
Chapter 9
Publication/Citation:
A Proof-Theoretic Approach to Mathematical
Knowledge Management∗

Dexter Kozen and Ganesh Ramanarayanan

9.1 Introduction

There are many real-life examples of formal systems that support certain construc-
tions or proofs, but that do not provide direct support for remembering them so that
they can be recalled and reused the future. This task is usually left to some metasys-
tem that is typically provided as an afterthought. For example, programming lan-
guage design usually focuses on the programming language itself; the mechanism
for accumulating useful code in libraries is considered more of a systems issue and
is generally treated as a separate design task. Mathematics deals with the construc-
tion of proofs, but not with their publication and citation; that is the domain of the
journals.

Automated deduction systems such as NuPrl [4, 6] and Mizar [16] have language
support for accumulating results in libraries for later reference. However, the mech-
anisms for providing this support are typically not considered interesting enough to
formalize in the underlying logic, although it is possible in principle to do so.

We regard publication/citation as an instance of common subexpression elimina-
tion on proof terms. These operations permit proofs to be reused, perhaps special-
ized to a particular context, without having to reconstruct them in every application.

In this paper we attempt to develop this idea from a proof-theoretic perspective.
We describe a simple complete proof system for universal Horn equational logic
with three new proof rules, publish, cite and forget. The first two rules allow the
inclusion of proved theorems in a library and later citation. The last allows removal
of theorems from the library. These rules encapsulate all the bookkeeping that must
be done to ensure correctness in their application.
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The publish rule has the effect of publishing the universal closure of a theorem to
the library. The combinator corresponding to publish wraps the proof term to inhibit
β -reduction upon later citation. The result of this operation is a citation token that is
type-equivalent to the original proof, thus interchangeable with it, but that does not
perform the specialization that is supplied with the citation.

The cite rule allows for the application of published theorems using the type-
equivalent citation token. The theorem is applied under a specialization given by
a variable substitution and provided at the time of the citation. However, because
of the wrapping done by publish, the substitution is not actually performed on the
proof term.

The forget rule is correspondingly more involved, since it must remove all ci-
tations to the forgotten theorem from the library. This is accomplished by unwrap-
ping all occurrences of the citation token, allowing the deferred substitutions and β -
reductions to take place during proof normalization. Effectively, this replaces each
citation of the forgotten theorem with an inlined specialization of the original proof,
where the specialization is the one supplied when the theorem was cited.

A major advantage of our approach is that it avoids namespace management
issues, allowing us to focus on the pure structure of publication/citation. In real
systems, when a lemma is added to a library, it is usually given a name, and all sub-
sequent references are by this name. This introduces the possibility of name colli-
sions. To address this issue, these systems typically introduce some form of scoping
or module structure. However, our proof-theoretic treatment of publication/citation
allows us to avoid the problem entirely.

In this paper, we develop this idea for constructive universal equational Horn
logic. However, it is clear that the mechanisms are more general and could be
adapted to richer theories. Significant progress along these lines has already been
made [1–3].

9.2 A Classical Proof System

We first present a classical proof system for constructive universal equational Horn
logic as a basis for comparison. Let Σ be a signature consisting of function symbols
Σ = { f ,g, . . .}, each with a fixed finite arity. Let Σn denote the set of elements of Σ

of arity n. Let X be a set of individual variables X = {x,y, . . .}, and let TΣ (X) denote
the set of individual terms over Σ and X . Formally, an individual term is either

• a variable x ∈ X , or
• an expression of the form f t1 . . . tn, where t1, . . . , tn are individual terms and f ∈

Σn.

For example, the signature of groups consists of a binary operator ·, a unary operator
−1, and a constant 1.

A formula is either

• an equation s = t between individual terms,
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• an implication of the form s = t → ϕ , where ϕ is a formula, or
• a quantified expression for the form ∀x ϕ , where x is an individual variable and

ϕ is a formula.

We use d,e, . . . to denote equations and ϕ,ψ, . . . to denote formulas.
We are primarily interested in the universal Horn formulas, which are universally

quantified formulas of the form

∀x1 . . . ∀xn e1 → ··· → en → e. (9.1)

In the system presented in this section, the quantification is implicit.
Let S denote the set of all substitutions σ : X 7→ TΣ (X). The notation [x/t] denotes

the substitution that simultaneously substitutes the term t for all occurrences of the
variable x in a term or formula.

The following axioms E are the axioms of classical equational logic, implicitly
universally quantified.

x = x

x = y→ y = x

x = y→ y = z→ x = z

x1 = y1 → ··· → xn = yn → f x1 . . .xn = f y1 . . .yn, f ∈ Σn.

Besides E, we will also allow an application theory ∆ of universal Horn formulas
to serve as additional, application-specific axioms. For example, for group theory,
∆ would consist of the equational axioms for groups.

We now give the deduction rules. Let A be a set of equations, d,e, . . . equations,
and ϕ a Horn formula.

` σ(ϕ), ϕ ∈ ∆ ∪E, σ ∈ S

e ` e

A ` ϕ

A,e ` ϕ

A,e ` ϕ

A ` e→ ϕ

A ` e→ ϕ A ` e
A ` ϕ

The following rule is derived:

A ` e
A[x/t] ` e[x/t]

provided x does not occur in t. This rule obviates the need for an explicit universal
quantifier and corresponding introduction and elimination rules.
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One can also give annotated versions of these rules in which formulas are anno-
tated with explicit proof terms, which are terms of the simply typed λ -calculus. Let
P = {p,q,r, . . .} be a set of proof variables. A proof term is either

• a variable p ∈ P,
• a constant ref, sym, trans, cong f for f ∈ Σ , or axiomϕ for ϕ ∈ ∆ ,
• an application π τ , where π and τ are proof terms,
• an application π t, where π is proof term and t is an individual term,
• an abstraction λ p.τ , where p is a proof variable and τ is a proof term,
• an abstraction λx.τ , where x is an individual variable and τ is a proof term, or
• an expression pub τ , where τ is a proof term.

The combinator pub is just a fixed constant. Proof terms are denoted π,ρ,τ, . . . .
As usual in constructive mathematics, according to the Curry–Howard isomor-

phism, we can view proofs as constructions, formulas as types, and the deduction
system as a set of typing rules. An annotated formula takes the form of a type judge-
ment τ : ϕ , where τ is a proof term. The interpretation of these constructs is the same
as in the simply-typed λ -calculus.

The annotated rules are as follows.

` axiomϕ σ : σ(ϕ), ϕ ∈ ∆ ∪E, σ ∈ S

p : e ` p : e

A ` τ : ϕ

A, p : e ` τ : ϕ

A, p : e ` τ : ϕ

A ` λ p.τ : e→ ϕ

A ` π : e→ ϕ A ` ρ : e
A ` πρ : ϕ

Not all proof terms as defined above are well typed. In particular, abstractions
over an individual variable λx.τ and the pub combinator will only become relevant
in Section 9.3, when we reintroduce explicit universal quantification.

9.3 A New System

The new system we present in this section builds directly on the classical system
presented in Section 9.2, adding in the notion of a library L . This library minimally
contains all of the axioms, and we introduce rules to add and remove new theorems
to and from the library along with their proofs.

In contrast to the system of Section 9.2, the system of the present section will
have explicit universal quantification for all axioms and theorems in the library.
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This will allow arbitrary specialization via substitution of individual terms for the
quantified variables upon citation.

As in the system of Section 9.2, our system has three main syntactic categories:
individual terms, formulas, and proof terms. Also as in Section 9.2, we will start by
presenting the unannotated version of our proof system, which does not have any
proof terms.

As before, let X = {x,y, . . .} be a set of individual variables, Σ = { f ,g, . . .} a first-
order signature, and TΣ (X) = {s, t, . . .} the set of individual terms over X and Σ . Let
∆ be a set of universal Horn formulas over X and Σ that serve as the application
theory.

The unannotated version of our proof system consists of the following axioms
and rules. We restate the equational axioms E, this time with explicit universal quan-
tification. We use x to denote a tuple x1, . . . ,xn.

∀x x = x

∀x ∀y x = y→ y = x

∀x ∀y ∀z x = y→ y = z→ x = z

∀x ∀y x1 = y1 → . . .→ xn = yn → f x1 . . .xn = f y1 . . .yn, f ∈ Σ

In the descriptions below, the separator character ; is used to distinguish proof tasks
from the contents of the library. Judgements are of the form L ; A ` ϕ , where L is
the current library consisting of a list of universally quantified Horn formulas of the
form (9.1), A is a list of unquantified equational premises, and ϕ is an unquantified
Horn formula. Elements of L are separated by commas, as are elements of A.

(ident) L ;

L ; e ` e

(assume) L ; A ` ϕ

L ; A, e ` ϕ

(discharge) L ; A, e ` ϕ

L ; A ` e→ ϕ

(mp) L ; A ` e→ ϕ L ; A ` e
L ; A ` ϕ

(publish) L ; ` ϕ

L ,∀x ϕ ;

(cite)
L , ∀x ϕ ;
L , ∀x ϕ ; ` ϕ[x/t]

(forget)
L , ∀x ϕ ;
L ;

, ∀x ϕ 6∈ ∆ ∪E

where in the publish rule, x = x1, . . . ,xn are the free variables of ϕ .
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The rules of the proof system build on the classical set of rules, with the addition
of the three new rules publish, cite and forget. We do not allow the equational and
application theory axioms to be removed from the library, thus it is always be the
case that ∆ ∪ E ⊆ L . The rules publish and cite serve as introduction and elimi-
nation rules for the universal quantifier, respectively, but quantifiers appear only in
published theorems (i.e., those in the library). The forget rule is simply an ordinary
weakening rule in this version; however, once annotations are added, the effect of
this rule on proof terms is much more involved.

Now we add annotations. For the equational axioms and the application theory,

ref : ∀x x = x
sym : ∀x ∀y x = y→ y = x

trans : ∀x ∀y ∀z x = y→ y = z→ x = z
cong f : ∀x ∀y x1 = y1 → . . .→ xn = yn → f x1 . . .xn = f y1 . . .yn, f ∈ Σ

axiomϕ : ϕ , ϕ ∈ ∆ .

Thus each axiom of equational logic and the application theory (∆ ∪ E) is inhabited
by a constant. These type judgements are always present in L .

In addition to these, we have the following annotated rules:

(ident) L ;
L ; p : e ` p : e

(assume) L ; A ` τ : ϕ

L ; A, p : e ` τ : ϕ

(discharge) L ; A, p : e ` τ : ϕ

L ; A ` λ p.τ : e→ ϕ

(mp) L ; A ` π : e→ ϕ L ; A ` ρ : e
L ; A ` πρ : ϕ

(publish) L ; ` τ : ϕ

L , pubλx.τ : ∀x ϕ ;

(cite)
L , π : ∀x ϕ ;
L , π : ∀x ϕ ; ` π t : ϕ[x/t]

(forget)
L , pubπ : ∀x ϕ ;
L [pubπ/π] ;

, ∀x ϕ 6∈ ∆ ∪E

Publication forms the universal closure of the formula and the corresponding λ -
closure of the proof term before wrapping with pub. Thus published theorems, like
axioms, are always closed universal formulas. The proof term is closed by binding
all the free individual variables appearing in the body of the proof term in the same
order as they were bound in the formula (the free individual variables in formulas
and corresponding proof terms are always the same).
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As in Section 9.2, the interpretation of annotated formulas is the same as in the
simply-typed λ -calculus. However, our type system is somewhat more restrictive
than the usual one. For example, the type system prevents a binding operator λx
from occurring in the scope of a binding operator λ p. This enforces the universal
Horn form (9.1) for published theorems.

The constant pub is polymorphic of type ϕ → ϕ . Its main purpose is to wrap
proof terms to inhibit β -reduction without altering their type. An expression of the
form pubπ is called a citation token. Intuitively, we can think of a citation token as
a short abbreviation (a name or a pointer) for the proof π in the library. Since the
proof and its citation token are type-equivalent, we can use them interchangeably.

Ordinarily, when a universally quantified theorem is cited in a special case de-
fined by a substitution [x/t], the proof term would be specialized as well by applying
it to the sequence of individual terms t1, . . . , tn. Without the pub wrapper, proof nor-
malization would cause those terms to be substituted for x1, . . . ,xn in the body of
the λ -expression as in ordinary β -reduction. The pub wrapper prevents this from
happening, since the expression (pubπ)τ is in normal form.

An alternative approach might use new names and bindings for published proofs,
but this would introduce namespace management issues that are largely orthogonal
to the publish/cite structure and which our approach circumvents.

For an accurate complexity analysis on the size of proofs, one could define the
size of proof terms inductively in some reasonable way, taking the size of citation
tokens to be 1. This would reflect the fact that in practice, a proof term would only
be represented once, and citations would reference the original proof by name or by
pointer.

9.4 An Example

To illustrate the operation of this proof system, we will go through a simple example.
Supposing we wanted to prove the theorem

∀x x = f x → x = f ( f x).

We will provide a proof of this fact, along with the corresponding extraction of
proof terms. For the first part, we will omit the library L for readability, but we will
reintroduce it later when we show the operation of publication.

Defining

π1 = cong f x ( f x)
π2 = trans x ( f x) ( f ( f x)),

we have by citation of the transitivity axiom and the congruence axiom for f that
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` π1 : x = f x→ f x = f ( f x) (9.2)
` π2 : x = f x→ f x = f ( f x)→ x = f ( f x). (9.3)

From (9.3) and (assume), we have

p : x = f x ` π2 : x = f x→ f x = f ( f x)→ x = f ( f x). (9.4)

Also, by (ident),

p : x = f x ` p : x = f x. (9.5)

Applying (mp) with premises (9.4) and (9.5) gives

p : x = f x ` π2 p : f x = f ( f x)→ x = f ( f x). (9.6)

Similarly, from (9.2) and (assume), we have

p : x = f x ` π1 : x = f x→ f x = f ( f x), (9.7)

and applying (mp) with premises (9.5) and (9.7) gives

p : x = f x ` π1 p : f x = f ( f x). (9.8)

Now applying (mp) with premises (9.6) and (9.8), we obtain

p : x = f x ` π2 p(π1 p) : x = f ( f x), (9.9)

and we conclude from (discharge) that

` λ p.π2 p (π1 p) : x = f x→ x = f ( f x). (9.10)

We can now publish the universal closure of (9.10) using the publication rule, which
adds the annotated theorem

pub (λx.λ p.π2 p (π1 p)) : ∀x x = f x→ x = f ( f x) (9.11)

to the library.
Now we show how (9.11) can be cited in a special case by proving the theorem

∀y gy = f (gy) → gy = f ( f (gy)). (9.12)

This is a more specific version of (9.11) obtained by substituting gy for x. We start
by citing (9.11) with the term gy using the rule (cite), which gives

pub (λx.λ p.π2 p (π1 p))(gy) : gy = f (gy)→ gy = f ( f (gy)). (9.13)

Publishing this theorem using (publish) results in the annotated theorem
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pub (λy.pub (λx.λ p.π2 p (π1 p))(gy)) : ∀y gy = f (gy)→ gy = f ( f (gy)) (9.14)

being added to the library.
Now suppose we wish to use the (forget) rule to forget the original theorem

(9.11) that was cited in the proof of (9.12). This removes (9.11) from the library and
strips the pub combinator from all citations. The theorem (9.14) becomes

pub (λy.(λx.λ p.π2 p (π1 p))(gy)) : ∀y gy = f (gy)→ gy = f ( f (gy)) (9.15)

The theorem itself remains in the library unchanged, but its proof is no longer in
normal form, since the inner pub combinator has been stripped. Normalizing the
proof, we obtain

pub (λy.λ p.π2[x/gy] p (π1[x/gy] p)) : ∀y gy = f (gy)→ gy = f ( f (gy)),

where

π1[x/gy] = cong f (gy) ( f (gy))
π2[x/gy] = trans (gy) ( f (gy)) ( f ( f (gy))).

The proof now has the specialization of the proof of (9.11) “inlined” into it. This is
equivalent to what we would have obtained had we set out to prove (9.12) directly,
without appealing to the more general theorem (9.11) first.

9.5 Related and Future Work

Proof generalization, proof reuse, and mathematical knowledge management are
active areas of research. Much of the work on proof generalization and reuse is ori-
ented toward heuristic methods for discovering simple modifications of old proofs
that apply in new but similar situations. Schairer et al. [14, 15] have suggest replay-
ing tactics to develop proofs by analogy. Hutter [8, 9] has given a system of proof
annotations and rules for manipulating them. The annotations are used to include
planning information in proofs to help guide the proof search. Kolbe and Walther
[10, 11] study the process of proof generalization by abstracting existing proofs to
form proof shells. Their approach involves replacing occurrences of function sym-
bols by second-order variables. Felty and Howe [7] also suggest a system of proof
reuse using higher-order unification and metavariables to achieve abstraction. Melis
and Whittle [12] study proof by analogy, focussing on the process of adapting ex-
isting proofs to new theorems with a similar structure. Piroi and Buchberger [5, 13]
present a graphical environment for editing mathematics and managing a mathemat-
ical knowledge library. Allen et al. [4] also propose a structure for a formal digital
library and discuss the problem of naming conflicts.

It would be interesting to explore the possibility of identifying similar proofs
and finding common generalizations in a more proof-theoretic context such as the
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publication/citation mechanism presented in this paper. It would also be useful to
extend the system to handle full first-order and higher-order logics.

One area of recent progress is the proof-theoretic representation of tactics [1, 2].
Another recent advance is the enhancement of the proof-theoretic apparatus to bet-
ter capture natural dependencies among theorems, lemmas, and corollaries in the
library and the locality of definitions. Most libraries are flat, which does not ad-
equately capture the richness of mathematical knowledge. Recent progress in this
direction has been made by Aboul-Hosn and Andersen [3], who present a hierarchi-
cal representation along with natural proof rules for restructuring.
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