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Rabin Measures

Nils Klarlund Dexter Kozen

20 September, 1995

Abstract

Rabin conditions are a general class of properties of infinite se-Abstract-1

quences that encompass most known automata-theoretic acceptance
conditions and notions of fairness. In this paper, we introduce a
concept, called a Rabin measure, which in a precise sense expresses
progress for each transition toward satisfaction of the Rabin condi-
tion.

We show that these measures of progress are linked to the Kleene-Abstract-2

Brouwer ordering of recursion theory. This property is used in [Kla94b]
to establish an exponential upper bound for the complementation of
automata on infinite trees.

When applied to termination problems under fairness constraints,Abstract-3

Rabin measures eliminate the need for syntax-dependent, recursive
applications of proof rules.

This article is a revised version of [KK91]. Compared to the earlier version,
the notion of Rabin measure has been simplified in order to be consistent
with the use of the present results in [Kla94b].

1 Introduction

This paper is concerned with infinite sequences and their properties that1-1

are true or false in the limit. Such properties arise in the study of fair-
ness, temporal logic, and ω-automata. In all these areas, Rabin conditions
[McN66, Rab69], which express temporal properties in a special disjunctive
normal form, play a major role. (They are also called pairs conditions .) In
the theory of fairness, Rabin conditions describe termination under general

1
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fairness constraints, which include strong fairness expressing that commands
that are infinitely often enabled are infinitely often executed. In temporal
logic, Rabin conditions can be used to model a variety of liveness properties.
In the theory of ω-automata, Rabin conditions are pivotal, because they allow
ω-regular languages to be expressed by deterministic automata [McN66].

Because temporal conditions are often crucial to understanding the be-1-2

havior of concurrent and distributed programs, a large number of proof meth-
ods for Rabin conditions and simpler conditions have been proposed in the
context of fairness [AO83, APS84, DH86, FK84, Fra86, GFMdR85, Mai89,
SdRG89], temporal logic [MP84, OL82], or automata theory [AS87, AS89,
Jon87, MP87, Var91]. The essence of some of the proposed methods is ob-
scured by syntactic transformations; others are limited to simple temporal
formulas or expressed in rather involved automata-theoretical terms.

In this paper we address a fundamental question underlying several of1-3

the previous approaches: How can one explain, in terms of local conditions
and without transformations, that a graph satisfies a Rabin condition? Our
contribution is a concept, called a Rabin measure, which mathematically
quantifies progress for transitions toward satisfying a Rabin condition. Thus
a Rabin measure expresses closeness to satisfaction of the Rabin condition in
the same way a well-founded set expresses closeness to program termination.

The main result of our paper is that a graph satisfies a Rabin condition1-4

if and only if it has a Rabin measure. Although this is not surprising from
a recursion-theoretic point of view (the problem is complete for Π1

1), the re-
sult is important because Rabin measures can be used to verify properties
expressible by temporal formulas in a certain disjunctive normal form. Pre-
vious research has concentrated on temporal formulas in conjunctive form;
such formulas can be verified by verifying each conjunct separately. Disjunc-
tive formulas are significantly more difficult, and no system to date has been
able to handle them without transformations.

Our treatment exhibits a link between verification with Rabin conditions1-5

and certain constructs in classical recursion theory. Specifically, we show
that the transfinite well-orders that arise in such verification problems are
all obtained in a natural way, as the Kleene-Brouwer ordering on the set of
paths in certain finite-path trees. The “helpful directions” (see [Fra86]) arise
simply and naturally in this context and can be explained completely in these
terms.

Rabin measures are useful for studying automata on infinite objects.1-6

In [Kla91], it is shown how the concept can be used to complement Streett
2
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automata on infinite words. For automata on infinite trees, the results of
the present article are used to establish that complementation can take place
with only an exponential blow-up [Kla94b]. These applications rely on the
relationship to the Kleene-Brouwer ordering, and do not follow from previous
attempts at explaining progress for Rabin conditions.

2 Related Work

Alpern and Schneider [AS87, AS89] used deterministic Büchi automata as2-1

a specification method. They obtained a verification method for nonde-
terministic Büchi automata using the fact that every such automaton can
be converted to a Boolean combination, in conjunctive normal form, of de-
terministic Büchi automata. Vardi [Var91] proposed rank predicates as a
very general approach to verification, where specifications were subjected to
certain automata-theoretic transformations. The resulting automata define
incorrect computations and have a Büchi-type acceptance condition, which
yields an explanation of helpful directions for the transformed verification
problem.

Inspired by the ideas in [Var91], Manna and Pnueli gave verification con-2-2

ditions for ∀-automata [MP87]. These conditions are expressively equivalent
to Büchi automata, although there is no known easy conversion of a Büchi
automaton into a ∀-automaton. Sistla [Sis87] considered deterministic au-
tomata with acceptance conditions given as temporal formulas on automaton
states with the modalities F∞(f) (infinitely often f) and G∞(f) (almost al-
ways f). He showed that sound and complete verification conditions exist
for automata that are in a special conjunctive normal form in which each
conjunct is a particularly simple disjunction.

For temporal logic specifications, assertional proof methods such as [MP84,2-3

OL82] are limited to quite simple temporal formulas that express properties
like “leads to” and “always.” A general approach to verification with finite
temporal formulas was proposed in [RFG88]. It is based on establishing a
direct correspondence between the program and the temporal formula, as-
signing a well-founded ordering to every program state. The verification
conditions depend on inductively defined predicates on temporal formulas,
and are rather complicated.

In the area of fairness, complete verification methods for termination were2-4

given in [FK84, Fra86, GFMdR85, Mai89, LPS81, SdRG89]. These methods

3
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are based on helpful directions, and on the iterative use of proof rules applied
to syntactically transformed programs. In [Fra86, Section 2.1], a variation
of this method based on relativizing the proof rules to state predicates is
presented. This avoids syntactic transformations, but the method is still
dependent on repeated applications of proof rules. Similarly, the ranking
arguments in [EJ88] are iterative. In both cases, our Rabin measures may be
viewed as arranging the information of all steps into one mathematical struc-
ture. Explicit ranks for the parity condition [Mos84] (which is a restricted
kind of Rabin condition) were defined in [EJ91].

The methods of explicit schedulers developed in [AO83, APS84, DH86]2-5

involve transforming programs by adding auxiliary variables that are nonde-
terministically assigned values determining fair computations. For an exten-
sive treatment of fairness based on helpful directions and explicit schedulers,
see [Fra86].

The shuffling of colors in a Rabin measure is reminiscent of the Later2-6

Appearance Record of [GH82], which is used to explain how certain restricted
memory strategies arise for infinite games played according to a Muller accep-
tance condition. In [Kla94b], it is shown how Rabin measures yield memory-
less strategies for games with Rabin winning conditions.

Progress measures were introduced in [Kla90a] as a generic concept for2-7

quantifying how each step of a program contributes to bringing a compu-
tation closer to its specification, given in terms of a limit condition. There
it is shown that progress measures exist for a variety of program specifi-
cations, including those involving nondeterminism, fairness, and infinitary
temporal logics. For the general setting of the verification problem as stud-
ied in [Var91], rank predicates and progress measures are essentially equiva-
lent [Var94] and their existence is in essence expressed by the Kleene-Suslin
Theorem of descriptive set theory [Kla94a].

The paper [Kla92b] reformulates the notion of Rabin measure presented2-8

here, so that it can be better used in program verification. Also, the complete-
ness proof presented in [Kla92b] is simplified for the case that the underlying
program contains no cycles.

The verification method in [Kla92a] is based on the liminf concept, and2-9

also involves a variation on the Kleene-Brouwer ordering. Although appli-
cable to a larger class of properties (in terms of the Borel classification),
this method is dependent on characterizing finite computations, not states,
and cannot be used without introducing history information. The method
of [Kla92a] can be extended to general simulation and bisimulation con-

4
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cepts [Kla94a].

3 Rabin Conditions

A graph G = (V,E) consists of a countable set of vertices (or states) V and3-1

a set of directed edges E ⊆ V × V . A Rabin pair (R, I) on V consists of a
set R ⊆ V of reconfirming states and a set I ⊆ V of invalidating states. We
say that an infinite sequence v0, v1, . . . of states satisfies (R, I), and we write
v0, v1, . . . � (R, I), if there are infinitely many k such that vk ∈ R and only
finitely many k such that vk ∈ I.

A Rabin condition (or Rabin assignment) C is a set { (Rχ, Iχ) | χ ∈ X } of3-2

Rabin pairs. Here X is a finite set of colors, and Rabin pair (Rχ, Iχ) is said to
have color χ. We assume that no pair in C is repeated, and say that |C| = |X|
is the size of C. The set Rχ is the set of χ-reconfirming states, and Iχ is the
set of χ-invalidating states. For technical reasons, we always assume without
loss of generality that 0 ∈ X and that I0 = ∅ (one can always add the pair
(∅, ∅) without changing the semantics of satisfaction defined next). We say
that an infinite sequence v0, v1, . . . satisfies C, and we write v0, v1, . . . � C, if
for some χ, v0, v1, . . . � (Rχ, Iχ). We say that a graph G = (V,E) satisfies a
Rabin condition C on V , and we write G � C, if every infinite path v0, v1, . . .
in G satisfies C.

4 Pointer Trees

Rabin measures are based on pointer trees, also called direction trees. Let ω14-1

be the set of countable ordinals. A pointer tree T is a countable prefix-closed
subset of ω∗

1, the set of finite sequences of countable ordinals. Each sequence
t = 〈t1, . . . , t`〉 in T represents a node, which has children t · 〈d〉 ∈ T , where
“·” denotes concatenation of sequences. Here d ∈ ω1 is the pointer to t · 〈d〉
from t. If t′ is a prefix of t ∈ T , then t′ is called an ancestor of t and we write
t′ ≤

·
t. We visualize pointer trees as growing upward; see Figure 1, where

children are depicted from left to right in descending order. Every sequence of
pointers t1, t2, . . . (finite or infinite) denotes a path 〈 〉, 〈t1〉, 〈t1, t2〉, . . . (finite
or infinite) in T , provided each 〈t1, . . . , t`〉 ∈ T . The level |t| of a node
t = 〈t1, . . . , tl〉 is the number l; the level of 〈 〉 is 0. The prefix up to level
n of t = 〈t1, . . . , tl〉 is 〈t1, . . . , tmin{l,n}〉, denoted t � n. The height of T is

5
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Figure 1: A pointer tree.

the maximum node level (if it exists). T is path-finite if there are no infinite
paths in T . A common ancestor of nodes t and t′ is a node t̃ that is an
ancestor of both of t and of t′. The common ancestor at the highest level is
the highest common ancestor, written t ↑ t′.

A simple but central lemma about the infinite sequences of nodes in a4-2

pointer tree is:

Lemma 1 (Highest Common Ancestor Lemma) Let t0, t1, . . . be an in-
finite sequence of nodes in a path-finite pointer tree T . Then there is a node t
that is a common ancestor of tk, tk+1 for almost all k, and the highest common
ancestor for infinitely many k.

Proof of Lemma 1 Let T ′ be the set of nodes that are almost always ances-
tors of tk. Then T ′ contains 〈 〉 and is linearly ordered by the prefix relation,
since for all t, t′ in T ′, there eventually exists tk such that both t and t′ are
ancestors of tk, and the ancestors of every node are linearly ordered. Since T
contains only finite paths, T ′ has a unique maximal element, which satisfies
the desired conditions.

2

Definition 1 (Kleene-Brouwer Ordering) The strict ordering � on T
is defined by: t � t′ if and only if either t <

·
t′, or else the highest common

ancestor of t and t′ is at level l, tl+1 and t′l+1 are defined, and tl+1 > t′l+1.
The nonstrict ordering � is defined as t � t′ if and only if t � t′ or t = t′.

In other words t � t′ if t is an ancestor of t′ or if t′ branches off to the right
of t (assuming T is depicted as in Figure 1). � is a total order on T .

6
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Lemma 2 (Kleene-Brouwer Ordering Lemma) If T is path-finite, then
� is a well-ordering of T .

Proof of Lemma 2 See [Rog67] or use Lemma 1.

2

Rabin measures are based on coloring pointer trees.4-3

Definition 2 A colored pointer tree (T, ξ) is a pointer tree T with a partial
mapping ξ:T ⇀X, where X is a set of colors, assigning a color ξ(t) ∈ X to
each node t in dom ξ so that:

• the root is colored 0, i.e., ξ(〈 〉) = 0;

• each node that is not a leaf receives some color; and

• all colors along a path starting in the root are distinct.

Thus, a colored pointer tree has height at most |X|.

5 Rabin Measures

A Rabin measure for a graph with a Rabin condition consists of a colored5-1

pointer tree and a mapping that assigns a node in the tree to each vertex
in the graph. These nodes, or progress values, quantify progress toward the
Rabin condition if they are related in a certain way on every transition.

Definition 3 Let G = (V,E) be a graph, and let C = { (Rχ, Iχ) | χ ∈ X } be
a Rabin condition on G. A Rabin progress measure (or just Rabin measure)
for (G, C) is a triple (µ, T, ξ), where µ:V → T and (T, ξ) is a colored pointer
tree, such that:

(I) for all v ∈ V and all χ ∈ µ(v), v /∈ Iχ, and

(R) for all (u, v) ∈ E, u Bµ v,

where u Bµ v if and only if

µ(u) � µ(v), or

there exists a common ancestor t ≤
·
ξ(µ(u) ↑ µ(v)) such that v ∈ Rξ(t).

7
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��
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Figure 2: A colored pointer tree and a graph with Rabin measure.

The value µ(v) designates a path in T from the root to the node µ(v). The
sequence of colors on this path indicates a prioritization of hypotheses about
Rabin pairs: The closer it is to the bottom, the more likely a pair is to be
the one satisfied in the limit.

Requirement (I) states that all hypotheses correspond to pairs that are5-2

not invalidated. Requirement (R) states that on a transition from u to v,
either the progress value decreases from u to v or one of the pairs described
by the common part of µ(u) and µ(v) is reconfirmed. The colors at or below
the highest common ancestor indicate the “helpful directions,” that is, the
pairs that have been singled out for satisfaction in the limit. It is shown
below how (R) insures that some color is reconfirmed infinitely often, and
how (I) insures that the color is invalidated only finitely many times.

In Figure 2, we have shown a graph G (to the right) with vertices v0 and5-3

v1. The Rabin condition C of the graph consists of the pair (R0, I0), where
the set X is {0}, and R0 = {v0} consists of the node marked #, and I0 = ∅.
Thus, every infinite path in G runs through a reconfirming state infinitely
often, and G � C. This fact can also be established by the existence of a
Rabin measure. We use the colored pointer tree shown to the left. Its root
is labeled with the color 0 and the node 〈0〉 is not labeled with a color. The
measure is as indicated by the dotted arrows, i.e., µ(v0) = 〈 〉 and µ(v1) = 〈0〉.
On the transition from v0 to v1, the value of the measure decreases according
to the Kleene-Brouwer ordering, and on the transition from v1 to v0, the
value of the measure also decreases, since the root is a common ancestor
with a color that is reconfirmed.

Another more complicated situation involving two colors (X = {0, 1}) is5-4

shown in Figure 3. Here R0 = {v0}, I0 = ∅, R1 = {v1} (the node marked +),
and I1 = {v3} (the node marked −).

8
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Figure 3: Tree, graph, measure, with two nontrivial colors.

The main result of this article is:5-5

Theorem 1 G � C if and only if (G, C) has a Rabin measure.

Proof of Theorem 1 (⇐=) Let v0, v1, . . . be an infinite path in G and letProof of Theorem 1-1

tk = µ(vk). By Lemma 1 (Highest Common Ancestor), there is a node t that
is (a) almost always a common ancestor and (b) infinitely often the highest
common ancestor of tk, tk+1. Let l = |t|. Next, we prove that there exists
t̂ <

·
t such that v0, v1, . . . satisfies the Rabin pair (Rξ(t̂ ), Iξ(t̂ )).

First, assume for a contradiction that for all t̂ ≤
·
t, vk ∈ Rξ(t̂ ) holds only

Proof of Theorem 1-2

finitely often. Thus by (a) there is a K such that for all k ≥ K, either (1)
there is a t′k with t <

·
t′k ≤

·
tk ↑ tk+1 and with vk ∈ Rξ(t′k), or (2) tk � tk+1.

In case (1), tk, tk+1 >·
t and tk � (l+ 1) = tk+1 � (l+ 1). In case (2), which

Proof of Theorem 1-3

holds infinitely often by assumption and by (b), tk � (l + 1) � tk+1 � (l + 1),
since tk � tk+1 and t is the highest common ancestor of tk and tk+1. Thus
tK�(l+1) � tK+1�(l+1) � · · · and infinitely many inequalities are strict. This
contradicts the Kleene-Brouwer Ordering Lemma. Thus it holds infinitely
often that vk ∈ Rξ(t̂ ) for some t̂ ≤

·
t.

9
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Second, by (I) it follows that vk /∈ Iξ(t̂ ) holds from some point on dueProof of Theorem 1-4

to (a).

Proof of Theorem 1 (⇐=) 2

We prove the (=⇒) portion in Section 6.3.

6 Construction of Rabin Measures

We show how to construct a Rabin measure for (G, C), where G = (V,E) is6-1

a graph that satisfies a Rabin condition C = { (Rχ, Iχ) | χ ∈ X }.

6.1 Color Set Assignments

We need some definitions before stating a key lemma. Let PC denote the6.1-1

class of subsets of C. A color set assignment is a map CS :V →PC, where C
is a countable set of colors; CS associates a nonempty set of enabled colors
CS (v) ⊆ C to each vertex v ∈ V . A set W ⊆ V is χ-enabled if and only if,
for all v ∈ W , χ ∈ CS (v). An infinite path v0, v1, . . . is eventually χ-enabled
if and only if there is a χ-enabled suffix vk, vk+1, . . .. A color set assignment
is permissible if and only if every infinite path is eventually χ-enabled for
some χ.

The set of descendants R(v) of a vertex v in a graph G is the set of all v′6.1-2

such that there is path from v to v′. Note that v ∈ R(v). The key lemma is:

Lemma 3 Let G = (V,E) be a countable graph. If CS :V → PC is a per-
missible color set assignment, then there is a vertex v and a color χ such that
R(v) is χ-enabled.

Before proving the lemma, we recall that a set Z is nowhere dense if there is
no nonempty open set O such that O ∩ Z is dense in O. We will use:

Theorem 2 (The Baire Category Theorem) Let M be a complete met-
ric space. Then M is not a countable union of nowhere-dense sets. In par-
ticular, M is not a countable union of closed sets that contain no basic open
sets.

10
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Proof of Lemma 3 For every finite path u in G, define Bu and M byProof of Lemma 3-1

Bu = {u · w | u · w is a path (finite or infinite) in G }
M = {w | w is a path (finite or infinite) in G }

The Bus form a subbasis for a topology over M , where the open sets areProof of Lemma 3-2

unions of Bus. M is a complete metric space.1

For a finite path u in G, and for χ ∈ C, define the setProof of Lemma 3-3

Fu,χ = {u · w | w is χ-enabled }
which is closed. Every finite path u is contained in Fu,χ for all χ, and every
infinite path w is in Fu,χ, for some u and χ, by the assumption that w is
eventually χ-enabled. Thus M =

⋃
u,χ Fu,χ.

By the Baire Category Theorem, some Fu,χ contains a basic open set, i.e.,Proof of Lemma 3-4

contains some Bv. Consequently, R(v) is χ-enabled.

Proof of Lemma 3 2

6.2 Colorings

Lemma 3 can be applied transfinitely to a graph to yield a stronger result.6.2-1

We need a few definitions. Let C be a countable set of colors. A C-coloring
c of a set V is a total mapping c:V → C. A coloring c obeys a color set
assignment CS if and only if, for all v ∈ V , c(v) ∈ CS (v). An infinite path
v0, v1, . . . is eventually χ-stable with respect to c, where χ ∈ C, if for almost
all i, c(vi) = χ. A coloring c is eventually stable if every infinite path is
eventually χ-stable for some χ. A set W ⊆ V is monochromatic with respect
to c if there is χ ∈ C such that for all v ∈ W , c(v) = χ.

Lemma 4 Let G = (V,E) be a graph. If CS is a permissible color set
assignment, then there is an eventually stable coloring c:V → C obeying CS
and a partition S = {Wθ | θ < γ } of V , where γ is a countable ordinal, such
that:

1The metric can be given, for example, as:

d(w, w′) =




0 if w = w′

1/i if wi 6= w′
i and wj = w′

j for 1 ≤ j < i
1/(i + 1) if w is a prefix of w′ of length i
1/(i + 1) if w′ is a prefix of w of length i

11
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(a) each Wθ is monochromatic; and

(b) if (v, v′) ∈ E, v ∈ Wθ, and v′ ∈ Wθ′, then θ ≥ θ′.

Proof of Lemma 4 We apply Lemma 3 transfinitely. More precisely, Lemma 3Proof of Lemma 4-1

is first applied to yield a vertex v in G such that R(v) is χ-enabled for some χ.
Define W0 = R(v) and c(v) = χ for v ∈ W0. Then remove W0 from G and
apply Lemma 3 again to define W1 in a similar manner. By transfinite in-
duction, this process induces a partition of G into γ classes, where γ is a
countable ordinal.

Then (a) is satisfied according to the definition of c. Also, (b) is satisfied,Proof of Lemma 4-2

because every vertex is removed along with all its successors in the remaining
graph.

Proof of Lemma 4 2

6.3 Proof of Theorem 1 (=⇒)
6.3-1

Proof of Theorem 1 (=⇒) Let G = (V,E) be a graph that satisfies aProof of Theorem 1-5

finite Rabin condition C. To construct a measure (µ, (T, ξ)) of (G, C), we
use the algorithm AssignRabin in Figure 4. The algorithm builds the tree
(T, ξ) and labels each node t 6= 〈 〉 of T with a set W (t) ⊆ V , which is to
be the set of vertices mapped by µ to nodes having t as an ancestor. The
purpose of AssignRabin(t, Y, χ) is to assign color χ to node t and to define
the children t · 〈θ〉 of node t. Each child receives a label W (t · 〈θ〉), which
is a subset of W (t). The set Y denotes the colors that have already been
assigned to the proper ancestors of t.

Proof of Theorem 1-6

• Initially, AssignRabin is applied with parameters (〈 〉, ∅, 0), and the
tree T consists of only the root 〈 〉 with label W (〈 〉) = V .

• In Step 1 of AssignRabin, node t is assigned color χ, and Ŵ = W (t)\
Rχ is the set of states in W (t) that are not χ-reconfirming.

• In Step 2, Lemma 4 is used to obtain a partition S = {Wθ | θ < γ }
of Ŵ and a coloring c of Ŵ . Informally, the color set assignment
CSY ∪{χ} expresses the set of colors that are not invalidating and that
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AssignRabin(t, Y, χ) :

1. ξ(t) := χ

Ŵ := W (t) \Rχ

2. Use Lemma 4 on G \ Ŵ with color set assignment CSY ∪{χ} (explained
in the text) to obtain a coloring c and a partition S = {Wθ | θ < γ }
of Ŵ .

3. For each class Wθ of S:

(a) T := T ∪ {t · 〈θ〉}
(b) W (t · 〈θ〉) := Wθ

4. For each χ′-colored class Wθ of S, where χ′ ∈ X:

AssignRabin(t · 〈θ〉, Y ∪ {χ}, χ′)

Figure 4: Algorithm AssignRabin.

13
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have not already been considered. More precisely, the color set as-
signment CSY ∪{χ} assigns to vertex v the set of colors χ′ ∈ X such
that χ′ /∈ Y ∪ {χ} and v /∈ Iχ′ ; however, if this set is empty, then the
color set assigned is {⊥v}, where ⊥v is a distinct dummy color, differ-
ent from any color defined elsewhere. Thus the set C of all colors is
X ∪ { ⊥v | v ∈ V }.

• In Step 3, a child t · 〈θ〉 is added to t for each class Wθ of S and t · 〈θ〉
is labeled Wθ.

• Finally, in Step 4, descendants of each child not assigned a dummy
color are constructed by further applications of AssignRabin.

To explain the construction of µ and to prove that Lemma 4 can indeedProof of Theorem 1-7

always be used in Step 2, we need some terminology. We say that a subset
W ⊆ V is χ-nonreconfirming if W ∩Rχ = ∅ and that W is χ-noninvalidating
if W ∩ Iχ = ∅. A subset W ⊆ V is Y -nonreconfirming if it is χ-nonrecon-
firming for each χ in Y . Similarly, a subset W ⊆ V is Y -noninvalidating if
it is χ-noninvalidating for each χ in Y .

Claim 1 For each application of the inductive procedure
AssignRabin(t, Y, χ) starting with AssignRabin(〈 〉, ∅, 0), the following
hold:

• Y ⊆ X and |Y | = |t|;
• χ ∈ X \ Y ;

• W (t) is Y -nonreconfirming; and

• W (t) is (Y ∪ {χ})-noninvalidating.

Proof of Claim 1 (By induction) This is true for the first applicationProof of Claim 1-1

AssignRabin(〈 〉, ∅, 0) because |Y | = |∅| = |〈 〉| = |t| = 0; χ = 0; and
W (t) = W (〈 〉) = V , which is ∅-nonreconfirming and, since I0 = ∅, {0}-non-
invalidating.

When AssignRabin(t · 〈θ〉, Y ∪ {χ}, χ′) is applied from withinProof of Claim 1-2

AssignRabin in Step 4, it may be assumed by the induction hypothesis
that |Y | = |t|, χ ∈ X \Y , and W (t) is (Y ∪{χ})-noninvalidating and Y -non-
reconfirming.
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It follows that Y ∪{χ} ⊆ X and |Y ∪{χ}| = |t ·〈θ〉|. Also, by definition ofProof of Claim 1-3

the color set assignment in Step 2, χ′ ∈ X \(Y ∪{χ}). Furthermore, since Wθ

is χ′-noninvalidating by this definition, Wθ is (Y ∪ {χ} ∪ {χ′})-noninvalidat-
ing. Finally, since Wθ is χ-nonreconfirming (because Wθ ⊆ Ŵ = W \Rχ), it
follows that W (t · 〈θ〉) = Wθ is (Y ∪ {χ})-nonreconfirming.

Proof of Claim 1 2

To see that Lemma 4 is applicable in Step 2 of AssignRabin, we prove:Proof of Theorem 1-8

Claim 2 In every application of AssignRabin , CSY ∪{χ} is permissible for
Ŵ ; in fact, every infinite path in W is eventually χ̂-enabled for some χ̂ ∈
X \ (Y ∪ {χ}).

Proof of Claim 2 Consider an application AssignRabin(t, Y, χ). By Claim 1,Proof of Claim 2-1

it follows that Ŵ defined in Step 1 of AssignRabin is (Y ∪ {χ})-noninval-
idating and (Y ∪{χ})-nonreconfirming. Now let v0, v1, . . . be an infinite path
in Ŵ . It is (Y ∪ {χ})-nonreconfirming because Ŵ is (Y ∪ {χ})-nonrecon-
firming. Hence by the assumption that G � C, v0, v1, . . . � (Rχ̂, Iχ̂) for some
χ̂ ∈ X \ (Y ∪ {χ}). In particular, v0, v1, . . . is eventually χ̂-enabled with
respect to the color set assignment CSY ∪{χ} of Ŵ .

Proof of Claim 2 2

Now, to show that all nodes constructed are at level ≤ |X| = |C|, weProof of Theorem 1-9

note that if |t| = |X| − 1, then since |Y | = |t| and χ /∈ Y (by Claim 1,
Y ∪ {χ} = X). In that case, the color set assignment of Step 2 assigns to
each vertex v only the dummy color ⊥v; thus, AssignRabin is not further
applied in Step 4. It follows that AssignRabin defines a tree T of height at
most |X|. The tree has the following properties:

Claim 3 (a) For every t ∈ T with |t| < |X|,

{W (t · 〈θ〉) | t · 〈θ〉 ∈ T }

is a partition of W (t) \Rξ(t).

(b) For each v ∈ V there is a unique maximal list t = 〈t1, . . . , tn〉 with
1 ≤ n ≤ |X| such that v ∈ W (t).
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Proof of Claim 3 (a) holds for t = 〈 〉, because W (〈 〉) = V and Ŵ formed
in AssignRabin is W (〈 〉) \ Rξ(〈 〉)=V \ R0; thus Lemma 4 in Step 2 and
the definition of children in Step 4 yield a partition {W (〈θ〉) | 〈θ〉 ∈ T } of
W (〈 〉) \Rξ(〈 〉). Similarly, by induction it can been seen that (a) holds for all
t ∈ T with |t| < |X|. Part (b) follows from (a).

Proof of Claim 3 2

Using Claim 3b, we define µ:V → T by µ(v) = 〈t1, . . . , tn〉. Now let usProof of Theorem 1-10

prove that (I) and (R) are satisfied.

(I) Note that if t ≤
·
µ(v) and χ = ξ(t) is defined, then by Claim 1, W (t) is

χ-noninvalidating. Thus in particular, v /∈ Iχ.

(R) Let (u, v) ∈ E. If there is a color χ of a common ancestor of µ(u) and
µ(v) such that v ∈ Rχ, then (R) is trivially satisfied. So we may assume
that for the highest common ancestor t̂, v /∈ Rξ(t̂ ). Then |µ(v)| > |t̂|
by Claim 3a. Consider the application AssignRabin(t̂, Y, ξ(t̂ )).

If u ∈ Rξ(t̂ ), then µ(u) = t̂ because u /∈ Ŵ = W (t) \ Rξ(t̂ ). Thus
µ(u) = t̂ � µ(v), because |µ(v)| > |t̂|. Otherwise, if u /∈ Rξ(t̂ ), then by
Claim 3a, there are θ and θ′ such that u ∈ Wθ and v ∈ Wθ′ . Since t̂ · θ
is a prefix of µ(u), t̂ · θ′ is a prefix of µ(v), and t̂ is the highest common
ancestor of µ(u) and µ(v), it follows that θ 6= θ′. Then by Lemma 4,
θ > θ′, because (u, v) ∈ E. Therefore, µ(u) � µ(v). Thus in all cases
(R) holds.

Proof of Theorem 1 (=⇒) 2

7 Application to Fairness

Our results apply to proving program termination under a general fairness7-1

constraint C = {(φ1, ψ1), . . . , (φN , ψN)}, which is defined in [FK84] and
[Fra86, p. 112]. Each (φχ, ψχ), 1 ≤ χ ≤ N consists of an enabling condition
φχ and an action condition ψχ, both of which are program-state predicates.
An infinite computation of P is unfair if it satisfies C regarded as a Rabin
condition, i.e., if for some χ, the enabling condition φχ is satisfied infinitely
often and the action condition ψχ is satisfied only finitely often. A program
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∗[ a : x = 0 → y := y + 1
b : x = 0 ∧ even(y) → x := 1
c : x 6= 0 ∧ y 6= 0 → y := y − 1
d : x 6= 0 ∧ y 6= 0 → z := z + 1 ]

Figure 5: The program Pex.
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Figure 6: The pointer tree, its coloring, and the measure.

P fairly terminates if every infinite computation of P is unfair, i.e., if P
viewed as a graph (where nodes are states and edges are transitions) satisfies
C. Thus to show fair termination of P , we can use Theorem 1.

7-2

Example 1 Program Pex, shown in Figure 5, is taken from [GFMdR85]Example 1-1

and can also be found in [Fra86]. The variables x, y, and z take on non-
negative integer values. Program Pex terminates under the assumption of
strong fairness: For every infinite computation there is some guarded com-
mand l that is unfairly executed, i.e., infinitely often enabled but only finitely
often executed. Thus the fairness constraint C can be written

{(φa, ψa), (φb, ψb), (φc, ψc), (φd, ψd), (φt, ψt)}

where the pair (φl, ψl), l = a, b, c, d, denotes that command l is unfairly
executed. Thus φl is the guard of l, and ψl is a predicate denoting that
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l is the guarded command to be executed. The additional pair (φt, ψt) =
(false, false) is introduced for technical reasons to account for progress toward
termination.

To prove that G(Pex) � C, we define a progress measure (µ, (T, ξ)). TheExample 1-2

tree T is
{〈 〉, 〈2〉, 〈3〉, . . . , 〈ω〉, 〈2ω〉, 〈2ω, 0〉}

and the coloring ξ is defined by

ξ(〈 〉) = t, ξ(〈2ω〉) = b, and ξ(〈k〉) = c, where k < ω and k is odd

See Figure 6, where also the mapping µ is indicated. Formally, µ is defined
by:

µ(x, y) =




〈2ω, 0〉 if ata and y is odd
〈2ω〉 if ata and y is even
〈ω〉 if atb
〈2y + 1〉 if atd
〈2y〉 if atc

where y denotes the value of program variable y and atl denotes that the
program counter is at l.

For the program Pex, it can be verified that (I) holds. For example, theExample 1-3

colors of nodes on the path to 〈2ω, 0〉 consists of b alone, and ψb is certainly
false when a is selected for execution. With each iteration of the loop, the
value of µ changes according to (R). For example, consider the case when
x = 0, y is odd, and a is executed with a also being the new value of the
program counter. Then µ changes from 〈2ω, 0〉 to 〈2ω〉 and b is the label of
a common ancestor and φb = (x = 0 ∧ even(y)) is satisfied in the new state,
whence (R) holds.

Example 1 2

The termination proof of the program Pex in [Fra86, GFMdR85] involves rea-
soning, not only about the original program, but also about two transformed
programs.

In practice, it is convenient to reformulate the notion of Rabin measure7-3

so that condition (I) expresses that on a transition from u to v only the
colors of common ancestors of u and v should not be invalidating. Other
changes make it possible to define concisely both T and µ by assertions in
the program text as described in [Kla92b].
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8 Automata-Theoretic Applications

The verification problem for automata has been widely studied and can be8-1

formulated as follows. An automaton AP , called a program automaton, satis-
fies an automaton AS, called a specification automaton, if the language L(AP )
defined by AP is a subset of the language L(AS) defined by AS, i.e., if every
behavior of AP is a behavior of AS.

In this section we indicate how Rabin measures solve the problem of8-2

finding verification conditions for proving that a program satisfies a speci-
fication given by a deterministic Rabin automaton. Combined with Safra’s
result [Saf88], this yields a verification method for specifications given as
nondeterministic finite-state Büchi automata.

An automaton A = (Σ, V,→, V 0) consists of a countable alphabet Σ, a8-3

countable state space V , a transition relation →⊆ V × Σ × V , and a set of
initial states V 0 ⊆ V . If V 0 and all sets { v′ | v e→ v′ } have at most one
element, then A is deterministic. A run (computation) of A over a behavior
e0, e1, . . . is an infinite sequence of states v0

e0→ v1
e1→ · · · with v0 ∈ V 0. A

behavior e0, e1, . . . is accepted by A if there is a run of A over e0, e1, . . .. The
language or property L(A) accepted by A is the set of behaviors of A.

A deterministic Rabin automaton A = (Σ, V,→, {v0}, C) is defined as a8-4

deterministic automaton, but in addition it is equipped with a Rabin condi-
tion C on V . A run v0

eo→ v1
e1→ · · · of a Rabin automaton A over a behavior

e0, e1, . . . is accepting if v0, v1, . . . � C. The language L(A) accepted by A is
the set of behaviors whose run is accepting.

8-5

We can now use Rabin measures to solve the verification problem L(AP ) ⊆
L(AS), where the program automaton AP = (Σ, VP ,→P , V

0
P ) is nondetermin-

istic and the specification automaton AS = (Σ, VS,→S, {s0}, C) is a deter-
ministic Rabin automaton. In fact, it suffices to notice that L(AP ) ⊆ L(AS)
holds if and only if all paths in the reachable part of the joint state graph
(formed by the automata-theoretic product of L(AP ) and L(AS)) satisfy the
Rabin condition C.

Corollary 1 (of Theorem 1) Let AP be an automaton and let AS be a
deterministic Rabin automaton. Then L(AP ) ⊆ L(AS) if and only if there is
progress measure for C on the jointly reachable states.

For further applications see [Kla90b], where the method for Rabin au-8-6

tomata is extended to the ∀-automata of [MP87] and applied to simplify the
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method of [AS89].
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