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Abstract. Most previous work on the semantics of higher-order pro-
grams with local state involves complex storage modeling with pointers
and memory cells, complicated categorical constructions, or reasoning
in the presence of context. In this paper we show how a relatively sim-
ple relational semantics can be used to avoid these complications. We
provide a natural relational semantics for a programming language with
higher-order functions. The semantics is purely compositional, with all
contextual considerations completely encapsulated in the state. We show
several equivalence proofs using this semantics based on examples of
Meyer and Sieber (1988).

1 Introduction

Reasoning about higher-order programs with local state is an important and
difficult problem that has garnered much attention over the years. Most previ-
ous work involves complex storage modeling with pointers and memory cells or
complicated categorical constructions to capture the intricacies of programming
with state. Reasoning about the equality of such programs typically involves
the notion of contextual or observable equivalence, where two programs are con-
sidered equivalent if either can be put in the context of a larger program and
yield the same value. Pitts [1] explains that these notions are difficult to define
formally, because there is no clear agreement on the meaning of program context
and observable behavior. A common goal is to design a semantics that is fully
abstract, where observable equivalence implies semantic equivalence, although
this notion makes the most sense in a purely functional context (see for example
2,3)).

Work in modeling local state dates back over thirty years. Early seminal work
by Meyer and Sieber [12] used the store model of Halpern-Meyer-Trakhtenbrot to
prove equivalence of ALGOL procedures with no parameters. Their goal was to
formalize informal arguments about the contextual equivalence of programs with
block structure. One of the most important contributions of their work was the
introduction of seven examples that exemplify the subtleties in reasoning about
programs with local state. These classical examples have become the preferred
standard against which to evaluate models that address the problem.

Much early attention focused on the use of denotational semantics to model
a set of storage locations [4-7]. The inability to prove some simple program



equivalences using traditional denotational techniques led several researchers to
take a categorical approach [8-10]. See [11] for more information regarding the
history of these approaches.

More recently, several researchers have investigated the use of operational
semantics to reason about ML programs with references. While operational se-
mantics can be easier to understand, their use makes reasoning about programs
more complex. Mason and Talcott [13-15] considered a A-calculus extended with
state operations. By defining axioms in the form of contextual assertions, Mason
and Talcott were able to prove the equivalence of several examples of Meyer and
Sieber. Pitts and Stark [1,16-18] also use operational semantics.

Others have used game semantics to reason about programs with local state
[19-22]. Several full abstraction results have come from using game semantics to
represent languages with state and higher-order constructs.

In this paper, we wish to explore the extent to which relational semantics can
be used to avoid intricate memory modeling, category theory, and the explicit
use of context in program equivalence proofs. Relational semantics combine the
expressiveness of denotational semantics with the more intuitive understanding
of operational semantics. Our objective is to define a notion of local variable
scoping, along with a purely compositional semantics based on binary relations,
such that all contextual considerations are completely encapsulated in the se-
mantics.

We provide a natural relational semantics for a programming language with
higher-order functions in Section 3. This treatment contrasts sharply with other
contemporary functional or denotational approaches (see for example [23-25]).
One distinguishing aspect of our approach is that functions and data are not
conflated; we distinguish between expressions that can denote values and those
that can denote programs. This allows us to give a development that aligns more
closely with the procedural view of computation (computation as state manip-
ulation) without abandoning the functional view (computation as evaluation).
This is useful even for languages such as ML that are nominally functional. Our
semantics allows destructive updates, but no aliasing.

Fully compositional relational semantics have been quite popular for first-
order imperative programs (see for example [26] and references therein), but
to our knowledge this is the first attempt to provide semantics in this style to
higher-order programs.

We are ultimately interested in moving toward a more axiomatic treatment
of program equivalence and partial correctness for higher-order programs in the
style of Hoare logic or Kleene algebra with tests [27]. Our compositional pro-
gram operators are based on the Kleene algebra operators (see [27,26]), which
have well-understood relational models and are simpler and more amenable to
axiomatic treatment than conventional programming constructs. We take some
initial steps in this direction in Section 4, in which we prove six of Meyer and
Sieber’s seven examples using relational semantics. The only example we cannot
handle is the one involving aliasing, since our semantics does not treat aliasing
at present.



2 Syntax

2.1 Types

A type is either a base type denoting an individual element of the domain of
computation or a functional type of the form s — t, where s and t are types or
void. The notation void is to accommodate methods with no arguments and/or
no return value, but it is not itself a type. We assume the existence of infinitely
many variables of each type.

Expressions are either value expressions or program expressions. These two
sets of expressions are disjoint and are defined by mutual induction.

2.2 Value Expressions

Value expressions must be well-typed. Let X be a first-order signature consisting
of a collection of function, relation, and constant symbols. A value expression is
either

(i) a variable,

(ii) a symbol of the signature X,

(iii) a A-term of the form Az.p, Axz.p; e, A().p, or X().p; e, where x is a variable, p
is a program expression, and e is a value expression,

(iv) an application P(d), where P is a value expression of functional type with
non-void return type and d is a value expression of the appropriate input
type for P,

(v) an application P(), where P is a value expression of functional type with
non-void return type and void input.

Evaluation of an expression of the form (i)—(iii) is immediate and without side
effects. In (iii), the forms Az.p and \().p are for methods with no return value (or
return value void) and the forms Az.p; e and \().p; e are for methods with return
value e. The forms A().p and \().p; e are parameterless methods. In general, the
process of evaluating a value expression (iv) or (v) can have side effects, which
manifest themselves as a change of state.

2.3 Program Expressions

Program expressions differ from value expressions in that they do not yield a
value. However, their execution generally results in a change of state.
Syntactically, a program expression is either

(i) an assignment x := d, where x is variable and d is a value expression of the
same type,
(ii) a test R(d), where R is a relation symbol of the signature X' and d is a value
expression of the appropriate input type for R,
(iii) a nondeterministic choice p + ¢, where p and ¢ are program expressions,
(iv) a sequential composition p; ¢, where p and ¢ are program expressions,



(v) an iteration p*, where p is a program expression,
(vi) an application P(d), where P is a functional expression with void return
type and d is a value expression of the appropriate input type for P,
(vii) an application P(), where P is a functional expression with void input and
return type.

As mentioned, Az.p, Az.p;e, A().p, and A().p;e are only value expressions, not
program expressions. The application (Az.p)(d) is a program expression, but the
application (Ax.p;e)(d) is a value expression.

In the presence of higher-order functions, we can encode let expressions by a
standard encoding;:

let x =d in p end = (Az.p)(d)
let z =d in p;e end = (Az.p; e)(d).

3 Relational Semantics

The domain of computation is a first-order structure 2 of signature Y. Each sym-
bol of X' is interpreted as a function, relation, or constant of 2 of the appropriate

type.

3.1 Closure Structures

Before we can give the semantics, we must define what we mean by a state of
execution. Informally, a state is a structure that contains all the variable/value
bindings that have been created up to that point, along with specific rules for
lookup, new binding creation, and destructive update. We will call these closure
structures. Programs will be interpreted as relations on closure structures. The
definition is directly motivated by the operational semantics of ML, Scheme,
and other languages with static binding, in which the environment of a method
declaration is saved with the compiled method for the purpose of evaluating free
variables when the method is called; see for example [28, Ch. 10].

Formally, a closure structure is a triple 0 = (T, «, s), where T is a tree, « is
a reference to a node in 7', and s is a stack of references to nodes in 7.

Each node of T' (except the root) is an object containing

— a binding of the form = = ¢, where z is a variable and c is a value of the
same type, and
— a reference to its parent in T'.

Distinct nodes are different objects, but may represent the same binding and
may have the same parent. We use «, 3, ... to refer to nodes of T" and o, 7, ...
to refer to closure structures.

Every node « of T uniquely determines an enwvironment, which is the list
consisting of a and all its ancestors back to the root of T. We denote this envi-
ronment also by «. This slight abuse of notation should cause no confusion, since



there is a one-to-one correspondence between nodes in T' and the environments
they determine.

It is important to note that we have not defined an environment as a list
of bindings. As distinct nodes can represent the same binding, so can distinct
environments represent the same list of bindings.

The root of T', denoted &, represents the empty environment with no bindings.
It is the terminal node of all environments in 7T'.

The empty closure structure is (g,¢, []), where ¢ is the root and [] is the
empty stack.

The environment « in a closure structure o = (T, «, s) is called the active
environment of o and is denoted actv(c). In Section 3.4 below, we will describe
the operations of lookup and rebinding on closure structures. These operations
are always performed in the active environment.

The set of closure structures is denoted CS.

3.2 Values
The values ¢ occurring in bindings are either

(i) elements and functions of the domain of computation 2, or
(ii) pairs (¢, 8), where t is a A-expression of the form Az.p, A\x.p;e, A().p, or
A().p; e and G is a reference to a node in T

Values of class (i) are called intrinsic values, and those of class (ii) are called
closures.

A closure (t, 8) is created when the expression ¢ is evaluated. The reference
[ is included in order to recall the environment that was active at the time of
the evaluation. That environment will be used in future calls to interpret the
free variables of ¢t. Although the bindings in this environment may change over
the lifetime of the object due to variable assignments, the reference 8 does not.

Symbols f,g,... range over intrinsic functions. Since we have postulated
X as a first-order signature, closures, which are of functional type, cannot be
arguments of intrinsic functions. All higher-order functions must be constructed
using \-expressions.

The set of values is denoted Val.

3.3 Accessibility

A node of a closure structure is accessible if it is reachable starting from the active
environment or from a reference on the stack and following parent references or
references f3 in closures (¢, 5). Note that any descendant of an inaccessible node
is inaccessible. Two closure structures are considered equivalent if their accessi-
ble substructures are isomorphic; that is, if there is a one-to-one correspondence
between accessible nodes of their trees and between their stack entries and ac-
tive environments that preserves stack order and all reference relationships and
binding values (environment references in closures are mapped appropriately un-
der the isomorphism). Equivalence modulo accessibility can be viewed as a kind



of mathematical garbage collection, although we do not postulate any explicit
mechanism for garbage collection.

The purpose of the stack is to ensure the persistence of nodes across compu-
tations in which those nodes might otherwise become inaccessible. We will give
a more precise explanation when we give the relational semantics below.

3.4 Operations on Closure Structures

Our relational semantics is defined in terms of the following low-level operations
on closure structures.

If x is variable, ¢ is a value, and « is an environment in o, then £ = ¢ : «
denotes the environment obtained by creating a new node with binding x = ¢
and prepending it to a. Whenever this occurs, a reference to « is available on
top of the stack of o, along with a reference to « in the case ¢ is a closure (¢,7).
These references are popped (or just the reference to «, if ¢ is an intrinsic value)
and a reference to the newly created node is pushed onto the stack.

If ¢ is a closure structure and (3 is an environment in o, then 3 4+ o denotes
the result of popping [ off the stack (it will always be there when this operation
is applied), pushing the current active environment on the stack, and making
0 the new active environment. Thus we can think of this operation simply as
switching the active environment with the environment on top of the stack.

These two operations are most commonly used in tandem to create a new
binding. In this case, (z = ¢ : @)+ o denotes the closure structure obtained from
o by creating a new node with binding x = ¢, prepending this node to «, then
making this the new active environment. Before this operation, references to «
and «y if ¢ is a closure (¢,) are available on top of the stack. In the special case in
which a = actv(o), we abbreviate this by (z = ¢) + . The cumulative effect on
the stack is to pop one or two elements, depending on whether ¢ was an intrinsic
value or a closure, respectively, and pushing the old active environment.

All evaluation of and assignment to variables is done in actv(c), the active
environment of 0. When evaluating a variable x, the value is the one bound to
the first (most recently bound) occurrence of x in actv(c). This value is denoted
o(x). If z is not bound in actv(o), then o(x) is undefined. When assigning to a
variable x, we destructively rebind the first occurrence of = in actv(o) to its new
value. It is important to note that this is done destructively, not functionally:
the list of nodes in actv(o) is not changed, but only the value in the binding
of one of the nodes. We denote the result of rebinding = to the new value a in
closure structure o by o[z /a]. In addition, if a is a closure (¢, 3), then the stack
is popped; in this case the top element will always be 3. If z is not bound in
actv(o), the rebinding operator [z/a] has no effect.

In real life, any attempt to evaluate or assign to an undefined variable (one
that is not in the domain of the active environment) would result in a runtime
error. The relational semantics to be given below will ensure that there will be
no tuple in the relation corresponding to the program with that input state.



The value of a term ¢ in the language of 2 in a closure structure o is denoted
o(t) and is defined by structural induction on ¢ in the usual way. Note that o(t)
is defined iff  is bound in actv(o) for all variables x occurring in ¢.

The operation rest(o) just restores an earlier active environment by popping
the stack and setting the active environment to that value. The current active
environment is discarded. Curiously, rest(5 + o) is not necessarily equivalent to
o, since # may no longer be accessible.

We give a skeleton implementation in the appendix for illustrative purposes.
Equivalence of closure structures modulo accessibility could be implemented by
a deep equality test, although care must be taken due to circularities that can
be introduced by destructive updates.

3.5 Semantics

Let CS denote the set of closure structures and Val the set of values. Each value
expression e denotes a binary relation

[e] € CS x (CS x Val) (1)

relating input states with (output state, value) pairs. We write (o, (7, ¢)) simply
as (o, 7,c¢). Each program expression p denotes a binary relation

[p] C CS x CS (2)

relating input states with output states. The definitions are mutually inductive.
Value expressions e also denote binary relations of the form (2), but these are
derived immediately from (1) by projecting out the value:

Lel = {(o,7') | (o,7,¢) € [},

where 7/ = 7 if ¢ is an intrinsic value, and is 7 with the stack popped if ¢ is a
closure (t,3). In the latter case, the value that is popped will always be .

3.6 Value Expressions
(i) If z is a variable, [z] = {(0,0,0(x)) | 0 € CS, o(z) is defined}, where
o' = o if o(x) is an intrinsic value, or o with 8 pushed on the stack if o(x)
is a closure (t,3).
(i) If f is a symbol of the signature of A, [f] = {(o,0, f¥) | o € CS}.
(iii) If ¢ is a A-expression of the form Az.p, Ax.p;e, A().p, or A().p; e, then

(t] = {(0,0’, (t,actv(0))) | o € CS},

where ¢’ is o with actv(o) pushed onto the stack.
(iv) If P is a functional expression with non-void return type and d is a value
expression of the appropriate input type for P, then

[P(d)] = {(o,rest(7),b) | Tp v Jec I(\x.p;e, B)
(0,p, Ax.p;e,3)) € [P], (p,v,c) € [d],
((x=c:pB)+wv,7,b) € [plo [el}
U {(o,7, f(c)) | 3p (o,p, f) € [P], (p,7,¢) € [d]}.



(v) If P is a functional expression with non-void return type and no parameter,
then

[P()] = {(o,rest(7),b) | 3p I(A()-p;e, B)
(o,p,(A().p;e,8)) € [P1, (B+p,7,b) € [plo [e]}
U {(o,7,f0) | (o,7, f) € [P1}.

In (iv) and (v), the composition operator in the expression [p] o [e] is ordinary
binary relation composition; recall that [e] is officially a binary relation. Thus

[pl o [el = {(o,7,¢) | Fp (o, p) € [p], (p,T,¢) € Lel}.

The definition of [P(d)] in (iv) captures the following operational intuition.
Given an initial execution state described by a closure structure o, the halting
states and output values are all those obtained as follows. First, we evaluate P
in the state o to obtain a value, say (Az.p;e, 3), consisting of a value expres-
sion A\z.p;e and a reference [ to the active environment at the time the value
(\x.p;e, B) was created. For instance, if P is a variable, we might previously
have executed an assignment P := A\z.p; e, where 8 was the active environment
at the time of the assignment. We also obtain a new state p. In general the new
state may be different, since the evaluation of P might have had side effects.
There may be several possible values and states obtained in this way due to
nondeterminism in the evaluation of P, but the set of all such values and states
we might obtain are given by all elements of [P] with first component o.

Then we evaluate the argument expression d in the resulting state p to obtain
a value ¢ and an output state v. The stack is used to preserve § across this
computation. We then create a new node with binding x = ¢, where x is the
formal parameter and c is the argument value just computed, and prepend this
binding to the environment g to obtain the environment « = ¢ : 3. This becomes
the new active environment, and the state is now (z =c¢: 3) + v. We run p;e
starting in this state until it halts, yielding an output state 7 and value b. The
stack is then popped to restore the previous active environment, giving rest(7),
and this is the final output state.

3.7 Program Expressions

(i) [z :=dl ={(o,7[z/a]) | (o,7,a) € [d], o(z) is defined}. Recall that if a is
a closure, then the stack of 7 is popped in the formation of 7]z /a].

) [R(d)] = {(0,7) | (0,7,a) € [d], R*(a)}.

) [p+ql = [pl U [q].
iv) [p; q1 = [plo Lql.

) [p*1 =U,>o [p1™ = the reflexive transitive closure of [p].

) If P is a functional expression with void return type and d is a value expres-
sion of the appropriate input type for P, then

LP(d)] = {(o,rest(r)) | Tp v Jec I(\x.p, B)
(o,p, Ax.p,B)) € [P], (p,v,c) € [d],
((x=c:B)+wv,7) € [pl}
U {(o,7) | 3p 3f (0,p,f) € [P, (p,7) € [dI}.



(vii) If P is a functional expression with void return type and no parameter, then

[POT = {(o,rest(r)) | Tp I(A()-p, B)
(Jﬂ Ps ()\().p, 5)) € [P], (,B—i-p, T) € [P]]}
U {(o,7) | 3f (o,7,f) € [P1}.

The Kleene algebra operators +,;,* have been used here for mathematical
simplicity. It is well known how to define more conventional programming con-
structs such as conditional branches and while loops from them; see for example
(27, 26].

3.8 Discussion

The shape of the tree can change during a computation, as new nodes can be
added or previously accessible nodes can become inaccessible. This is the reason
we must consider equivalence modulo accessibility. However, there are strong
invariants on the active environment and the stack:

— For [p], both the active environment and the stack are preserved from input
to output.

— For [p], the active environment is preserved from input to output. The stack
is also preserved if the output value is intrinsic. Otherwise, if the output value
is a closure (t,3), then the output stack consists of the input stack with a
reference to 0 pushed on top.

These can be verified by induction on the structure of p.

The stack is needed to preserve active environments across function calls. It
is also needed to preserve (3 across the evaluation of the argument d in 3.6(iv)
and 3.7(vi) when the function to be applied is a closure (t, 3).

One might well ask: In the preservation of 3 across calls, why is it not nec-
essary to preserve t as well? This is certainly a legitimate question. The answer
is that it would be necessary in any real implementation. However, here we are
only trying to define a binary input/output relation, and the mathematical def-
initions 3.6(iv) and 3.7(vi) do this adequately without any explicit mechanism
in closure structures for remembering t.

So why then does the same argument not apply to 87 In an earlier version
of this work, we thought that it did. However, there is a subtlety related to our
assumption regarding equivalence modulo accessibility. We must ensure that in
any triple (o, p, (¢, 3)) € [P], the node 8 is accessible in p and remains accessible
throughout the calculation (p,v,c) € [d]. Otherwise, the subsequent operation
(x = c¢: B) + v would not make sense, since the formalism does not keep track
of the correspondence between nodes of p and those of v. The value expression
let =0 in A().x end provides an example of a P for which this is an issue. The
corresponding closure contains a reference to the binding = 0, but this node
would be inaccessible after the evaluation of the expression if not for the stack.



3.9 Eliminating Context

The relational semantics presented in Sections 3.6 and 3.7 captures all contextual
information in the state, allowing us to reason about programs with local state
in a purely compositional way without considering their context. Formally, a
context C'[-] is just a program or value expression with a distinguished free
program variable. It is easy to see that for any program expressions p and gq,
[C[pl1] = [Cg¢l1] for all contexts C[-] iff [p] = [g¢]. For the direction (=),
take C'[-] to be the trivial context consisting of a single program variable. The
converse follows from an inductive argument, observing that the semantics is
fully compositional, the semantics of a compound expression being completely
determined by the semantics of its subexpressions.

3.10 An Example

Consider the program

let y=4

f=X(y=y+z;z:=y)
in f(1); = )
end

where x,y, z, and f are all distinct variables. Translating this program into a
A-expression, we obtain

My AF(f(L)5 ) ey =y 425 0:=9) (4).

First we give an operational account of the computation. Suppose the in-
put state is o with active environment «. The expression is an application of a
function of type int — int, thus 3.6(iv) applies. We first evaluate the outermost
A-expression ¢, which according to 3.6(iii) yields the value (¢,«). Then the ar-
gument 4 is evaluated, giving value 4. The formal parameter y is bound to the
argument 4 and prepended to the environment « in the closure, giving a new
active environment y = 4 : «, which we call 3. The old active environment « is
saved on the stack.

Next, we look at the body of the A-expression ¢, namely

M Q)5 2) Ae(y:=y+2z;z:=y).

This is another application, but in this case, the argument is itself a function. We
prepend the binding f = (Az.(y :=y+ 2 ; z :=y), () to the active environment
[ to get a new active environment ~.

The semantics of the body of the function we are applying is the composition
L[f(1)] o [x]. For f(1), we look up f in the active environment -, retrieve its
value (Az.(y := y + z; ¢ := y), B), prepend the binding z = 1 to 3 to get
the environment §, then evaluate the body in the environment §. Note that
y and z are bound in ¢ but not f (unless f was bound in the original active



environment of o). Now [y :=y+ z; x := y] will rebind z and y in ¢ to the
value 5, provided x was bound in the original active environment of . If not,
then there is no output state corresponding to o. Let 7 be the resulting state.
The active environment of 7 is J, so 7(x) = 7(y) = 5.

Now z has value semantics [z] = {(0,0,0(x)) | 0 € CS}. One of these tuples
is (7, 7,5). Composing with [f(1)], we get an output state 7 and corresponding
value 7(z) = 5. The stack is popped twice, yielding rest(rest(7)) = o[z/5] after
garbage-collecting the inaccessible bindings of f and y. The value semantics of
the entire program contains the tuple (o, o[z/5],5).

Now we do the same thing calculationally, using the algebraic properties of
relations and properties of closure structures. Substituting

Ay (Mf(F()52) Az(y =y +2;2:=y))

for P and 4 for d in 3.6(iv) and simplifying, we obtain

Dy (A1) 2) Azly:=y+2;2:=y)) (4)]
= {(o,rest(7),b) | (y=4) +0o,7,b) € (4)
I(F(); @) Ae(y =y +z; w:=y)l}
Using the same rule with A\f.(f(1); ) for P and Az.(y :=y + z; @ := y) for d,
we obtain

INVL(fQ)s2) ey =y +2z;2:=y)]
={(0,rest(n),b) | (f = (Az.y:=y+2z; x:=y),actv(d))) + 0, n, b) (5)
€ [f(1)T o [21}.

Now by 3.7(vi) and 3.6(i), we have

L/(1)T = {(o, rest(7)) | I(Az.p, )
a(f)=zp,B), (x=1:8)+0o,7) € [pl}
U {(0,0) | o(f) exists and is intrinsic}
(

[2] = {(0,0,0(z)) | o(x) exists}.

Composing these two relations and using the distributivity of composition over
union, we have

Lf ()T o [2] = {(o, rest(r), rest(7)(z)) | I(Az.p,B) o(f) = (Az.p, B),
(z=1:0)+0,7)€ [pl,
rest(7)(z) exists}

U {(o,0,0(x)) | o(f) exists and is intrinsic, o(z) exists}.
Combining this with (5) and simplifying yields

IMV(fFD)s2) Me(yi=y+2;2:=y)]

= {(0,rest(n),b) | Ip I n =rest(r), b= rest(r)(x),
p=(f=2(y:=y+z;z:=y)actv(0))) +9,
((z=1:actv(0)) +p,7) € ly:=y+z; z:=yl}.

(6)



Using 3.7(i) and (iv),

[y :=y+ 21 ={(0,0ly/o(y) + o(2)]) | o(y), o(2) exist}
[z =yl = {(0,0[z/0(y)]) | o(x), o(y) exist}
ly:=y+z;z:=yl =Ly:=y+ 210 [z:=y]
={(o.oly/o(y) + o(2)][z/o(y) + o(2)]) | ng)) U(y)}v
o(z) exist}.

Using this, the last condition of (6) simplifies to

((z=1:actv(F))+o,7) e ly:=y+2z;z:=yl
&7 = (= 15 actv(0)) + o)[y/0(y) + 1][/0(y) + 1]), 0(z), 0(y) exist.

Plugging this into (6) and simplifying further, we obtain

V(D)5 2) Aeyi=y+2;2:=y)]
=1{(0,0[y/0(y) +1][z/0(y) +1],0(y) + 1) | O(z), O(y) exist}.

This allows us to simplify the last condition of (4):

(y=4)+o,7,b) € IN(f(1);2) Ay :=y+z;2:=y)]
< 7=(y=05):(o[z/5]), b=75, o(x) exists.

Finally, plugging this back into (4) and simplifying, we obtain the desired result:

Dy.(Af(f(D);2) Ae(y:=y+2;2:=19)) (4)]
={(0,0x/5],5) | o(x) exists}.

Although this calculation is much abbreviated, we have used nothing beyond
elementary logic, set theory, and relational algebra, along with a few self-evident
properties of closure structures.

4 Relational Semantics in Program Equivalence Proofs

In this section we prove six of the seven equivalences of Meyer and Sieber [12].

We begin with a general bisimulation result. Let o, be closure structures.
Let f : 0 — ¢ be a function mapping nodes in o to nodes in ¢ and stack entries
in o to stack entries in . We say that f embeds o in o if

— f is one-to-one on both nodes and stack entries,

— f(actv(o)) = actv(a),

— f preserves stack order,

— f preserves all reference relationships and node labels in the following sense:

o f(parent(a)) = parent(f(«)),
e f(root(o)) = root(a),



e if ¢ is a stack entry of o containing a reference to «, then f(i) contains
a reference to f(a),

e if the node a contains the binding x = ¢ and c is an intrinsic value, then
f(a) contains z = ¢,

e if the node « contains a binding to a closure x = (¢,3), then f(«)
contains x = (t, f(5)).

Thus & contains an isomorphic copy of o, possibly with some extra stack entries
and accessible nodes. However, the subtree of ¢ consisting of nodes accessible
from the active environment is isomorphic to that of &, and this determines all
computational behavior from those input states. This intuition is captured in
the following bisimulation property.

Lemma 1. Suppose [ embeds o in . Let p be a program expression.

(i) If (o,7) € [pl, then there exist T and [’ such that (7,7) € [pl and f’
embeds T in T.

(ii) If (o,7) € [p], then there exist T and f' such that (o,7) € [pl and f’
embeds T in T.

Moreover, in both cases f and f' agree on the stack (recall from Section 3.8 that
the stacks of o and T are the same, as are the stacks of 0 and T ).

Proof. The proof is by induction on p, with the induction hypothesis suitably
strengthened to include [e] for value expressions. We argue (i) for cases 3.7(i)
and (vii) explicitly.

For 3.7(i), suppose (o,7) € [z :=al. Then there exist p and ¢ such that
(0,p,c) € [al, o(x) exists, and 7 = p[z/c]. Then 7(x) exists, since o and & have
isomorphic active environments. By the induction hypothesis on a, there exist
p and an embedding f’ : p — p such that (7,p,¢) € [al, where ¢ = ¢ if ¢ is an
intrinsic value, and if ¢ is a closure (¢, 3), then ¢ = (¢, f/(3)). Letting 7 = plz/¢],
we have that f’ embeds 7 in 7 and (7,7) € [z := al.

For 3.7(vii), suppose (o,7) € [P()]. Then there exist p and v such that
(o,p,(A().p,0)) € [P] (say), (B + p,v) € [pl, and 7 = rest(v). By the in-
duction hypothesis on P, there exist p and embedding f’ : p — p such that
(@,p, (A).p, f/(B))) € [P]. Form the new closure structure f'(3)+ p and extend
/! to an embedding 8+ p — f/(8) + p (the extension is uniquely determined),
which we still denote it by f’. By the induction hypothesis on p, there exist U
and embedding f” : v — U such that (f'(8) + p,0) € [p]. Defining 7 = rest(v),
we have (¢,7) € [P()] and f” an embedding of 7 in 7. O

The first two examples of Meyer and Sieber examine the inability of proce-
dures to access variables not in scope at the time of their declaration.

Ezample 1. For a procedure identifier P of type void — void, z distinct from P,
and c a constant, the following two programs are equivalent.

let z =cin P() end P().



Proof. From 3.6(iii) and (iv), after simplification we have
[let z = cin P() end] = [Az.P() c]
= {(o,rest(7)) | (x =¢) +o,7) € [P()I}.  (7)
Similarly, from 3.7(vii) and 3.6(i), we have
LPOT = {(o;rest(r)) | o(P) = (A()-p, B), (B+0,7) € [pI} (8)
U {(0,0) | o(P) exists and is an intrinsic value}.
Substituting (8) in (7) and simplifying, we obtain
[let x = cin P() end]
= {(o, rest(rest(n))) | o(P) = (A().p,8), (B+ (z=c)+o,n) € lpl}  (9)
U {(0,0) | o(P) exists and is an intrinsic value}.

To show (8) and (9) are equal, it suffices to show that for all p, the following
two statements are equivalent:

3n p = rest(rest(n)), (B+ (z=c)+0,n) € [p],
Ir p =rest(r), (B+0,7) € [pl.
This follows directly from Lemma 1 once we have constructing an embedding
B+ 0 — B+ (x =c)+ 0. The embedding is the identity on the tree of o and

maps the stack elements of 5 + o to the stack elements of 8+ (x =¢)+ 0 in
order, but skipping the top element, which is actv((z = ¢) + 0). O

Ezxample 2. For a procedure identifier P of type void — void, « distinct from P,
and ¢ a constant, the following two programs are equivalent.

let z=c¢ let x=c
in PO;u in PO;(x=c);u
end end

Proof. The equation asserts that the test = ¢ is redundant after the evaluation
of P(). The proof is similar to that of Example 1. After expanding the definitions
and simplifying, it comes down to showing that if o(P) = (A().p, 3), and if (3 +
(x =c¢)+ o, p) € [p], then p(z) = c. This follows from Lemma 1 by constructing
an embedding of 8+ ¢ in 4 (x = ¢) + o, giving a bisimilar computation that
cannot change the value of z. O

The next example demonstrates that the effect of a function does not depend
on the names of the arguments. This is a feature of the call-by-value parameter
passing mechanism.

Ezxample 3. Let x,y, and @ be distinct variables and b, ¢ constants. The following
two programs are equivalent:

let xr=by=c let x=c,y=">

in Q(z)(y in Qy)(x

end end



Proof. Tt suffices to show that both programs are equivalent to Q(b)(c); that is,
this is an instance of when call-by-value and call-by-name (8-reduction) give the
same result. We can do this in stages: to show the first program is equivalent to
Q(b)(c), it suffices to show that

let y = cin Q(z)(y) end = Q(z)(c)
let z =0 in Q(x)(c) end = Q(b)(c).

Let us argue the former.

Suppose both @ and z are defined in o, say 0(Q) = (Az.¢;e, 8) and o(x) = b.
To calculate [let y = cin Q(x)(y) end], we expand the definition and simplify.
Prepending the binding y = ¢ to actv(o) and evaluating Q(z) in that environ-
ment, we would get (say)

(z=b:8)+(y=c)+oa,p, (A\w.p, 7)) € lg;el, (10)

and we wish to apply (Aw.p, v) to y in the active environment of rest(p).

The corresponding calculation for [Q(z)(c)] starts in state (z =b: ) + 0.
But there is an embedding of this state in (z =b: ) + (y = ¢) + o that omits
the top stack element containing the binding y = ¢. By Lemma 1, we have

((z=0b:08)+0,v, A\w.p, 7)) € [g;€] (11)

with an embedding f : v — p, and we wish to apply (Aw.p, ) to ¢ in the active
environment of rest(v). Now f restricted to rest(v) is not an embedding in rest(p),
since the active environment is not mapped correctly; but it is an embedding in
rest(rest(p)). Moreover, the stack sizes of rest(v) and rest(rest(p)) are the same,
so the embedding is an isomorphism. This says that rest(rest(p)) = rest(v).
Furthermore, the value of y was not changed in (10), since there is a bisimilar
computation (11) in which it was not changed. This says that

rest(p) = (y = ¢) + rest(v).

It remains to argue that the final application of (Aw.p, ) yields the same result
in both cases. Again we have an embedding and can apply Lemma 1. The two
expressions are

((w=rc:7)+ (y=c) + rest(v), 0) € [p]
((w=c:7v)+rest(v), n) € [p]

with an embedding f : n — 6. The final output states are rest(rest(f)) and
rest(n), which are isomorphic because f embeds rest(n) in rest(rest(d)) and the
stack sizes are the same. O

The remaining examples look at the higher-order case in the presence of local
variables. The goal of these examples is to prove that procedures that have as
arguments procedures with private data cannot access that private data.

In this example, we look at a procedure with two local variables that only
alters one of them.



Ezample 4. For distinct variables x, y, @, and T, the following two programs are
equivalent:

et =0,y=1, T=A)y:=2y et ©=0,y=1,T=A)y:=2y
in Q(T); (x=0);u in Q(T); u

end end

E=T=AN)y=2y,7)+y=1)+(x=0)+o.

Starting in state o, £ is the state after binding z,y, and T in the let expression.
Suppose (Q) = (AR.p, 8). This is also £(Q). After substituting the definitions
and simplifying, the proof comes down to showing that if

(R= (A0 y:=2y,7):08)+& n) € [p],

then n(z) = 0. By Lemma 1, removing all stack elements, there is a bisimilar
computation

(R=(A(0)-y :=2y,7): B) +¢,0) € [p],

where ¢ is an abbreviation for the empty closure structure. As 3 is a node of o,
the only reference to the binding = 0 in this closure structure is via the closure
(A).y := 2y, ). All that can be done with this object is to apply it or assign it to
a variable, and neither operation changes the value of & or changes the fact that
the only reference to x = 0 is via 7 in the closure. This is clear for assignments.
An application R() in a state 7 in which R is bound to (A().y := 2y,~) yields
output state rest(v), where (y+ 7,v) € [y := 2yl. The value of = is unchanged
due to the form of the assignment, and the reference to v on the stack during
this calculation is transitory. O

In the next example, we want to know that if an invariant on a local variable
is maintained by a function, then that invariant is maintained for the entire
program if the variable is only accessed through that function.

Ezxample 5. For distinct variables x, @), and As, the following two programs are
equivalent:

let ©=0,42=A)x:=2+2 let ©=0,A2=A)x:=2+2
in Q(A2); (xmod2=0);u in Q(A2); u
end end

Proof. This example is very similar to the previous. In this case, we note that if
o(xz) mod 2 =0 and (o,7) € [As], then 7(z) mod 2=0. O

The final example demonstrates that the behavior of a procedure is not af-
fected by the values of another procedure’s local variables.



Ezxample 6. Let x,Q, A1, and As be distinct variables. The following two pro-
grams are equivalent:

let ©=0,41=A)z:=x+1 let ©=0,4=A).xz:=2+2
in Q(4) in Q(A2)

end end

Proof. In this example, it is important to note that A; and A, have void return
type. The argument is very similar to the argument in Example 5. We use Lemma,
1 to obtain bisimilar computations in which x is not accessible except via the
closures bound to A; and As, therefore can only be altered by calls to A; and
As. The execution of @) is always in a preexisting environment with no other
access to x. Finally, the bindings of =, A; and Ay are discarded at the end,
leaving equivalent output states. O

The one example from Meyer and Sieber that our system cannot currently
handle deals with the inability of local variables to be aliased by variables de-
clared elsewhere. We currently have neither the means to alias a location nor to
test for aliasing.

5 Conclusion and Future Work

We have presented a compositional relational semantics that captures all contex-
tual information in the state, allowing us to reason about programs with local
state in an equational way without consideration of context. We have shown how
to reason in this framework by proving several benchmark examples of Meyer
and Sieber [12].

While we do not deal with the more intricate issue of aliasing, there is no
reason to believe our approach could not be extended to do so. We are cur-
rently attempting to expand the definition of closure structure to allow explicit
references as values.

Using relational semantics for higher-order programs does not solve prob-
lems that many other methods cannot, it simply allows one to reason in a nat-
ural equational style that is mathematically based, yet true to the underlying
operational intuition.
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Appendix Skeleton Implementation of Closure Structures

For illustrative purposes, we provide here a skeleton of a simple untyped im-
plementation of closure structures in ML that is faithful to the description in
Section 3. The type cs represents the active environment and stack of a closure
structure; the tree is implicit. The second component of a binding is declared
as a reference to allow destructive updates.

type var = string
type lambdaExpr = string

datatype value = Int of int | Closure of lambdaExpr * environment
withtype binding = var * value ref
and environment = binding list

type cs = environment * environment list
fun newCS () : cs = ([1,[])

fun lookup (v:var) ((act,s):cs) : value option =
let fun lookup’ (v:var) (env:environment) : value option =
case env of [] => NONE
| (u,c)::t => if u=v then SOME (!c) else lookup’ v t
in lookup’ v act
end

fun update (v:var) (d:value) ((act,s):cs) : unit =
let fun update’ (v:var) (d:value) (env:environment) : unit =
case env of [1 => ()
| (u,c)::t => if u=v then ¢ := d else update’ v d t
in update’ v d act
end

fun createBinding (v:var) (c:value) ((act,s):cs) : cs =
let val b = (v,ref c¢) : binding
val env = b::(hd s) : environment
in (env, act::(tl s))
end



