the invariant 𝑃 ≜ 0 ≤ 𝑥 ≤ 5, the ranking function 𝑒rank = 𝑥 , and the

probability 𝑝 = 1

2
, the premise of Bounded Rank is simply the following triple, which is easy to

prove using the Prob and Assign rules.

⟨⌈0 < 𝑥 ≤ 5 ∧ 𝑥 = 𝑛⌉⟩ (𝑥 B 𝑥 − 1) ⊕ 1

2

(𝑥 ← {1, . . . , 5}) ⟨⌈0 ≤ 𝑥 < 𝑛⌉ ⊕ 1

2

⌈0 ≤ 𝑥 ≤ 5⌉⟩

McIver and Morgan [2005, Lemma 7.6.1] showed that Bounded Rank is complete for proving

almost sure termination if the state space is finite. While we did not assume a finite state space for

our language, this result nonetheless shows that the rule is broadly applicable. In addition, our new

Bounded Variant rule is more expressive, as it allows the invariants to have multiple outcomes.

We will see an example of how this is useful in Section 6.2.

More sophisticated rules are possible in which the rank need not be bounded. One such rule is

shown below, based on that of McIver et al. [2018]. Instead of bounding the rank, we now require

that the expected rank decreases each iteration, which is guaranteed in our rule by bounding the

amount that it can increase in the case that an increase occurs.

⟨⌈𝑃 ∧ 𝑒 ∧ 𝑒rank = 𝑘⌉⟩ 𝐶 ⟨⌈𝑃 ∧ 𝑒rank ≤ 𝑘 − 𝑑⌉ ⊕𝑝 ⌈𝑃 ∧ 𝑒rank ≤ 𝑘 + 𝑝

1−𝑝𝑑⌉⟩
⟨⌈𝑃⌉⟩ while 𝑒 do 𝐶 ⟨⌈𝑃 ∧ ¬𝑒⌉⟩

Progressing Rank

We can use this rule to prove almost sure termination of the following demonically fair random

walk, in which the agent steps towards the origin with probability
1

2
, otherwise an adversary can

choose whether or not the adversary steps away from the origin.

while 𝑥 > 0 do
𝑥 B 𝑥 − 1 ⊕ 1

2

(𝑥 B 𝑥 + 1 & skip)

We instantiate Progressing Rank with 𝑃 ≜ 𝑥 ≥ 0, 𝑒rank ≜ 𝑥 , 𝑝 ≜ 1

2
, and 𝑑 ≜ 1 to get the following

premise, which is easily proven using Prob, Nondet, Assign, and basic propositional reasoning.

⟨⌈𝑥 = 𝑘 > 0⌉⟩ 𝑥 B 𝑥 − 1 ⊕ 1

2

(𝑥 B 𝑥 + 1 & skip) ⟨⌈0 ≤ 𝑥 ≤ 𝑘 − 1⌉ ⊕ 1

2

⌈0 ≤ 𝑥 ≤ 𝑘 + 1⌉⟩

The full derivation for the demonic random walk and soundness proof for a more general version

of the Progressing Rank rule—where 𝑝 and 𝑑 do not have to be constants—appear in Zilberstein

et al. [2024a, §D.3]. Compared to the original version of this rule due to McIver et al. [2018], our

rule consolidates three premises into just one.

6 Case Studies
In this section, we present three case studies in how our logic can be used to analyze programs that

contain both probabilistic and nondeterministic operations.

6.1 The Monty Hall Problem
The Monty Hall problem is a classic paradox in probability theory in which a game show contestant

tries to win a car by guessing which door it is behind. The player has three initial choices; the car

is behind one door and the other two contain goats. After choosing a door, the host reveals one

of the goats among the unopened doors and the player chooses to stick with the original door or

switch—which strategy is better?
We model this problem with the Game program on the left side of Figure 4. First, the car is

randomly placed behind a door. Next, the player chooses a door. Without loss of generality, we say
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Game ≜



car B 1 ⊕ 1

3

(car B 2 ⊕ 1

2

car B 3) #
pick B 1 #
if car = 1 then
open← {2, 3}

else if car = 2 then
open B 3

else
open B 2

Switch ≜


if open = 2 then
pick B 3

else
pick B 2

Fig. 4. Left: the Monty Hall program. Right: additional program to switch doors

that the player always chooses door 1. We could have instead universally quantified the choice of the

player to indicate that the claim holds for any deterministic strategy. In that case, the proof would

be largely the same, although with added cases so that the host does not open the player’s door;

we instead fix the player’s choice to be door 1 for simplicity. Finally, the host nondeterministically
chooses a door to open, which is neither the player’s pick, nor the car. We now use Demonic OL to

determine the probability of winning (that is, pick = car) in both the stick strategy (Game) and the

switch strategy (Game # Switch, where Switch is the program representing the player switching

doors, presented on the right of Figure 4). We derive the following triple for the Game program:

⟨⌈true⌉⟩
Game

⟨(⌈car = 1⌉ ∧ (⌈open = 2⌉ & ⌈open = 3⌉)) ⊕ 1

3

(⌈car = 2 ∧ open = 3⌉ ⊕ 1

2

⌈car = 3 ∧ open = 2⌉)⟩

The derivation, using the rules from Figure 3, is shown in Figure 5. Note that to analyze the if

statement, we first use the rule of Constancy with pick = 1 and then de-structure the remaining

assertion with two applications of Prob Split. Below, we show manipulation of the postcondition

of Game to give us the probability of winning using the stick strategy. Irrelevant information about

the opened door is first removed. Next, since pick = 1 in all cases, we weaken car = 1 to pick = car,
and use pick ≠ car in the other outcomes. Finally, we use idempotence of ⊕ 1

2

in the last step.

⌈pick = 1⌉ ∧ ((⌈car = 1⌉ ∧ (⌈open = 2⌉ & ⌈open = 3⌉))
⊕ 1

3

(⌈car = 2 ∧ open = 3⌉ ⊕ 1

2

⌈car = 3 ∧ open = 2⌉))
=⇒ ⌈pick = 1⌉ ∧ (⌈car = 1⌉ ⊕ 1

3

(⌈car = 2⌉ ⊕ 1

2

⌈car = 3⌉))
=⇒ ⌈pick = car⌉ ⊕ 1

3

(⌈pick ≠ car⌉ ⊕ 1

2

⌈pick ≠ car⌉)
=⇒ ⌈pick = car⌉ ⊕ 1

3

⌈pick ≠ car⌉

So, the player wins with probability
1

3
in the stick strategy. Now, for the switch strategy, we can

compositionally reason by appending the Switch program to the end of the previous derivation and

then continue using the derivation rules. We again must de-structure to analyze the if statement,

this time using both Prob Split and also ND Split.

⟨⌈true⌉⟩
Game #

⟨(⌈car = 1⌉ ∧ (⌈open = 2⌉ & ⌈open = 3⌉)) ⊕ 1

3

(⌈car = 2 ∧ open = 3⌉ ⊕ 1

2

⌈car = 3 ∧ open = 2)⌉⟩
if open = 2 then pick B 3 else pick B 2

⟨(⌈car = 1⌉ ∧ (⌈pick = 3⌉ & ⌈pick = 2⌉)) ⊕ 1

3

(⌈car = 2 ∧ pick = 2⌉ ⊕ 1

2

⌈car = 3 ∧ pick = 3⌉)⟩
⟨⌈pick ≠ car⌉ ⊕ 1

3

(⌈pick = car⌉ ⊕ 1

2

⌈pick = car⌉)⟩
⟨⌈pick ≠ car⌉ ⊕ 1

3

⌈pick = car⌉⟩
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⟨⌈true⌉⟩
car B 1 ⊕ 1

3

(car B 2 ⊕ 1

2

car B 3) #
⟨⌈car = 1⌉ ⊕ 1

3

(⌈car = 2⌉ ⊕ 1

2

⌈car = 3⌉)⟩
pick B 1 #

⟨⌈pick = 1⌉ ∧ (⌈car = 1⌉ ⊕ 1

3

(⌈car = 2⌉ ⊕ 1

2

⌈car = 3⌉))⟩
if car = 1 then
⟨⌈car = 1⌉⟩
open← {2, 3}

⟨⌈car = 1⌉ ∧ (⌈open = 2⌉ & ⌈open = 3⌉)⟩
else if car = 2 then
⟨⌈car = 2⌉⟩
open B 3

⟨⌈car = 2 ∧ open = 3⌉⟩
else
⟨⌈car = 3⌉⟩
open B 2

⟨⌈car = 3 ∧ open = 2⌉⟩〈
⌈pick = 1⌉ ∧

(
(⌈car = 1⌉ ∧ (⌈open = 2⌉ & ⌈open = 3⌉))
⊕ 1

3

(⌈car = 2 ∧ open = 3⌉ ⊕ 1

2

⌈car = 3 ∧ open = 2⌉)

)〉
Fig. 5. Derivation for the Game program from Figure 4.

Note that the last two lines of the derivation are obtained by weakening the postcondition with the

rule of Conseqence. Just like in the previous case, we weaken the postcondition to only assert

whether pick = car or pick ≠ car, and then collapse two outcomes using idempotence of ⊕ 1

2

. This

time the player wins with probability
2

3
, meaning that switching doors is the better strategy.

6.2 The Adversarial von Neumann Trick
The von Neumann [1951] trick is a protocol for simulating a fair coin using a coin of unknown

bias 𝑝 . To do so, the coin is flipped twice. If the outcome is heads, tails—occurring with probability

𝑝 (1 − 𝑝)—then we consider the result to be heads. If the outcome is tails, heads—which also occurs

with probability 𝑝 (1 − 𝑝)—then we consider to result to be tails. Otherwise, we try again.

In this case study, we work with an adversarial version of the von Neumann trick in which an

adversary can alter the bias of the coin on each round, as long as the bias is between 𝜀 and 1 − 𝜀 for
some fixed 0 < 𝜀 ≤ 1

2
. We will show that just like in the original von Neumann trick, and somewhat

surprisingly, the simulated coin is fair in the presence of an adversarial bias. To model this protocol,

we let the set [𝜀, 1−𝜀]𝑁 be a finite subset of the interval of rational numbers [𝜀, 1−𝜀] ⊆ Q, formally

defined as [𝜀, 1 − 𝜀]𝑁 ≜ {𝜀 + 𝑘 (1−2𝜀)
𝑁
| 𝑘 = 0 . . . 𝑁 }. The program is shown below.

AdvVonNeumann ≜


𝑥 B false # 𝑦 B false #
while 𝑥 = 𝑦 do
𝑝 ← [𝜀, 1 − 𝜀]𝑁 #
𝑥 B flip(𝑝) #
𝑦 B flip(𝑝)

So, the program will terminate once 𝑥 ≠ 𝑦, meaning that one heads and one tails were flipped. We

wish to prove that this program almost surely terminates, and that 𝑥 = true and 𝑥 = false occur
with equal probability, meaning that we have successfully modeled a fair coin. More formally, we
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⟨⌈true⌉⟩
𝑥 B false
⟨⌈¬𝑥⌉⟩
𝑦 B false
⟨⌈¬𝑥 ∧ ¬𝑦⌉⟩ =⇒
⟨⌈𝑥 = 𝑦⌉⟩
while 𝑥 = 𝑦 do
𝑝 ← [𝜀, 1 − 𝜀]𝑁 #
𝑥 B flip(𝑝) #
𝑦 B flip(𝑝)

⟨⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉⟩

⟨⌈𝑥 = 𝑦⌉⟩
𝑝 ← [𝜀, 1 − 𝜀]𝑁 #
⟨&𝑞∈[𝜀,1−𝜀 ]𝑁 ⌈𝑝 = 𝑞⌉⟩
𝑥 B flip(𝑝) #
⟨&𝑞∈[𝜀,1−𝜀 ]𝑁 ⌈𝑝 = 𝑞⌉ ∧ (⌈𝑥 = true⌉ ⊕𝑞 ⌈𝑥 = false⌉)⟩
𝑦 B flip(𝑝)〈
&𝑞∈[𝜀,1−𝜀 ]𝑁

(⌈𝑥 = true⌉ ∧ (⌈𝑥 = 𝑦⌉ ⊕𝑞 ⌈𝑥 ≠ 𝑦⌉)) ⊕𝑞
(⌈𝑥 = false⌉ ∧ (⌈𝑥 ≠ 𝑦⌉ ⊕𝑞 ⌈𝑥 = 𝑦⌉))

〉
⟨&𝑞∈[𝜀,1−𝜀 ]𝑁 𝜑0 ⊕2𝑞 (1−𝑞) 𝜑1⟩

⟨𝜑0 ⊕2𝜀 (1−𝜀) (𝜑0 & 𝜑1)⟩

Fig. 6. Derivation of the von Neumann trick program.

will prove that ⟨⌈true⌉⟩ AdvVonNeumann ⟨⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉⟩. We will use the Bounded

Variant rule to analyze the main loop, with the following variants.

𝜑0 ≜ (⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉) ∧ ⌈𝑥 ≠ 𝑦⌉ 𝜑1 ≜ ⌈𝑥 = 𝑦⌉

The variant 𝜑1 with the higher rank simply states that 𝑥 = 𝑦, meaning that the loop will continue

to execute. The lower-ranked variant 𝜑0 states both that 𝑥 ≠ 𝑦—the loop will terminate—and that

𝑥 = true and 𝑥 = false both occur with probability
1

2
. This is an example of a variant with multiple

outcomes that is not supported in pre-expectation reasoning, as mentioned in Section 5.3.

Each execution of the loop body will reduce the rank of the variant from 1 to 0 with probability

2𝑝 (1 − 𝑝), where 𝑝 is chosen by the adversary. The worst case is that the adversary chooses either

𝑝 = 𝜀 or 𝑝 = 1 − 𝜀, in which case the probability of terminating the loop is 2𝜀 (1 − 𝜀). Given that

there are only two variants, the Bounded Variant rule simplifies to:

⟨𝜑1⟩ 𝐶 ⟨𝜑0 ⊕2𝜀 (1−𝜀) (𝜑0 & 𝜑1)⟩
⟨𝜑1⟩ while 𝑒 do 𝐶 ⟨𝜑0⟩

The main derivation is shown on the left of Figure 6, and the premise of the Bounded Variant rule

is on the right. After the two flips, all four probabilistic outcomes are enumerated. This is simplified

using the associativity and commutativity rules from Section 4.1 to conclude that 𝜑0 ⊕2𝑞 (1−𝑞) 𝜑1

for each 𝑞. As mentioned before, since we know that 2𝑞(1 − 𝑞) ≥ 2𝜀 (1 − 𝜀), we can weaken this to

be 𝜑0 ⊕2𝜀 (1−𝜀) (𝜑0 & 𝜑1). Now, since the assertion no longer depends on 𝑞, we use idempotence to

remove the outer &. In the end, we get the postcondition ⌈𝑥 = true⌉ ⊕ 1

2

⌈𝑥 = false⌉, as desired.

6.3 Probabilistic SAT Solving by Partial Rejection Sampling
Rejection sampling is a standard technique for generating random samples from certain distributions.

A basic version of rejection sampling can be used when a program has a way to generate random

samples uniformly from a set𝑋 , and needs to generate uniform random samples from a set 𝑆 , where

𝑆 ⊆ 𝑋 . To do so, a simple rejection sampling procedure will draw a sample 𝑥 from 𝑋 and then

check whether 𝑥 ∈ 𝑆 . If 𝑥 ∈ 𝑆 , the rejection sampler is said to accept 𝑥 , and returns it. However, if

𝑥 ∉ 𝑆 , the sampler is said to reject 𝑥 , and repeats the process with a fresh sample from 𝑋 .

In some situations, the set 𝑋 is a product of sets 𝑋1 × · · · × 𝑋𝑛 , and a sample 𝑥 = (𝑥1, . . . , 𝑥𝑛)
from 𝑋 is generated by independently drawing samples 𝑥1, . . . , 𝑥𝑛 , where each 𝑥𝑖 ∈ 𝑋𝑖 . In this case,

when 𝑥 is rejected, rather than redrawing all of the 𝑥𝑖 to form a new sample from 𝑋 , one might

consider instead trying to partially resample the components of 𝑥 . In particular if 𝑥 is close to being
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Solve ≜
𝑏 B Eval #
while ¬𝑏 do

SelectClause #
SampleClause #
𝑏 B Eval

SampleClause ≜
x[cv[𝑠] [1]] ≔ flip

(
1

2

)
#

x[cv[𝑠] [2]] ≔ flip
(
1

2

)
#

x[cv[𝑠] [3]] ≔ flip
(
1

2

)

SelectClause ≜
𝑠 ≔ −1 #
𝑖 ≔ 1 #
while 𝑖 ≤ 𝑀 do
if ¬EvalClause(𝑖) then
if 𝑠 = −1 then
𝑠 ≔ 𝑖

else
skip & 𝑠 B 𝑖 #

𝑖 ≔ 𝑖 + 1 #

EvalClause(𝑖) ≜
(cs[𝑖] [1] ⊙ x[cv[𝑖] [1]]) ∨
(cs[𝑖] [2] ⊙ x[cv[𝑖] [2]]) ∨
(cs[𝑖] [3] ⊙ x[cv[𝑖] [3]])

Eval ≜
EvalClause(1) ∧
EvalClause(2) ∧

...

EvalClause(𝑀)

Fig. 7. SAT solving via rejection sampling, split into subroutines.

in 𝑆 , then one might try to only redraw some subset of components 𝑥 𝑗1 , . . . , 𝑥 𝑗𝑘 , and re-use the

other components of 𝑥 to form a new sample 𝑥 ′ to test for membership in 𝑆 .

In general, partial resampling can result in drawing samples that are not uniformly distributed

over the set 𝑆 . However, Guo et al. [2019] observed that under certain conditions on the set 𝑆 and 𝑋 ,

a partial rejection sampling procedure does generate uniform samples from 𝑆 . In particular, when

the 𝑥𝑖 are boolean variables, and the test for (𝑥1, . . . , 𝑥𝑛) ∈ 𝑆 can be encoded as a boolean formula

𝜑 over these variables, then it suffices for 𝜑 to be a so-called extremal formula. Guo et al. [2019]

showed that many algorithms for sampling combinatorial structures can be formulated in terms of

sampling a satisfying assignment to an extremal formula. In this example, we consider a partial

rejection sampler for generating a random satisfying assignment for a formula in 3-CNF form. We

will prove that the sampler almost surely terminates if the formula has a satisfying assignment
1
.

Figure 7 shows the solver program, Solve, broken up into subroutines
2
. The clauses are encoded

using two 2-dimensional lists, cv and cs, each of size𝑀 × 3, where𝑀 is the number of clauses. See

Zilberstein et al. [2024a, §E.1] for the semantics of list operations. The entry cv[𝑖] [ 𝑗] gives the
variable of the 𝑗 th variable in clause 𝑖 , and cs[𝑖] [ 𝑗] is 0 if this variable occurs in negated form, and

is 1 otherwise. The ⊙ operation is xnor, so 1 ⊙ 0 = 0 ⊙ 1 = 0 and 0 ⊙ 0 = 1 ⊙ 1 = 1. The program

stores its current truth-value assignment for each variable in the list x.
Each iteration of the loop in Solve starts by nondeterministically selecting an unsatisfied clause 𝑠

to resample via the SelectClause subroutine. To do so, it iterates over the clauses, checking if each
one is satisfied using EvalClause. When an unsatisfied clause is found, 𝑠 is nondeterministically

either updated to 𝑖 or left as is (unless 𝑠 = −1, in which case 𝑠 is updated to 𝑖 , to ensure that

some unsatisfied clause is picked). Nondeterminism allows us to under-specify how the sampler

selects a clause to resample, which in practice might be based on various heuristics. By proving

almost-sure termination for this non-deterministic version, we establish almost-sure termination

no matter which heuristics are used, including randomized ones. Presuming that the formula is

not yet satisfied (Eval = false), the SelectClause routine selects an 𝑠 such that 1 ≤ 𝑠 ≤ 𝑀 and

EvalClause(𝑠) = false, which is captured by the following specification and proven in Zilberstein

et al. [2024a, §E].

⟨⌈Eval = false⌉⟩ SelectClause ⟨⌈1 ≤ 𝑠 ≤ 𝑀 ∧ EvalClause(𝑠) = false⌉⟩

1
Since this termination property holds even if the formula does not satisfy the extremal property, we will not formally

define the extremal property or assume it as a precondition.

2
Note that our language does not include subroutines, but these routines are interpreted as macros and are inlined into the

main program. We only separate them for readability.
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⟨⌈true⌉⟩
𝑏 B Eval #
⟨⌈𝑏 = Eval⌉⟩
while ¬𝑏 do
⟨⌈𝑏 = Eval ∧ ¬𝑏 ∧ [¬Eval] · dist(x, x∗) = 𝑘⌉⟩
⟨⌈Eval = false ∧ dist(x, x∗) = 𝑘⌉⟩
SelectClause #

⟨⌈0 ≤ 𝑠 < 𝑀 ∧ EvalClause(𝑠) = false ∧ dist(x, x∗) = 𝑘⌉⟩
SampleClause #

⟨⌈dist(x, x∗) < 𝑘⌉ ⊕ 1

8

⌈true⌉⟩
𝑏 B Eval
⟨⌈𝑏 = Eval ∧ dist(x, x∗) < 𝑘⌉ ⊕ 1

8

⌈𝑏 = Eval⌉⟩
⟨⌈𝑏 = Eval ∧ [¬Eval] · dist(x, x∗) < 𝑘⌉ ⊕ 1

8

⌈𝑏 = Eval⌉⟩
⟨⌈Eval = true⌉⟩

Fig. 8. Derivation of the Solve program, where x∗ is a known satisfying assignment.

Next, the three variables in the selected clause are resampled. In order to prove that the program

almost surely terminates, we need to show that the resampling operation brings the process closer

to termination with nonzero probability. To do this, we measure how close the candidate solution

is to some satisfying assignment x∗ (recall we assumed that at least one such satisfying assignment

exists). Closeness is measured via the Hamming distance, computed as follows, where the Iverson

brackets [𝑒] evaluates to 1 if 𝑒 is true and 0 is 𝑒 is false, and 𝑁 is the number of variables.

dist(𝑥,𝑦) ≜ ∑𝑁
𝑖=1

[
𝑥 [𝑖] ≠ 𝑦 [𝑖]

]
Now, we can give a specification for SampleClause in terms of the Hamming distance. That is,

if dist(x, x∗) is initially 𝑘 and clause 𝑠 is not satisfied, then resampling 𝑠 will strictly reduce the

Hamming distance with probability at least
1

8
. The reason for this is that before resampling, x and

x∗ must disagree on at least one of the variables in clause 𝑠 , since clause 𝑠 is not satisfied by x. After
resampling, there is at least a

1

8
probability that all 3 resampled variables agree with x∗, in which

case the Hamming distance is reduced by at least 1. The full proof is in Zilberstein et al. [2024a, §E].

⟨⌈dist(x, x∗) = 𝑘 ∧ EvalClause(𝑠) = false⌉⟩ SampleClause ⟨⌈dist(x, x∗) < 𝑘⌉ ⊕ 1

8

⌈true⌉⟩

Using these specifications, we now prove that Solve almost surely terminates. The derivation is

shown in Figure 8. We instantiate Bounded Rank to analyze the loop with the following parameters:

𝑃 ≜ 𝑏 = Eval 𝑒rank ≜ [¬Eval] · dist(x, x∗) 𝑝 ≜
1

8

The invariant 𝑃 simply states that 𝑏 indicates whether the current assignment of variables satisfies

the formula. The ranking function is equal to the Hamming distance between x and the sample

solution x∗ if the the formula is not yet satisfied, otherwise it is zero, which accounts for the fact

that the program may find a solution other than x∗. We also remark that 𝑒rank is bounded between

1 and 𝑁 (where 𝑁 is the total number of variables) as long as the formula is not yet satisfied. As we

saw in the specification for SampleClause, the probability of reducing the rank is
1

8
.

Entering the loop, we see that Eval must be false, so the rank is just dist(x, x∗). Applying the

specifications for the two subroutines, we prove that the Hamming distance strictly decreases with

probability at least 𝑝 . The assignment to 𝑏 then reestablishes the invariant. When the Hamming

distance has decreased, we also have that 𝑒rank decreased, as multiplying by [¬Eval] can only make
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the term smaller. Upon exiting the loop, we have that 𝑏 = true and hence the final postcondition

Eval = true, meaning that the formula is satisfied and the program almost surely terminates.

Aguirre et al. [2024] prove termination of a similar randomized SAT solving technique using a

separation logic for reasoning about upper bounds on probabilities of non-termination. Because

the language they consider does not have non-determinism, they fix a particular strategy for

selecting clauses to resample, whereas the use of nondeterministic choice in the proof above implies

termination for any strategy that selects an unsatisfied clause. Their proof essentially shows that

for any 𝜀 > 0, after some number of iterations, the Hamming distance will decrease with probability

at least 1 − 𝜀. The Bounded Rank rule effectively encapsulates this kind of reasoning in our proof.

7 Related Work
Program Logics. Demonic Outcome Logic takes inspiration from program logics for reasoning

about purely probabilistic programs, such as Probabilistic Hoare Logic [Corin and den Hartog

2006; den Hartog 1999, 2002], VPHL [Rand and Zdancewic 2015], Ellora [Barthe et al. 2018], and

Outcome Logic [Zilberstein 2024; Zilberstein et al. 2023, 2024b]. Those logics provide means to

prove properties about the distributions of outcomes in probabilistic programs, to which we added

the ability to also reason about demonic nondeterminism.

Although this paper introduces the first logic for reasoning about the outcomes in demonic

probabilistic programs, there is some prior work on other styles of analysis. Building on the work

of Varacca [2002, 2003], Polaris is a relational separation logic for reasoning about concurrent

probabilistic programs [Tassarotti 2018; Tassarotti and Harper 2019]. Specifications take the form

of refinements, where a complex program is shown to behave equivalently to an idealized version.

Probabilistic analysis can then be done on the idealized program to determine its expected behavior,

but it is external to the program logic. Polaris also does not support unbounded looping, and

therefore it cannot be used to analyze our last two case studies.

Weakest Pre-Expectations. Weakest pre-expectation (wp) transformers are calculi for reasoning

about probabilistic programs in terms of expected values [Morgan et al. 1996a]. They were inspired

by propositional weakest precondition calculi [Dijkstra 1975, 1976], Probabilistic Propositional

Dynamic Logic [Kozen 1983], and probabilistic predicate transformers [Jones 1990]. Refer to

Kaminski [2019] for a thorough overview of this technique.

From the start, wp supported nondeterminism; in fact, wp emerged from a line of work on

semantics for randomized nondeterministic programs [He et al. 1997; McIver and Morgan 2001;

Morgan et al. 1996b]. Nondeterminism is handled by lower-bounding expectations, corresponding

to larger expected values being better. An angelic variant can alternatively be used for upper bounds.

Work on wp has intersected with termination analysis for probabilistic programs. Some of this

work uses martingales [Chakarov and Sankaranarayanan 2013] to show that programs terminate

with finite expected running time. More sophisticated techniques exist for almost sure termination

too [Kaminski 2019; McIver and Morgan 2005; McIver et al. 2018].

As noted by Kaminski [2019, §2.3.3], the choice of either upper or lower bounding the expected

values is “extremal”—it forces a view where expectations must be either maximized or minimized,

as opposed to our approach where multiple outcomes can be represented in one specification.

However, reasoning about outcomes and expectations are not mutually exclusive; Barthe et al.

[2018, Theorem 1] showed how to embed a wp calculus in a probabilistic program logic. A similar

construction is possible in Demonic Outcome Logic.

Powerdomains for Probabilistic Nondeterminism. Powerdomains are a well-studied domain-theoretic

tool for reasoning about looping nondeterministic programs, providing a means for defining a

continuous domain in which loops can be interpreted as fixed points. This revolves around defining
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appropriate orders over sets of states to show that iterated actions eventually converge. Given a

partially ordered domain of program states ⟨Σ, ≤⟩, there are three typical choices for orders over
sets of states, known as the Hoare, Smyth [1978], and Egli-Milner orders, defined below:

𝑆 ⊑H 𝑇 iff ∀𝜎 ∈ 𝑆. ∃𝜏 ∈ 𝑇 . 𝜎 ≤ 𝜏

𝑆 ⊑S 𝑇 iff ∀𝜏 ∈ 𝑇 . ∃𝜎 ∈ 𝑆. 𝜎 ≤ 𝜏

𝑆 ⊑EM 𝑇 iff 𝑆 ⊑H 𝑇 and 𝑆 ⊑S 𝑇
In general, none of these relations are antisymmetric, making them preorders, whereas domain

theoretic tools for finding fixed points operate on partial orders. So the sets representing the program
semantics must be closed in order to obtain a proper domain. This closure operation loses precision

of the semantics, incorporating additional possibilities which are not always intuitive.

The Hoare order requires a down-closure, essentially meaning that nontermination may always

be an option. This makes it a good choice for partial correctness, where we only wish to determine

what happens if the program terminates, as in Hoare Logic. The Smyth [1978] order, which we use

in this paper, requires an upwards closure, so that nontermination becomes erratic behavior. This

makes it a good choice for total correctness [Manna and Pnueli 1974], which is concerned only

with terminating programs where erratic behavior does not arise.

In the Egli-Milner case—and the associated Plotkin Powerdomain [1976]—the more precise, but

also less intuitive Egli-Milner closure is used. McIver and Morgan [2001] created a denotational

model where fixed points are taken with respect to the Egli-Milner order rather than the Smyth

[1978] one. As such, they require the domain of computation to be Egli-Milner closed, which means

that 𝑆 = ↑𝑆 ∩↓𝑆 . Unlike up-closedness (required for the Smyth approach), which is preserved by all

the operations in Figure 1, the semantics of McIver and Morgan [2001] must take the Egli-Milner

closure after nondeterministic and probabilistic choice and after sequential composition, making the

model more complex and adding outcomes that do not have an obvious operational meaning. Refer

to Keimel and Plotkin [2017]; Tix et al. [2009] for a more complete exploration of that approach.

Let us examine the semantics of a coin flip in order to demonstrate why the Smyth order is

preferable to Hoare. The variable 𝑥 is assigned the values true or false each with probability
1

2
. So,

the result of running the program is a singleton set containing the aforementioned distribution.

q
𝑥 B flip

(
1

2

)y
(𝜎) =

{
𝜎 [𝑥 B true ] ↦→ 1

2

𝜎 [𝑥 B false] ↦→ 1

2

}
If we were to use the Hoare powerdomain, then we would need to down-close this set, adding all

smaller distributions too. This not only means that nontermination is possible, but we would not

even be able to determine that 𝑥 = true and 𝑥 = false occur with equal probability.

q
𝑥 B flip

(
1

2

)y
(𝜎) =

{
𝜎 [𝑥 B true ] ↦→ 𝑝

𝜎 [𝑥 B false] ↦→ 𝑞

⊥ ↦→ 1 − 𝑝 − 𝑞

���� 𝑝 ≤ 1

2

, 𝑞 ≤ 1

2

}
This was the approach taken by Varacca [2002], and the loss of precision is reflected in the adequacy

theorems of that work. In particular, Varacca’s Proposition 6.10 shows that the denotational model

includes outcomes that may not be possible according to the associated operational model. By

contrast, the up-closure—required by the Smyth order—adds nothing for this program; the semantics

is already a full distribution and therefore there are no distributions larger than it. We can therefore

conclude that the two outcomes occur with probability exactly
1

2
, as desired.

This example demonstrates that the notion of partial correctness (as embodied by the Hoare

order) does not make much sense in probabilistic settings, since it translates to uncertainty about

the minimum probability of an event. Total correctness, on the other hand, does make sense,

and corresponds to the notion of almost sure termination, which is a property of great interest in

probabilistic program analysis [Chakarov and Sankaranarayanan 2013; McIver et al. 2018].
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The problem with the Smyth order is that a semantics based on it is not Scott [1972] continuous

in the presence of unbounded nondeterminism [Apt and Plotkin 1986; Søndergaard and Sestoft

1992]. This is the reason why He et al. [1997] instead use the Knaster-Tarski theorem to guarantee

the fixed point existence via transfinite iteration, which only requires monotonicity and not Scott

continuity. The main shortcoming of He et al.’s approach is that it did not guarantee non-emptiness

of the set of result distributions, meaning that some programs may have vacuous semantics.

To address this, Morgan et al. [1996a] added the additional requirement that domain only include

topologically closed sets (Morgan et al. called this property Cauchy closure). As we mentioned in

Section 3.3 and proved in Zilberstein et al. [2024a, §B.3], closure ensures that no programs are

modeled as empty sets, but it also prevents commands from exhibiting unbounded nondeterminism.

For example, it is not possible to represent a program 𝑥 B ⋆, which nondeterministically selects a

value for 𝑥 from the natural numbers—the set N is not closed since it does not contain a limit point.

McIver and Morgan [2005] suggested that topological closure opens up the possibility of Scott

continuity. In addition, there has been work to combine classical powerdomains for nondeterminism

[Plotkin 1976; Smyth 1978] with the probabilistic powerdomain of Jones [1990]; Jones and Plotkin

[1989]. This was first pursued by Tix [1999], and was later refined in Keimel and Plotkin [2017];

Tix [2000]; Tix et al. [2009]. They obtain a Scott continuous composition operation (which they call

𝑓 ) via a universal property, as opposed to the direct construction of Jacobs [2008] that we use.

Monads for Probabilistic Nondeterminism. Varacca [2002, 2003] introduced powersets of indexed
valuations. An indexed valuation behaves similarly to a distribution, but the idempotence property

is removed, so that 𝑋 ⊕𝑝 𝑋 ≠ 𝑋 . As shown by Varacca and Winskel [2006], a powerset of indexed

valuations has a Beck [1969] distributive law, and is therefore a monad. However, indexed valuations

are difficult to work with since equivalence is taken modulo renaming of the indices.

Varacca [2002, Theorem 6.5] proved that denotational models based on indexed valuations are

equivalent to operational models in which a deterministic scheduler resolves the nondeterminism.

Given our goals of modeling adversarial nondeterminism, we opted to use convex sets, which model

a more powerful probabilistic scheduler, giving us robust guarantees in a stronger threat model.

An alternative approach is to flip the order of composition and work instead with distributions of

nondeterministic outcomes. While the distribution monad does not compose with powerset, it does

compose with multiset, as shown by Jacobs [2021] and further explored by Kozen and Silva [2024].

The barrier to this approach is that the multisets must be finite, but it is easy to construct programs

that reach infinitely many nondeterministic outcomes via while loops. So this model cannot be

used to represent arbitrary programs from the language in Section 3. The use of multiset instead

of powerset is again an instance of removing an idempotence law, this time for nondeterminism:

𝑋 & 𝑋 ≠ 𝑋 . Indeed, idempotence is the key reason why no distributive law exists in both cases

[Parlant 2020; Zwart 2020; Zwart and Marsden 2019].

Other Semantic Approaches. Segala [1995] created a model in which a tree of alternating probabilistic

and nondeterministic choices is collapsed into a set of distributions collected from all combinations

of nondeterministic choices. However, this model does not lead to a compositional semantics.

Additional operational models of probabilistic nondeterminism have been studied through the lens

of process algebras [den Hartog 1998, 2002; den Hartog and de Vink 1999; Mislove et al. 2004]. In

addition, coalgebraic methods have been used to define trace semantics and establish bisimilarity

of randomized nondeterministic automata [Bonchi et al. 2021a, 2019, 2021b, 2022; Jacobs 2008].

Aguirre and Birkedal [2023] note the difficulties of building denotational models that combine

probabilistic and nondeterministic choice with other challenging semantic features. Instead, they

start with an operational semantics for probabilistic and nondeterministic choice and then construct
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a step-indexed logical relations model for a typed, higher-order language with polymorphism and

recursive types. Using this logical relations model, they derive an equational theory for contextual

equivalence and show that it validates many of the equations found in denotational models.

8 Conclusion
This paper introduced Demonic Outcome Logic, a logic for outcome based reasoning about programs

that are both randomized and nondeterministic, a combination that presents many challenges for

program semantics and analysis. The logic includes several novel features, such as equational laws

for manipulating pre- and postconditions and rules for loops that both establish termination and

quantify the distribution of final outcomes from a single premise. We build on a large body of work

on semantics for probabilistic nondeterminism [He et al. 1997; Jacobs 2008; Morgan et al. 1996a,b;

Tix et al. 2009; Varacca 2002], and also draw inspiration from Outcome Logic [Zilberstein 2024;

Zilberstein et al. 2023, 2024b] and weakest pre-expectation calculi [Kaminski 2019; Morgan et al.

1996a; Zhang et al. 2024]. The resulting logic contains rules that enable effective reasoning about

distributions of outcomes in randomized nondeterministic programs, as illustrated through the

three presented case studies. The simplicity of the rules is enabled by a carefully chosen denotational

semantics that allows us to hide the complex algebraic properties of the domain in the proof of their

soundness. Compared to weakest pre-expectation reasoning, the propositional approach afforded

by Demonic Outcome Logic enables reasoning about multiple outcomes in tandem, leading to more

expressive specifications, and the loop rules rely on fewer, simpler premises.

Moving forward, we want to go beyond standard nondeterminism and extend the logic for reason-

ing about probabilistic fine-grain concurrency with shared memory. This will require fundamental

changes to the denotational semantics and inference rules, although prior work on Concurrent Sep-

aration Logic [O’Hearn 2004], Outcome Separation Logic [Zilberstein et al. 2024b], and Concurrent

Kleene Algebra [Hoare et al. 2011] will provide a good source of inspiration. Using the resulting

logic, we will verify concurrent algorithms such as distributed cryptographic protocols, for which

state of the art techniques use limited models of concurrency and operate by establishing observa-

tional equivalence and then separately proving properties of an idealized program [Gancher et al.

2023]. By contrast, we plan to develop a logic based on a fine-grain concurrency model, which can

prove direct specifications involving probabilistic outcomes. We also plan to explore a mechanized

implementation of the logic, building on existing frameworks for (concurrent) separation logic

such as Iris [Jung et al. 2015].
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