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We present a denotational semantics for higher-order probabilistic programs in terms of linear operators
between Banach spaces. Our semantics is rooted in the classical theory of Banach spaces and their tensor
products, but bears similarities with the well-known semantics of higher-order programs à la Scott through
the use of ordered Banach spaces which allow definitions in terms of fixed points. Our semantics is a model of
intuitionistic linear logic: it is based on a symmetric monoidal closed category of ordered Banach spaces which
treats randomness as a linear resource, but by constructing an exponential comonad we can also accommodate
non-linear reasoning. We apply our semantics to the verification of the classical Gibbs sampling algorithm.

CCS Concepts: · Software and its engineering→ General programming languages; · Social and pro-

fessional topics→ History of programming languages.

Additional Key Words and Phrases: Probabilistic programming, semantics, type system

ACM Reference Format:

Fredrik Dahlqvist and Dexter Kozen. 2020. Semantics of Higher-Order Probabilistic Programs with Condition-
ing. Proc. ACM Program. Lang. 4, POPL, Article 57 (January 2020), 29 pages. https://doi.org/10.1145/3371125

1 INTRODUCTION

Probabilistic programming has enjoyed a recent resurgence of interest driven by new applications
in machine learning and statistical analysis of large datasets. The emergence of probabilistic
programming languages such as Church and Anglican, which allow statisticians to construct
and sample distributions and perform Bayesian inference, has created a need for sound semantic
foundations and tools for specification and reasoning. Several recent works have approached this
task from various perspectives [Ehrhard et al. 2017, 2014; Heunen et al. 2017; Ścibior et al. 2017;
Staton 2017; Vákár et al. 2019].

One of the earliest works on the semantics of probabilistic programs was [Kozen 1981], in which
operational and denotational semantics were given for an idealized first-order imperative language
with random number generation. Data were interpreted over ordered Banach spaces. Programs
were modelled as positive and continuous linear operators on an ordered Banach space of measures.
In [Kozen 1985], an equivalent predicate-transformer semantics was introduced based on ordered
Banach spaces of measurable functions and shown to be dual to the measure-transformer semantics
of [Kozen 1981].

This paper revisits this approach. We identify a symmetric monoidal closed category RoBan of
regular ordered Banach spaces and regular maps that can serve as a foundation for higher-order
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57:2 Fredrik Dahlqvist and Dexter Kozen

probabilistic programming with sampling, conditioning, and Bayesian inference. Bayesian inference
can be viewed as reversing the computation of a probabilistic program to infer information about a
prior distribution from observations. We model Bayesian inference as computing the adjoint of a
linear operator and show how it corresponds to computing a disintegration.

The extension to higher types is achieved through a tensor product construction in the category
RoBan that gives symmetric monoidal closure. Although not cartesian, the construction does admit
an adjunction with homsets enriched with an ordered Banach space structure acting as internalized
exponentials. To accommodate conditioning and Bayesian inference, we introduce ‘Bayesian types’,
in which values are decorated with a prior distribution. Based on this foundation, we give a type
system and denotational semantics for an imperative higher-order probabilistic language with
sampling, conditioning, and Bayesian inference.
Being linear our system treats randomness as a resource, a perspective which fits well with the

view of entropy as a computation resource, like time or space. True random number generators
can only produce randomness at a limited rate; physically, randomness is a resource [Hayes 2001].
Being resource-sensitive, our type system has some nice crypographical properties: by default
it is forbidden to use a sample more than once; that is, each operation consuming a random
sample requires a fresh sample (component in a tensor product). However, as we shall see with
the example of Gibbs sampling in ğ 2 and ğ 6, it is often desirable to have data types which are
duplicable. For this reason, our system also includes an exponential type constructor, and our model
is thus linear-non-linear in the same sense as [Mellies 2009; Selinger and Valiron 2008]. In fact,
our semantics is a model of intuitionistic linear logic : the symmetric monoidal closed structure
provides the interpretation of the tensor ⊗ and linear implication −−◦, and the exponential type
constructor provides the interpretation of the unary operator ! and of classical implication via the
usual encoding 𝐴 → 𝐵 = !𝐴 −−◦ 𝐵.

We believe our approach should appeal to computer scientists, as it is true to traditional Scott-style
denotational semantics (see ğ 5.3.3) as well as being a model of intuitionistic linear logic.
On the other hand, we also believe that defining a semantics in terms of linear operators will

appeal to mathematicians, statisticians and machine learning theorists. This is for two reasons.
First, because the most natural way to represent Markov process is arguably through stochastic

operators (i.e. positive operators between Banach lattices, which preserve the norm of positive
vectors [Aliprantis and Border 1999, Ch. 19]). This simply generalises the fact that stochastic matrices

are the natural way to represent Markov chains. Stochastic operators are precisely the morphisms
of our semantics. Second, because working with linear operators connects our semantics to an
immense body of classical results from linear algebra and functional analysis. We shall see in
particular that standard results from ergodic theory ś an important part of the spectral theory of
linear operators [Dunford et al. 1971; Eisner et al. 2015] ś will prove crucial in the verification of the
correctness of Gibbs sampling in ğ 6, and can be applied directly to our denotational semantics. We
believe that this seamless connection between program semantics and mathematics will simplify
the task of validating stochastic machine learning algorithms.
Related Works: Since the formalisms for describing Markov processes (stochastic operators

or Kleisli arrows for the Giry monad) form categories which cannot be Cartesian closed, two
strategies are possible when designing a semantics for probabilistic programs: either keep the
familiar formalism and abandon Cartesian closedness in favour of a monoidal closed system, or
retain Cartesian closedness and design a new mathematical universe which can nonetheless be
used to encode probabilistic processes. To our knowledge, we provide the first comprehensive
semantics following the first strategy.
Two very powerful semantics for higher-order probabilistic programming have been recently

developed in the literature following the second strategy. In [Heunen et al. 2017; Ścibior et al.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 57. Publication date: January 2020.



Semantics of Higher-Order Probabilistic Programs with Conditioning 57:3

2017], a semantics is given in terms of so-called quasi-Borel spaces. These form a Cartesian closed
category and admit a notion of probability distribution and of a Giry-like monad of probability
distributions. In [Ehrhard et al. 2017] the authors develop a semantics in terms of measurable
cones. These form a cpo-enriched Cartesian closed category which provides a semantics to a
probabilistic extension of PCF that includes conditioning. The key differences with the present
semantics are the following. First, these proposed mathematical universes come directly from the
world of theoretical computer science, whilst as mentioned above, our semantics is rooted in the
traditional mathematics of the objects being constructed by the programs. Second, quasi-Borel
spaces and measurable cones form Cartesian closed categories, whereas we work in a monoidal
closed category, with obvious implications in terms of resources (e.g. we cannot copy non-duplicable
types). Finally, our semantics of conditioning has been reduced to a mathematically very simple,
but also very general construction (taking the adjoint of a linear operator, see ğ 5.2.9), whilst in
[Heunen et al. 2017] un-normalized posteriors and normalization constants are computed pointwise,
and [Ehrhard et al. 2017] hard-codes the rejection-sampling algorithm into the semantics. This
being said, our work is very closely related to [Ehrhard et al. 2017]. In fact, we believe that the
exponential comonad constructed in ğ 5.1.4 establishes a bridge between the two models which in

fine correspond to the multiplicative fragment (our work) and the additive fragment ([Ehrhard et al.
2017]) of a common system. We conjecture that each pre-stable function 𝑓 : 𝐸 → 𝐹 from [Ehrhard
et al. 2017] corresponds to a positive operator 𝑓 : !𝐸 → 𝐹 ś where 𝐸 is the space generated by the
cone 𝐸 ś in our system and vice-versa.

2 A TARGET: VERIFYING THE CORRECTNESS OF GIBBS SAMPLING

Gibbs sampling [Geman and Geman 1987] is one of the classic Monte Carlo Markov Chain (MCMC)
sampling algorithms. It is a simple algorithm whose purpose is to sample from a joint distribution P
on a space 𝑋1 × . . . ×𝑋𝑛 when all the conditional distributions P(𝑋𝑖 | 𝑋1, . . . , 𝑋𝑖−1, 𝑋𝑖+1, . . . , 𝑋𝑛) are
known (we keep the notation informal for the moment, we will describe the algorithm rigorously
in ğ 6). Starting from an initial guess (𝑥1, . . . , 𝑥𝑛), the algorithm cyclically updates the compo-
nents of the vector by sampling from the corresponding conditional distribution. Thus starting
from (𝑥1, . . . , 𝑥𝑛) the algorithm will first update 𝑥1 by sampling P(𝑋1 | 𝑋2, . . . , 𝑋𝑛) evaluated at
(𝑥2, . . . , 𝑥𝑛), then update 𝑥2 by sampling P(𝑋2 | 𝑋1, 𝑋3, . . . , 𝑋𝑛) evaluated at (𝑥1, 𝑥3, . . . , 𝑥𝑛) where
𝑥1 was updated at the previous step, but 𝑥3 is still the original guess, etc. The loop repeats once 𝑥𝑛
has been updated, and exits after a pre-determined number of iterations.
For simplicity’s sake, a three-dimensional Gibbs sampling algorithm is presented in Fig. 1. The

algorithm is written in the probabilistic language which we will describe in ğ 4. The reader will
immediately notice that the program does not terminate, and indeed the Gibbs sampler of Fig. 1
is an idealization which abstracts away the thorny question of how many iterations of the loop
are enough to provide a ‘good’ sample. We consider that we can run the loop infinitely often,
the purpose of the exercise being to show the correctness of the algorithm in the limit where the
number of iterations of the loop tends to infinity. Let us make a few comments about the syntax of
the language in Fig. 1. Note first that this is a typed, higher-order, imperative language. The first three
inputs represent the conditional distributions. They are implemented as higher-order types whose
codomains are built using a type constructor for measure types. They are also tagged as duplicable
types via the exponential type constructor ! since they will be repeatedly called during the execution
of the loop. The square brackets [i, j] are just syntactic sugar for the obvious projections. Note
also the presence of a while loop; our language will allow certain fixpoint operations (as in [Kozen
1981]).
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/* Pre -conditions:

1) cond_1 , cond_2 , cond_3 are the conditional distributions of

a joint distribution 𝜇 on JX × Y × ZK

2) the initial xyz is sampled absolutely continuous w.r.t. 𝜇

*/

gibbs_sampling(cond_1: !(XxY -> M(XxYxZ)), cond_2: !(XxZ -> M(XxYxZ)),

cond_3: !(YxZ -> M(XxYxZ)), xyz: XxYxZ): XxYxZ

{

while true do

xyz:= write_Z(xyz , sample(cond_1(xyz [1 ,2])));

xyz:= write_Y(xyz , sample(cond_2(xyz [1 ,3])));

xyz:= write_X(xyz , sample(cond_3(xyz [2 ,3])));

return xyz

}

Fig. 1. Idealized three-dimensional Gibbs sampler

We will provide a simple proof of the correctness of the algorithm in Fig 1 in ğ 6. The proof that
Gibbs sampling is correct, see for example the original [Geman and Geman 1987, ğXXII], i.e. that
it does sample from the joint distribution in the limit, relies on results from ergodic theory. This
is typical of MCMC sampling algorithms in which a distribution is computed as the equilibrium
distribution of some cleverly designed Markov chain. The ‘sampleability’ of the joint distribution
(the ‘space average’ in ergodic terminology) by repeated iteration of the operator representing
the chain (the ‘time average’) is as the heart of ergodic theorems [Dunford et al. 1971; Eisner
et al. 2015]. Our correctness proof will use the same ideas and, as hinted to in the introduction,
our denotational semantics will therefore target a mathematical universe in which ergodicity
and ergodic theorems can be expressed naturally. Finally, let us mention the fact that although
the program above does not contain any conditioning instruction, its proof of correctness will
nonetheless rely on the mathematics which will interpret the conditioning operation (technically,
because the input conditional distributions are the disintegrations of the projections onto two
components).
Our task in the next sections will therefore be to design a type system and a language, and to

provide them with a denotational semantics which can accommodate:

(1) continuous distributions
(2) all the imperative commands of [Kozen 1981], including the fixpoints defined by while loops
(3) higher-order types
(4) duplicable types
(5) conditioning
(6) results from ergodic theory

3 PRELIMINARIES

The semantics developed in [Kozen 1981] is framed in terms of operators between Banach lattices.
We start by presenting some basic facts about these important objects, and show how they relate to
the important probabilistic notion of disintegration which semantically underpins conditioning in
probabilistic programs. We will then see that Banach lattices do not form a closed category and we
will therefore present a generalisation of Banach lattices, called regular ordered Banach spaces (the
category RoBan), which forms a complete, symmetric monoidal closed category.
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3.1 Banach Lattices

3.1.1 Definitions and Examples. An ordered vector space 𝑉 is a vector space together with a partial
order ≤ which is compatible with the linear structure in the sense that for all 𝑢, 𝑣,𝑤 ∈ 𝑉 , 𝜆 ∈ R+

𝑢 ≤ 𝑣 ⇒ 𝑢 +𝑤 ≤𝑣 +𝑤 and 𝑢 ≤ 𝑣 ⇒ 𝜆𝑢 ≤ 𝜆𝑣
A vector 𝑣 in an ordered vector space 𝑉 is called positive if 𝑣 ≥ 0 and the collection of all positive
vectors is called the positive cone of 𝑉 and denoted 𝑉 +. The positive cone entirely specifies the
order since 𝑥 ≤ 𝑦 iff there exists 0 ≤ 𝑢 such that 𝑥 +𝑢 = 𝑦. The positive cone is said to be generating
if 𝑉 = 𝑉 + −𝑉 +, i.e. if every vector can be expressed as the difference of two positive vectors.
An ordered vector space (𝑉 , ≤) is a Riesz space if its partial order is a lattice. This allows the

definition of the positive and negative part of a vector 𝑣 ∈ 𝑉 as 𝑣+ = 𝑣 ∨ 0, 𝑣− = (−𝑣) ∨ 0 and its
modulus as |𝑣 | = 𝑣 ∨ (−𝑣). Note that 𝑣 = 𝑣+ − 𝑣−, with 𝑣+, 𝑣− positive, and the positive cone of a
Riesz space is thus generating. A Riesz space is order complete or Dedekind-complete (resp. 𝜎-order
complete or 𝜎-Dedekind complete) if every non-empty (resp. non-empty countable) subset of 𝑉
which is order bounded has a supremum1. A normed Riesz space is a Riesz space equipped with a
lattice norm, that is to say a norm satisfying:

R1 if −𝑦 ≤ 𝑥 ≤ 𝑦 then ∥𝑥 ∥ ≤ ∥𝑦∥
A normed Riesz space is called a Banach lattice if it is (norm-)complete, i.e. if every Cauchy sequence
converges to an element of the space.

Example 1. Given a measurable space (𝑋, F ) we introduce the spaceM(𝑋, F ), or simply M𝑋 , as

the set of signed measures of bounded variation over 𝑋 . M𝑋 is a Banach space: the linear structure is

inherited pointwise from R, and the norm is given by the total variation. The space M(𝑋, F ) can also

be shown to be a Banach lattice for the lattice structure given by

(𝜇 ∨ 𝜈) (𝐴) = sup{𝜇 (𝐵) + 𝜈 (𝐴 \ 𝐵) | 𝐵 measurable , 𝐵 ⊆ 𝐴}
and dually for meets. The Hahn-Jordan decomposition theorem provides the positive part 𝜇+ = 𝜇 ∨ 0
and negative part 𝜇− = −𝜇 ∨ 0 of a signed measure 𝜇 ∈ M(𝑋, F ).

Example 2. Given a measured space (𝑋, F , 𝜇) and 1 ≤ 𝑝 < ∞, the Lebesgue space L𝑝 (𝑋, 𝜇) is the
set of equivalence classes of 𝜇-almost everywhere equal, 𝑝-integrable, real-valued functions, that is to

say functions 𝑓 : 𝑋 → R such that ∫
|𝑓 |𝑝 𝑑𝜇 < ∞.

The linear structure is inherited pointwise from R and the norm is given by ∥ 𝑓 ∥𝑝 =
∫
|𝑓 |𝑝 𝑑𝜇. When

𝑝 = ∞, the space L∞ (𝑋, 𝜇) is defined as the set of equivalence classes of 𝜇-almost everywhere equal

bounded real-valued functions with the norm given by the essential supremum:

∥ 𝑓 ∥∞ = inf{𝐶 ≥ 0 | |𝑓 (𝑥) | ≤ 𝐶 𝜇-a.e.}.
Lebesgue spaces are Banach lattices when equipped with the pointwise order. In particular, for any

𝑓 ∈ L𝑝 (𝑋, 𝜇), the positive and negative parts 𝑓 + and 𝑓 − of a function used in the definition of the

Lebesgue integral defines the positive-negative decomposition of 𝑓 in the Banach lattice L𝑝 (𝑋, 𝜇).
We will say that 𝑝, 𝑞 ∈ N ∪ {∞} are Hölder conjugate if either of the following conditions hold: (i)
1 < 𝑝, 𝑞 < ∞ and 1

𝑝
+ 1

𝑞
= 1, or (ii) 𝑝 = 1 and 𝑞 = ∞, or (iii) 𝑝 = ∞ and 𝑞 = 1.

The most important spaces for what follows are the Banach lattices M𝑋 of signed measures
over a measurable space, and the Lebesgue spaces L1 (𝑋, 𝜇). These are instances of a class of objects
1Order-completeness was called conditional completeness in [Kozen 1981]
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called abstract Lebesgue spaces or AL-spaces which are characterised by the interaction of the norm
with the additive structure. A Banach lattice 𝑉 is an AL-space iff for all 𝑢, 𝑣 ∈ 𝑉 + with 𝑢 ∧ 𝑣 = 0

∥𝑢 + 𝑣 ∥ = ∥𝑢∥ + ∥𝑣 ∥ (AL)

3.1.2 Order and Norm-Convergence. There are two modes of convergence in a Banach lattice: order
convergence and norm convergence. The latter is well-known, the former less so. Let 𝐷 be a directed
set, and let {𝑣𝛼 }𝛼 ∈𝐷 be a net in an ordered Banach space𝑉 . We say that {𝑣𝛼 } converges in order to 𝑣

if there exists a decreasing net {𝑢𝛼 }𝛼 ∈𝐷 with
∧
𝑢𝛼 = 0 ś notation 𝑢𝛼 ↓ 0 ś s.th.

−𝑢𝛼 ≤ 𝑣𝛼 − 𝑣 ≤ 𝑢𝛼 for all 𝛼 ∈ 𝐷
If the directed set𝐷 isNwe get the notion of order-convergent sequence. Order and norm convergence
of sequences are disjoint concepts, i.e. neither implies the other (see [Zaanen 2012, Ex. 15.2] for two
counter-examples). However if a sequence converges both in order and in norm then the limits
are the same (see [Zaanen 2012, Th. 15.4]). Moreover, for monotone sequences norm convergence
implies order convergence [Zaanen 2012, Th. 15.3].

It is well known that bounded operators are continuous, i.e. preserve norm-converging sequences.
The corresponding order-convergence concept is defined as follows: an operator 𝑇 : 𝑉 → 𝑊

between ordered vector spaces is said to be 𝜎-order continuous if𝑇𝑣𝑛 ↓ 0 whenever 𝑣𝑛 ↓ 0 2. We can
thus consider two types of dual spaces on an ordered Banach space 𝑉 : on the one hand we can
consider the norm-dual:

𝑉 ∗
= {𝑓 : 𝑉 → R : 𝑓 is norm-continuous}

and on the other the 𝜎-order-dual:

𝑉 𝜎
= {𝑓 : 𝑉 → R : 𝑓 is 𝜎-order continuous}

The latter is also known as the Köthe dual of 𝑉 [Dieudonné 1951; Zaanen 2012].

Theorem 3. The Köthe dual of a Banach lattice is an order-complete Banach lattice.

Example 4. It is shown in e.g. [Chaput et al. 2014; Zaanen 2012] that L𝑝 (𝑋, 𝜇)𝜎 = L𝑞 (𝑋, 𝜇) for any
Hölder conjugate pair 1 ≤ 𝑝, 𝑞 ≤ ∞. In particular the spaces L1 (𝑋, 𝜇) and L∞ (𝑋, 𝜇) are Köthe dual of
each other, although they are not ordinary duals.

3.1.3 Bands. The order structure of Riesz spaces gives rise to classes of subspaces which are far
richer than the traditional linear subspaces. An ideal of a Riesz space 𝑉 is a linear subspace𝑈 ⊆ 𝑉
with the property that if |𝑢 | ≤ |𝑣 | and 𝑣 ∈ 𝑈 then 𝑢 ∈ 𝑈 . An ideal𝑈 is called a band when for every
subset 𝐷 ⊆ 𝑈 if

∨
𝐷 exists in 𝑉 , then it also belongs to𝑈 . Every band in a Banach lattice is itself a

Banach lattice. Of particular importance in what follows will be the principal band generated by an

element 𝑣 ∈ 𝑉 , which we denote 𝑉𝑣 and can be described explicitly by

𝑉𝑣 = {𝑤 ∈ 𝑉 | ( |𝑤 | ∧ 𝑛 |𝑣 |) ↑ |𝑤 |}
where 𝑛 |𝑣 | is the sequence given by the scalar multiplication of 𝑛 ∈ N with |𝑣 |.

Example 5. Given a measure 𝜇 ∈ M𝑋 , the band (M𝑋 )𝜇 generated by 𝜇 is the set of signed measures

of bounded variation which are absolutely continuous w.r.t. 𝜇 [Aliprantis and Border 1999, Th. 10.61].

Note that (M𝑋 )𝜇 is typically a much larger subspace than the (one-dimensional) subspace spanned

from 𝜇 using the linear structure only. The ordered version of the Radon-Nikodym theorem states that

(M𝑋 )𝜇 ≃ L1 (𝑋, 𝜇) as Banach lattices [Aliprantis and Border 1999, Th. 13.19].

2Equivalently: if𝑇 𝑣𝑛 ↑ 𝑇 𝑣 whenever 𝑣𝑛 ↑ 𝑣, i.e. whenever 𝑣𝑛 is an increasing sequence with
∨

𝑣𝑛 = 𝑣. Note the similarity
with Scott-continuity, the only difference being the condition that sequences must be order-bounded.
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3.2 Disintegrations

3.2.1 Basic Definitions. Let Meas denote the category of measurable spaces and measurable func-
tions. The Giry monad [Giry 1982] is defined as the functor G : Meas → Meas associating to
(𝑋, F ) the set G𝑋 of probability measures on 𝑋 , equipped with the smallest 𝜎-algebra making
all evaluation maps 𝑒𝑣𝐵 : G𝑋 → R, 𝜇 ↦→ 𝑒𝑣𝐵 (𝜇) = 𝜇 (𝐵), 𝐵 ∈ F measurable. On a morphism
𝑓 : (𝑋, F𝑋 ) → (𝑌, F𝑌 ), G 𝑓 : G𝑋 → G𝑌 is defined as the map 𝜇 ↦→ 𝑓∗ (𝜇), sending 𝜇 to the
pushforward measure under 𝑓 . A Markov kernel is a measurable map 𝑓 : 𝑋 → G𝑌 , and we will
often refer to these maps simply as kernels. We can generalise the pushforward operation to kernels
𝑓 : 𝑋 → G𝑌 by defining 𝑓∗ : G𝑋 → G𝑌 as

𝑓∗ (𝜇) (𝐵) =
∫
𝑋

𝑓 (𝑥) (𝐵) 𝑑𝜇. (1)

With these definitions in place we can introduce the important notion of disintegration which
underlies the semantics of Bayesian conditioning (see ğ 5.2.9). We provide a slightly simplified
version of the definition which will be enough for our purpose (see [Chang and Pollard 1997, Def.
1] for a very general definition). Intuitively, given a measurable map 𝑓 : 𝑋 → 𝑌 and a probability
measure 𝜇 on 𝑋 , we say that 𝜇 has a disintegration w.r.t. 𝑓 if the fibres 𝑓 −1 (𝑦) of 𝑓 can be equipped
with probability measures 𝑓 †𝜇 (𝑦) which average out to 𝜇 over the pushforward measure 𝑓∗ (𝜇).
Formally, the disintegration of 𝜇 w.r.t. to 𝑓 is a kernel 𝑓 †𝜇 : 𝑌 → G𝑋 such that

• 𝑓∗ (𝑓 †𝜇 (𝑦)) = 𝛿𝑦 for 𝑓∗ (𝜇)-almost all 𝑦 ∈ 𝑌
• (𝑓 †𝜇 )∗ (𝑓∗ (𝜇)) = 𝜇

As can be seen from the first condition, a disintegration ś if it exists at all ś is only defined up to a
null set for the pushforward measure. For sufficiently well-behaved spaces, for example standard
Borel spaces [Kechris 1995, 17.35] or more generally metric spaces with Radon measures [Chang
and Pollard 1997, Th. 1], disintegrations can be shown to always exist.

3.2.2 Bayesian Inversion. The notion of disintegration is key to the understanding of Bayesian
conditioning. The traditional setup is as follows: we are given a kernel 𝑓 : 𝑋 → G𝑌 where 𝑋
is regarded as a parameter space and 𝑓 is regarded as a parametrized statistical model on 𝑌 , a
space of observable values. We also start with a probability distribution 𝜇 on 𝑋 (the prior) which
is regarded as the current state of belief of where the ‘true’ parameters of the model lie. The
problem is, given an observation 𝑦 ∈ 𝑌 , to update the state of belief 𝜇 to a new distribution (the
posterior) reflecting the observation. We must therefore find a kernel going in the opposite direction
𝑓 †𝜇 : 𝑌 → G𝑋 . As shown in [Clerc et al. 2017; Dahlqvist et al. 2018] this reverse kernel can be built
using a disintegration as follows. First we define a joint distribution 𝛾 ∈ G(𝑋 × 𝑌 ) defined by

𝛾 (𝐴 × 𝐵) =
∫
𝐴

𝑓 (𝑥) (𝐵) 𝑑𝜇,

The Bayesian inverse 𝑓 †, if it exists, is given by the kernel

𝑓 †𝜇 = (𝜋𝑋 )∗ ◦ (𝜋𝑌 )†𝛾
where (𝜋𝑌 )†𝛾 is the disintegration of the measure 𝛾 along the projection 𝜋𝑌 : 𝑋 × 𝑌 → 𝑌 .

3.2.3 Categorical Connections. We conclude this section on disintegrations with a summary of
some results from [Dahlqvist et al. 2018] which provide a categorical connection between Banach
lattices, kernels, and disintegrations. We define the category Krn as the category whose objects are
pairs (𝑋, 𝜇) where 𝑋 is standard Borel spaces [Kechris 1995] and 𝜇 ∈ G𝑋 . A morphism between
(𝑋, 𝜇) and (𝑌, 𝜈) is a measure kernel 𝑓 : 𝑋 → G𝑌 such that 𝑓∗ (𝜇) = 𝜈 (where 𝑓∗ is defined in (1)),
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in which case the morphism is denoted 𝑓 as well. As was shown in [Dahlqvist et al. 2018], any two
morphisms which disagree only on a null set can be identified, and the morphisms of Krn can be
taken to be equivalence classes of almost everywhere equal measure kernels.
Now, we define two contravariant endofunctors. First, as was shown in [Dahlqvist et al. 2018],

the Bayesian inversion operation described in ğ 3.2.2 defines a functor (−)† : Krn → Krn
op

which leaves objects unchanged and sends a morphism 𝑓 : (𝑋, 𝜇) → (𝑌, 𝜈) to its Bayesian inverse
𝑓 † : (𝑌, 𝜈) → (𝑋, 𝜇) (we drop the subscript 𝜇 of 𝑓 †𝜇 because it is made explicit from the typing).
Note that (𝑓 †)† = 𝑓 . We also define the functor (−)𝜎 : Ban → Ban

op which sends a Banach lattice
to its Köthe dual, and an operator 𝑇 : 𝑈 → 𝑉 to its adjoint 𝑇𝜎 : 𝑉 𝜎 → 𝑈 𝜎 defined in the usual
way via the equation 𝜙 (𝑇𝑢) = 𝑇𝜎 (𝜙) (𝑢) for all 𝑢 ∈ 𝑈 ,𝜙 ∈ 𝑉 𝜎 . Note that just as taking the Köthe
dual gives an order-complete space, the adjoint 𝑇𝜎 of an operator is an order-continuous operator
[Zaanen 2012, Ch. 26].
Connecting the categories, we define for each 1 ≤ 𝑝 ≤ ∞ the functor L𝑝 : Krn → Ban

op which
sends a Krn-object (𝑋, 𝜇) to the Lebesgue space L𝑝 (𝑋, 𝜇) and a Krn-arrow 𝑓 : (𝑋, 𝜇) → (𝑌, 𝜈) to
the operator L𝑝 𝑓 : L𝑝 (𝑌, 𝜈) → L𝑝 (𝑋, 𝜇), 𝜙 ↦→ 𝜆𝑥 .

∫
𝑌
𝜙 𝑑 𝑓 (𝑥). We also define the functor M− :

Krn → Ban which sends an object (𝑋, 𝜇) to the band (M𝑋 )𝜇 and a morphism 𝑓 : (𝑋, 𝜇) → (𝑌, 𝜈)
to the operator M 𝑓 : (M𝑋 )𝜇 → (M𝑌 )𝜈 , 𝜌 ↦→ 𝜆𝐵 .

∫
𝑋
𝑓 (𝑥) (𝐵) 𝑑𝜌 .

Finally, we can connect the functorsM−, L1 ◦ (−)† and (−)𝜎 ◦L∞ of type Krn → Ban via natural
transformations which play a major role in measure theory [Dahlqvist et al. 2018]:

• RN : M− → L1 ◦ (−)† at (𝑋, 𝜇) sends a measure 𝜈 ≪ 𝜇 to its Radon-Nikodym derivative 𝑑𝜈
𝑑𝜇
.

• MR : L1 ◦ (−)† → M− at (𝑋, 𝜇) sends an L1-map 𝑓 to its Measure Representation 𝑓 𝜇.
• FR : M− → (−)𝜎 ◦L∞ at (𝑋, 𝜇) sends a measure 𝜇 to its Functional Representation 𝜆𝜙.

∫
𝜙 𝑑𝜇.

• RR : (−)𝜎 ◦ L∞ → M− at (𝑋, 𝜇) sends an L∞-functional 𝐹 to its Riesz Representation
𝜆𝐵.𝐹 (1𝐵).

The natural transformations RN and MR are inverse of each other, as are FR and RR, proving natural
isomorphisms between the three functors. These relationships are summarized in the diagram:

Ban

Ban
op

(−)𝜎
77

RR
+3

RN
+3

FRks
Krn

op

L1
gg

MRks

Krn

(−)†

77

L∞

gg
M−

OO (2)

3.3 The Category RoBan

3.3.1 Ban Is Not Monoidal Closed. The category Ban of Banach lattices provides a very natural
semantic universe for the interpretation of first-order probabilistic programs [Kozen 1981], and, as
illustrated by Diagram (2), is deeply connected to well-known measure-theoretic constructions,
including the notion of disintegration [Dahlqvist et al. 2018] which underlies the semantics to
conditioning. However, Ban lacks a monoidal closed structure in which to interpret higher-order
programs.

It is shown in for example [Aliprantis and Burkinshaw 2006, Example 1.17] or [Wickstead 2007,
ğ3] that the space of operators between two Riesz spaces need not even be a lattice. A set of
additional conditions is presented in [Kozen 1981, ğ5] in order for higher-order types to be Banach
lattices. Unfortunately these additional conditions are not stable under the natural tensor operation
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(described in ğ 3.3.3 below) which provides the monoidal structure. The solution is to consider a
larger category, described in [Min 1983], which can be equipped with a closed monoidal structure.

3.3.2 Basic Definitions. An ordered normed vector space 𝑉 is an ordered vector space in which the
positive cone 𝑉 + is closed for the topology generated by the norm. A subset of the positive cone of
particular importance will be the positive unit ball 𝐵+ (𝑉 ) = {𝑣 ≥ 0 : ∥𝑣 ∥ ≤ 1}. An ordered Banach

space is an ordered normed vector space which is complete. We can now describe the central class
of object of this work: an ordered normed space is said to be regular [Davies 1968; Wong and Ng
1973] if its norm is a lattice norm, i.e. satisfies R1, and additionally satisfies

R2 ∥𝑥 ∥ = inf{∥𝑦∥ : −𝑦 ≤ 𝑥 ≤ 𝑦}
A regular ordered Banach space is an ordered Banach space which is regular. A few comments are
in order. First note that if −𝑦 ≤ 𝑦 then 0 ≤ 2𝑦, and thus𝑦 is positive, soR2 says that the norm of any
vector can be approximated arbitrarily well by the norm of positive vectors. R2 also implies that
the positive cone is generating: for any 𝑥 ∈ 𝑉 , fix 𝜖 > 0, then by R2 there exists 𝑦 with −𝑦 ≤ 𝑥 ≤ 𝑦
whose norm is 𝜖-close to that of 𝑥 . Since 𝑥 =

𝑦+𝑥
2 − 𝑦−𝑥

2 , and since it follows from −𝑦 ≤ 𝑥 ≤ 𝑦 that
𝑦 + 𝑥 and 𝑦 − 𝑥 are positive, 𝑥 can indeed be expressed as the difference of two positive vectors.

Regularity can be understood as the fact that the space is fully characterised by its positive unit ball
[Min 1983]. It is therefore natural to consider linear operators 𝑓 : 𝑈 → 𝑉 between regular ordered
Banach spaces which send positive vectors to positive vectors, i.e. such that 𝑢 ≥ 0 ⇒ 𝑓 (𝑢) ≥ 0.
Such operators are called positive operators and constitute a field of mathematical research in
their own right [Aliprantis and Burkinshaw 2006; Zaanen 2012]. The collection [𝑈 ,𝑉 ]+ of positive
operators between two regular ordered Banach spaces clearly does not form a vector space, and we
therefore consider the span of this collection, that is to say the operators 𝑓 : 𝑈 → 𝑉 which can be
expressed as the difference between two positive operators, i.e. 𝑓 = ℎ − 𝑔 with ℎ,𝑔 ∈ [𝑈 ,𝑉 ]+. Such
operators are called regular operators, and we define the category RoBan as the category whose

objects are regular ordered Banach spaces and whose morphisms are regular operators. We will also
take regular operators as the appropriate notion of morphism in Ban and note that: (a) Diagram 2
remains well-typed since the functors involved turn Krn-morphisms into positive operators, and
(b) the failure of Ban to be closed under taking spaces of operators is already witnessed at the level
of regular operators (see references cited in ğ 3.3.1).

Proposition 6. Banach lattices are regular, in particular Ban is a sub-category of RoBan.

Regular operators have the following important properties.

Proposition 7. Regular operators on regular ordered Banach spaces are (norm)-bounded and thus

continuous.

Theorem 8 ([Min 1983]). If 𝑈 ,𝑉 are regular ordered Banach spaces and [𝑈 ,𝑉 ] is equipped with the

obvious linear structure, pointwise order and the regular norm

∥ 𝑓 ∥𝑟 = inf {∥𝑔∥ : −𝑔 ≤ 𝑓 ≤ 𝑔}
where ∥𝑔∥ = sup{∥𝑔(𝑢)∥ : ∥𝑢∥ ≤ 1} is the usual operator norm, then [𝑈 ,𝑉 ] is a regular ordered

Banach space.

This result justifies the following notation: we will denote the regular ordered Banach space of
regular operators between the regular ordered Banach spaces𝑈 ,𝑉 by [𝑈 ,𝑉 ].

3.3.3 The Symmetric Monoidal Structure of RoBan. Tensor products of Banach spaces were origi-
nally developed by Grothendieck [Grothendieck 1955] who introduced a whole family of construc-
tions, the most famous of which is arguably the projective tensor product defined by the projective
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norm (see [Ryan 2013] for a gentle introduction to tensor products of Banach spaces). The theory
was then extended to ordered Banach spaces in inter alia [Fremlin 1972, 1974; Min 1983; Wittstock
1974], with an emphasis on adapting the projective tensor product. The main idea is to adapt
Grothendieck’s definition of the projective norm in a way which reflects the central role of positive
vectors in the theory of regular ordered Banach spaces, and in particular the fact that the positive
cone is generating and determines the norm (R1,R2). This basic intuition gives rise to the definition
of the positive projective norm: given two regular ordered Banach spaces𝑈 ,𝑉 , their algebraic tensor
product𝑈 ⊗ 𝑉 is equipped with the positive projective norm ∥·∥ |𝜋 | defined as

∥𝑥 ∥ |𝜋 | = inf

{
𝑛∑
𝑖=1

∥𝑢𝑖 ∥ ∥𝑣𝑖 ∥ : 𝑢𝑖 ∈ 𝑈 +, 𝑣𝑖 ∈ 𝑉 +,−
𝑛∑
𝑖=1

𝑢𝑖 ⊗ 𝑣𝑖 ≤ 𝑥 ≤
𝑛∑
𝑖=1

𝑢𝑖 ⊗ 𝑣𝑖

}

As in the classical unordered case, 𝑈 ⊗ 𝑉 is not complete for the positive projective norm, and we
must therefore take its completion which we call the positive projective tensor product of 𝑈 and 𝑉
and denote by𝑈 ⊗̂ |𝜋 | 𝑉 . The closure under ∥−∥ |𝜋 | of the positive cone for𝑈 ⊗ 𝑉 given by

𝑈 + ⊗ 𝑉 +
=

{
𝑛∑
𝑖=1

𝑢𝑖 ⊗ 𝑣𝑖 : 𝑢𝑖 ∈ 𝑈 +, 𝑣𝑖 ∈ 𝑉 +
}

is a positive generating cone for 𝑈 ⊗̂ |𝜋 | 𝑉 . As was described in 3.1 this positive cone uniquely

characterises the order structure of𝑈 ⊗̂ |𝜋 | 𝑉 .
Since L1-spaces andM(𝑋, F )-spaces are examples of AL-spaces, the following result shows that

we can in practice often ignore the subtleties of the positive projective tensor product and rely on
the descriptions of the ordinary projective tensor products of Banach spaces [Ryan 2013].

Theorem 9 ([Fremlin 1974], Th. 2B). If 𝐸 is an 𝐴𝐿-space and 𝐹 is a regular ordered Banach space,

then 𝐸 ⊗̂ |𝜋 | 𝐹 is isomorphic as Banach space to the usual projective tensor product 𝐸 ⊗̂𝜋 𝐹 .

Theorem 10 (Radon-Nikodym and [Ryan 2013]). For finite measures 𝜇, 𝜈 on measurable spaces 𝑋,𝑌

respectively, (M𝑋 )𝜇 ⊗̂𝜋 (M𝑌 )𝜈 ≃ (M(𝑋 × 𝑌 ))𝜇×𝜈 .

3.3.4 The Closed Monoidal Structue of RoBan. Through its familiar universal property, the tensor
product of two vector spaces linearizes bilinear maps. Similarly, the projective tensor product
of two Banach spaces linearizes bounded bilinear maps. The positive projective tensor product
fulfils the same role for positive (and thus bounded by Prop. 7) bilinear maps [Wittstock 1974, 2.7].
Specifically, there exists a universal positive bilinear map 𝑈 × 𝑉 → 𝑈 ⊗̂ |𝜋 | 𝑉 such that for any

positive bilinear map 𝑓 : 𝑈 ×𝑉 →𝑊 there exists a unique positive linear map 𝑓 : 𝑈 ⊗̂ |𝜋 | 𝑉 →𝑊

making the following diagram commutes:

𝑈 ×𝑉 ⊗ //

𝑓
��

𝑈 ⊗̂ |𝜋 | 𝑉

𝑓xx
𝑊

(3)

This universal property of tensor products provides a definition of ⊗̂ |𝜋 | as a bifunctor on RoBan.
Let 𝑓 : 𝑈 → 𝑋,𝑔 : 𝑉 → 𝑌 be positive operators, then the map

⊗̂ |𝜋 | ◦ (𝑓 × 𝑔) : 𝑈 ×𝑉 → 𝑋 × 𝑌 → 𝑋 ⊗̂ |𝜋 | 𝑌

is positive and bilinear, and thus there exists a unique positive operator 𝑈 ⊗̂ |𝜋 | 𝑉 → 𝑋 ⊗̂ |𝜋 | 𝑌

which is denoted 𝑓 ⊗̂ |𝜋 | 𝑔. This provides the definition of the bifunctor ⊗̂ |𝜋 | on morphisms. As
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we saw in Th. 8, the category RoBan has internal homs, and these interact correctly with positive
projective tensor products.

Theorem 11 ([Min 1983]). For every regular ordered Banach space𝑈 , the tensoring and homming

operations − ⊗̂ |𝜋 | 𝑈 and [𝑈 ,−] define functors RoBan → RoBan such that

− ⊗̂ |𝜋 | 𝑈 ⊣ [𝑈 ,−]

The positive projective tensor defines a symmetric monoidal structure on RoBan with R as its
unit ś since 𝑈 ⊗ R ≃ 𝑈 ≃ R ⊗ 𝑈 at the level of the underlying vector spaces ś and the obvious
isomorphisms 𝑈 ⊗̂ |𝜋 | 𝑉 → 𝑉 ⊗̂ |𝜋 | 𝑈 inherited from the isomorphism 𝑈 ⊗ 𝑉 → 𝑉 ⊗ 𝑈 between
the algebraic tensor product. The category RoBan is thus symmetric monoidal closed.

3.3.5 Completeness. We end this mathematical prologue by sketching how limits are computed
in RoBan. It is well-known that it is enough to show the existence of products and equalizers in
RoBan to prove completeness. Products are defined by∏

𝑖∈𝐼
𝐹𝑖 = {(𝑥𝑖 )𝑖∈𝐼 | 𝑥𝑖 ∈ 𝐹𝑖 , sup

𝑖∈𝐼
∥𝑥𝑖 ∥ < ∞}

together with the obvious pointwise linear structure and order, and the supremum norm. Note
how the normed nature of the spaces involved is reflected in how products are built. Equalizers are
computed as follows ([Min 1983, 5.2]). Given 𝑓 , 𝑔 : 𝐸 ⇒ 𝐹 let

𝐷+
= {𝑥 ∈ 𝐸+ | 𝑓 (𝑥) = 𝑔(𝑥)}, 𝐷 := 𝐷+ − 𝐷+

where 𝐷+ − 𝐷+ is the vector space of formal differences of vectors in 𝐷+. By construction, 𝐷 is an
ordered vector space with 𝐷+ as its positive cone, and it can be equipped with the regular norm

∥𝑥 ∥𝑟 = inf
{
∥𝑦∥ : −𝑦 ≤ 𝑥 ≤ 𝑦,𝑦 ∈ 𝐷+} (4)

𝐷 equipped with the norm ∥·∥𝑟 is a regular ordered Banach space and the equalizer of 𝑓 , 𝑔 : 𝐸 ⇒ 𝐹 .

4 A HIGHER-ORDER PROBABILISTIC LANGUAGEWITH CONDITIONING

4.1 Type System

We start by defining a type system for our language. Our aims are to (a) have enough types to write
some realistic programs for example including multivariate normal or chi-squared distributions, (b)
have higher-order types, (c) provide special types for Bayesian learning: Bayesian types.

4.1.1 Grammar. Our type system is given by the following grammar:

T ::=𝑚𝑛 | int𝑛 | real𝑛 | PosDef(𝑛) | (T, 𝜇) | !T | T ⊗ T | T → T | MT (5)

where 1 ≤ 𝑚,𝑛 ∈ N and 𝜇 : T is a term. We will refer to𝑚, int, real, PosDef(𝑛) as ground types.
As their name suggest they are to be regarded as the types of (possibly random) vectors of elements
of a finite set, vectors of integers, vectors of reals and 𝑛 × 𝑛 positive semi-definite matrices, that
is to say covariance matrices. We will write int for int1 and real for real1. This is by no means
an exhaustive set of ground types, but sufficiently rich to consider some realistic probabilistic
programs. The type 1 ∈ N will be referred to as the unit type and denoted unit and the type 2 ∈ N
will be referred to as the boolean type and denoted bool.

The type constructors are the following. First, given a term 𝜇 of type T, we can build the pointed
type (T, 𝜇). We will call these types Bayesian types because the term 𝜇 : T will be interpreted as a
prior. Bayesian types will support conditioning and thus Bayesian learning. As we shall see, our
Bayesian types also fulfil a role in the semantics of variable assignment. As is the tacit practice in
Anglican, we will consider that assigning a (possibly random) value to a variable is equivalent to
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assigning a prior to the type of this variable. For example, the program x := 2.5 which assigns the
value 2.5 to the variable x can be understood as placing a (deterministic) prior on the reals, namely
𝛿2.5. Similarly, the program x := sample(normal(0, 1)) which assigns to x a value randomly sampled
from the normal distribution N(0, 1) with mean 0 and standard deviation 1 can be understood as
setting the prior N(0, 1) on the reals. In a slogan:

Bayesian type = type + assignment

However this slogan is only valid for assignmentswithout free variables: a prior cannot be parametric
in some variables, it represents definite information. This caveat will be reflected in the type system.

We then have two binary type constructors, tensor types and functions types, which will support
higher-order reasoning. Finally, the unary type constructor M defines higher-order measures.

4.1.2 Assignable, Order-Complete and Measure Types. We now isolate three sub-grammars of types
which we call assignable, order-complete andmeasure types respectively. These families of types will
be essential to correctly type and interpret assignments (with assignable types), conditionals and
while loops (with order-complete types), conditioning and sampling (with measure types). First we
define assignable types as the types generated by the grammar

S ::= G | (G, 𝜇) | (G, 𝜇) → (G, 𝜇) G in ground types

T ::= S | !S | MS | S ⊗ S (6)

Second, we define order-complete types as the types generated by the ‘dual’ grammar

S ::= G | (G, 𝜇) | (G, 𝜇) ⊗ (G, 𝜇) G in ground types

T ::= S | !S | MS | S → S (7)

Finally, measure types are the types generated by all the constructors of grammar (5) apart from !
and function types.

4.1.3 Contexts. are maps Γ : N → Types ś the free algebra of all types generated by (5) ś
which send cofinitely many integers to the unit type unit. We will write supp(Γ) for the set
{𝑖 | Γ(𝑖) ≠ unit} and use the traditional notation Γ [𝑖 ↦→ T] to denote the context mapping 𝑖 to T

and all 𝑗 ≠ 𝑖 to Γ( 𝑗). The image of 0 ∈ N under a context Γ will, by convention, fulfil the role of
output. If a computation 𝑒 returns a value, then this value will be passed along the ‘channel’ 0.
Formally, the sequent stating that a computation 𝑒 returns a value of type T in a context Γ, will
look like:

Γ ⊢ 𝑒 : [0 ↦→ T]
with 0 ∉ supp(Γ) (since the 0 channel is reserved for outputs). Memory-manipulating operations
like assignments will create non-output contexts on the right-hand side of sequents.
Our contexts are a dynamic version of the static contexts of [Kozen 1981] which consists of a

constant map from N to a single type. They are in some respects similar to the heap models of
separation logic, and for notational clarity we will require similar operations on contexts as on
heaps: a notion of compatibility, of union and of difference. Given two contexts Γ1, Γ2 we will say
that they are compatible if Γ1 (𝑖) = Γ2 (𝑖) for all 𝑖 ∈ supp(Γ1) ∩ supp(Γ2), and we will then write
Γ1 ⇓ Γ2. For any two compatible contexts Γ1 ⇓ Γ2 we define the union context Γ1 ⊕ Γ2 as the union of
their graphs, which is a function by the compatibility assumption. We define the difference context
Γ1 ⊖ Γ2 as the map sending 𝑖 ↦→ Γ1 (𝑖) if 𝑖 ∉ supp(Γ2) and to unit otherwise. In particular Γ1 ⊖ Γ2 = Γ1

if the supports are disjoint. Finally, we write Γ1 ⋔ Γ2 if supp(Γ1) ∩ supp(Γ2) = ∅.

4.2 A Higher-Order Probabilistic Language

We now define the terms of our imperative probabilistic higher-order language.
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4.2.1 Expressions. Terms are built according to the grammar of expressions given in Fig 2.

𝑒 ::= 𝑖 ∈𝑚𝑘 | 𝑛 ∈ N𝑘 | 𝑟 ∈ R𝑘 | 𝑚 ∈ PosDef (𝑛) | Constants

skip | op(𝑒, . . . , 𝑒) | Built-in operations

x_𝑖 | 0 < 𝑖 ∈ N, Variables
x_𝑖 := 𝑒 | Assignment

return(e) | Return instruction

𝑒 ;𝑒 | Sequential composition

fn x_𝑖 . 𝑒 | 𝜆-abstraction

𝑒 (𝑒) | Function application

if 𝑒 then 𝑒 else 𝑒 | Conditional

while 𝑒 do 𝑒 | Iterations

sample(𝑒) | Sampling

sampler(𝑒) | Packages a program as a sampler

observe(𝑒) Conditioning

Fig. 2. Expressions

Every built-in operation must come equipped with typing instruction which we will write as an
𝑛 + 1-tuple (S1, . . . , Sn, T) where the first 𝑛 components are ground types specifying the input types
and the last component is a ground type or measures over a ground type specifying the output
type. For example the boolean connective or would come with typing (bool, bool, bool), the sine
function sin with typing (real, real) and the function normal constructing a normal distribution
would come with typing (real, PosDef(1), M real), where the first input is the mean, the second
is the standard deviation and the output is a measure over the reals.

4.2.2 Well-Typed Expressions. The typing rules for our language are gathered in Fig. 3. We will
discuss these rules in detail when we define the denotational semantics of our language in ğ 5, but
we can already make some observations. The reader will notice that there are two types of rules:
(1) the rules for computations which produce an output, which will conventionally be returned
in a context of the shape [0 ↦→ T] on the right of the turnstile, and (2) rules for manipulating
an internal store (like assignments, sequential compositions thereof, loops, etc.) which can have
arbitrarily large contexts to the right of the turnstile. Since our variables are labelled x_𝑖 for 𝑖 > 0,
it is impossible to introduce a context on the left of the turnstile with 0 in its support.
The sequential composition rule looks daunting, but it is simply a version of the cut rule with

the necessary bookkeeping to make sure contexts do not conflict with one another. The first side
condition says that 𝑒2 cannot rely on the part of the context Γ1 which was consumed to produce
the output of 𝑒1, the second side condition says that the output context of 𝑒1 must be compatible
with the input context of 𝑒2. Finally, the third side condition says that we can construct an output
context for 𝑒1; 𝑒2 by combining output context of 𝑒2 with the part of the output context of 𝑒1 which
was not consumed by 𝑒2.

Notice that the only way to create a Bayesian type is through a variable assignment without free
variables: a prior must contain definite information, not informationwhich is parametric in variables.
Only assignable types can form Bayesian types. Note finally that our observe statement applies
to a term of type T, intuitively we observe a possibly random element of type T. This is slightly
different from the syntax of observe in Anglican where a distribution is observed. Semantically,
the difference disappears since a possibly random element is modelled by a distribution.
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Constants 𝑖 ∈ 𝑛∅ ⊢ 𝑖 : [0 ↦→ 𝑛] 𝑛 ∈ N∅ ⊢ 𝑛 : [0 ↦→ int]

𝑟 ∈ R∅ ⊢ 𝑟 : [0 ↦→ real]
𝑀 ∈ PosDef (𝑛)

∅ ⊢ 𝑀 : [0 ↦→ PosDef(𝑛) ]

Variables,

Bayesian types,

Tensor rule

[𝑖 ↦→ T] ⊢ x_𝑖 : [0 ↦→ T]
∅ ⊢ 𝑒 : [0 ↦→ T]

T measure type
∅ ⊢ 𝑒 : [0 ↦→ (T, 𝑒) ]

Γ ⊢ skip : Γ
Γ1 ⊢ 𝑒1 : Γ2

Γ1 ⋔ Δ, Γ2 ⋔ Δ
Γ1 ⊕ Δ ⊢ 𝑒1 : Γ2 ⊕ Δ

Exponential
Γ [𝑖 ↦→!S, 𝑗 ↦→!S] ⊢ 𝑒 : Δ

𝑖 ≠ 𝑗
Γ [𝑖 ↦→!S] ⊢ 𝑒 : Δ

Γ [𝑖 ↦→ S] ⊢ 𝑒 : Δ

Γ [𝑖 ↦→!S] ⊢ 𝑒 : Δ

Built-in

operations

Γ1 ⊢ 𝑒1 : [0 ↦→ S1 ] · · · Γ𝑛 ⊢ 𝑒𝑛 : [0 ↦→ Sn ]
op : (S1, . . . , Sn, T), Γ𝑖 ⋔ Γ𝑗 , 𝑖 ≠ 𝑗

Γ1, . . . , Γ𝑛 ⊢ op(𝑒1, . . . , 𝑒𝑛) : [0 ↦→ T]

Assignment,

Return

Γ ⊢ 𝑒 : [0 ↦→ T]
T assignable

Γ [𝑖 ↦→ T] ⊢ x_𝑖 := 𝑒 : [𝑖 ↦→ T]

Γ ( 𝑗), 𝑗 ≠ 𝑖 assignable
Γ [𝑖 ↦→ T] ⊢ return(x_𝑖) : [0 ↦→ T]

Sequential

composition

Γ1 ⊢ 𝑒1 : Δ1 Γ2 ⊢ 𝑒2 : Δ2
Γ2 ⋔ (Γ1 ⊖ Δ1), Δ1 ⇓ Γ2, (Δ1 ⊖ Γ2) ⇓ Δ2

Γ1 ⊕ (Γ2 ⊖ Δ1) ⊢ 𝑒1;𝑒2 : (Δ1 ⊖ Γ2) ⊕ Δ2

𝜆-abstraction,

application

Γ [𝑖 ↦→ 𝑆 ] ⊢ 𝑒 : [0 ↦→ T]
𝑖 ∉ supp(Γ)

Γ ⊢ fn x_𝑖 . 𝑒 : [0 ↦→ (S → T) ]

Γ ⊢ 𝑒1 : [0 ↦→ S] Δ ⊢ 𝑒2 : [0 ↦→ (S → T) ]
Γ,Δ ⊢ 𝑒2 (𝑒1) : [0 ↦→ T]

Imperative

control flow

Γ ⊢ 𝑒1 : [0 ↦→ bool] Γ ⊢ 𝑒2 : Δ Γ ⊢ 𝑒3 : Δ
Γ order-complete type

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : Δ

Γ ⊢ 𝑒1 : [0 ↦→ bool] Γ ⊢ 𝑒2 : Γ
Γ order-complete type

Γ ⊢ while 𝑒1 do 𝑒2 : Γ

Probabilistic

operations

Γ ⊢ 𝑒 : [0 ↦→ T]
T measure type

Γ ⊢ sampler(𝑒) : [0 ↦→ MT]
Γ ⊢ 𝑒 : [0 ↦→ MT]

T measure type
Γ ⊢ sample(𝑒) : [0 ↦→ T]

[𝑖 ↦→ (S, 𝜇) ] ⊢ 𝑒 : [0 ↦→ T]
S, T measure types

[𝑖 ↦→ (S, 𝜇) ] ⊢ observe(𝑒) : [0 ↦→ ( (T, 𝑒 [x_𝑖/𝜇 ]) → (S, 𝜇)) ]

Fig. 3. Typing rules

4.2.3 A Simple Example. It is not hard (if notationally cumbersome) to type-check the simple
Gaussian inference program of Fig. 4 against the inference rules of Fig. 3. In the context [1 ↦→
(real, sample(normal(0, 1)))], it evaluates to a function of type

(real, sample(normal(sample(normal(0, 1)), 1))) → (real, sample(normal(0, 1))) (8)

which, as we will see in ğ 5.2.9, is what we want semantically.
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x_1=sample(normal (0,1);

observe(sample(normal(x_1 ,1)))

Fig. 4. A small Gaussian inference program

5 DENOTATIONAL SEMANTICS

As the reader will have guessed we will now provide a denotational semantics for the language
described in ğ 4 in the category RoBan: types will be denoted by regular ordered Banach spaces,
and programs by regular (and thus continuous) operators between these spaces.

5.1 Semantics of Types

5.1.1 Ground Types. We define:

• J𝑚𝑘K = M
(
{1, . . . ,𝑚}𝑘

)
where {1, . . . ,𝑚}𝑘 is equipped with the discrete 𝜎-algebra. Note

that J𝑚K ≃ R𝑚 , and thus JunitK ≃ R, the unit of the positive projective tensor.
• Jint𝑘K = M

(
N
𝑘
)
, where N𝑘 is equipped with the discrete 𝜎-algebra

• Jreal𝑘K = M
(
R
𝑘
)
, where R𝑘 is equipped with its usual Borel 𝜎-algebra

• JPosDef(𝑛)K = MPosDef (𝑛), where PosDef (𝑛) is the space of positive semi-definite 𝑛 × 𝑛
matrices equipped with the Borel 𝜎-algebra inherited from R𝑛×𝑛

5.1.2 Elementary Type Constructors. As expected, the tensor and function type constructors are
interpreted by the monoidal closed structure of RoBan, i.e.

JS ⊗ TK := JSK ⊗̂ |𝜋 | JTK JS → TK :=
[
JSK, JTK

]
The higher-order probability type constructor M is interpreted as follows. For any regular ordered
Banach space 𝑉 we consider the underlying set together with the Borel 𝜎-algebra induced by the
norm. We then apply the functorM to this measurable space. This construction is functorial and
we overloadM to denote the resulting regular ordered Banach space byM𝑉 . Using this convenient
notation we define

JMTK := MJTK

5.1.3 Bayesian Types. The type system in Fig. 3 can only produce a Bayesian type (T, 𝜇) if T is a
measure type and 𝜇 has no free variables, i.e. if ∅ ⊢ 𝜇 : [0 ↦→ T] is derivable. We will therefore only
need to provide a semantics to Bayesian types of this shape. Our semantics of Bayesian types is
in some respect similar to that of pointed types used in homotopy type theory [Licata and Finster
2014]. Indeed, at the type-theoretic level they are defined identically as a type together with a term
inhabiting this type. However, the ordered vector space structure allows us to provide a semantics
which is much richer than a space with a distinguished point. Given a measure type T and a sequent
of the type ∅ ⊢ 𝜇 : [0 ↦→ T], we will see in ğ 5.2 that 𝜇 is interpreted as an operator J𝜇K : R→ JTK,
which is uniquely determined by J𝜇K(1). For notational clarity we will often simply write 𝜇 for
J𝜇K(1). We define the denotation of the Bayesian type (T, 𝜇) as the principal band in JTK (see ğ 3.1.3)
generated by the measure 𝜇 (i.e. J𝜇K(1)). Formally:

J(T, 𝜇)K = JTK𝜇 (9)

For this semantics to be well-defined it is necessary that JTK be at least a Riesz space, since bands
are defined using the lattice structure. This is indeed the case:

Theorem 12. The semantics of a measure type is a Banach lattice.
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5.1.4 Semantics of the Exponential. We follow the three steps of [Melliès et al. 2018] to compute the
exponential objects in the category RoBan of regular ordered Banach spaces and regular operators.
See also [Crubillé et al. 2017] for an application of the same construction in a similar context.

Step 1. Since RoBan has products, every object 𝐸 generates a free pointed object 𝐸• in the category
RoBan• of pointed regular ordered Banach spaces. It can be described explicitly as the product

𝐸• = 𝐸 × R together with 𝜀𝐸 = 𝜋1 : 𝐸• = 𝐸 × R→ 𝐸.

Step 2. The second step consists in computing the equalizers (in RoBan, see ğ 3.3.5)

𝐸≤𝑛 𝑒𝑛 // 𝐸⊗𝑛
•

𝜎1
...

//

𝜎𝑛!
// 𝐸⊗𝑛

• (10)

where 𝐸⊗𝑛
• is short-hand for the 𝑛-fold positive projective tensor of 𝐸• with itself, and 𝜎1, . . . , 𝜎!𝑛 are

the elements of the group Perm(𝑛) of permutations on 𝑛 elements acting on 𝑛-tensors as follows:

𝜎 ((𝑢1, 𝜆1) ⊗ . . . ⊗ (𝑢𝑛, 𝜆𝑛)) =
(
(𝑢𝜎 (1) , 𝜆𝜎 (1) ) ⊗ . . . ⊗ (𝑢𝜎 (𝑛) , 𝜆𝜎 (𝑛) )

)
𝑢𝑖 ∈ 𝐸, 𝜆𝑖 ∈ R, 1 ≤ 𝑖 ≤ 𝑛. Since tensor products distribute over finite products (up to isomorphism)
and 𝐸 ⊗ R ≃ 𝐸 we have

𝐸⊗𝑛
• = (𝐸 × R)⊗𝑛 ≃

𝑛∏
𝑖=0

(
𝑛

𝑖

)
𝐸⊗𝑖

with 𝐸⊗0 := R. In this sense 𝐸⊗𝑛
• contains all tensors of rank 0 ≤ 𝑖 ≤ 𝑛, but it is simpler in

what follows to simply view basic elements of 𝐸≤𝑛 as symmetric tensors in (𝐸 × R)⊗𝑛 . The unit
𝑢 : 𝐸• = 𝐸 × R→ R given by the second projection defines morphisms

𝜕 : 𝐸⊗𝑛+1
• → 𝐸⊗𝑛

• : (𝑢1, 𝜆1) ⊗ . . . ⊗ (𝑢𝑛, 𝜆𝑛) ⊗ (𝑢𝑛+1, 𝜆𝑛+1) ↦→ (𝑢1, 𝜆1) ⊗ . . . ⊗ (𝑢𝑛, 𝜆𝑛) ⊗ 𝜆𝑛+1 (11)

where the last tensor can be replaced by a scalar multiplication. By the universal property of
equalizers, and the fact that (11) sends symmetric tensors to symmetric tensors we get a map

𝜕 : 𝐸≤𝑛+1 → 𝐸≤𝑛

acting in exactly the same way as (11). The following technical condition must be satisfied for the
construction of [Melliès et al. 2018] to work. The proof relies on the linear structure of objects in
RoBan which allows the construction of a symmetrization map𝔖 : 𝐸⊗𝑛

• → 𝐸≤𝑛 .

Proposition 13. The positive projective tensor product ⊗̂ |𝜋 | commutes with the equalizers of (10).

Step 3: The last step of the construction is to consider the projective limit 𝐸∞ of the diagram

R 𝐸≤1𝜕oo 𝐸≤2𝜕oo . . .oo 𝜕oo 𝐸≤𝑛𝜕oo . . .
𝜕oo

𝐸∞

ll jj
...

ee
...

99 (12)

It follows from the construction of products and equalizers in RoBan that the projective limit 𝐸∞ is
completely determined by the positive cone

(𝐸∞)+ = {(𝑡1, 𝑡2, . . . , 𝑡𝑛, . . .) | 𝑡𝑛 ∈
(
𝐸≤𝑛 )+, sup

𝑛
∥𝑡𝑛 ∥ < ∞, 𝜕(𝑡𝑛+1) = 𝑡𝑛}

which characterises the order on 𝐸∞, generates the entire space via 𝐸∞ = (𝐸∞)+ − (𝐸∞)+, and
defines the normed structure via the regular norm (4). The condition that sup𝑛 ∥𝑡𝑛 ∥ < ∞ is essential,
and only occurs because we are taking limits in a category of normed spaces.
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We can characterise precisely the elements (𝑡𝑛)𝑛∈N ∈ 𝐸∞. For notational clarity we now denote
tensors using concatenation, i.e. (𝑢1, 𝜆1) ⊗ (𝑢2, 𝜆2) := (𝑢1, 𝜆1) (𝑢2, 𝜆2) in analogy with words over an
alphabet. We start with the following lemma examining projections on the 2𝑛𝑑 approximant 𝐸≤2.

Lemma 14. If 𝑡2 is of the form

𝑡2 = 𝑐0 (𝑎, 𝜆𝑎) (𝑎, 𝜆𝑎) + 𝑐1 (𝑎, 𝜆𝑎) (𝑏, 𝜆𝑏) + 𝑐2 (𝑏, 𝜆𝑏) (𝑎, 𝜆𝑎) + 𝑐3 (𝑏, 𝜆𝑏) (𝑏, 𝜆𝑏) (13)

then 𝑐1 = 𝑐2 and 𝑡𝑛, 𝑛 ≥ 2 is a linear combination of tensor products of (𝑎, 𝜆𝑎) and (𝑏, 𝜆𝑏) only.

Let R[𝑎1, . . . , 𝑎𝑘 ] denote the graded noncommutative ring of homogeneous polynomials over 𝑘
noncommuting variables 𝑎1, . . . , 𝑎𝑘 with real coefficients. Let R[N𝑘 ] denote its commutative image;
that is, its image under the map 𝜃 : R[𝑎1, . . . , 𝑎𝑘 ] → R[N𝑘 ] defined by

𝜃 (m) = (#𝑎1 (m), . . . , #𝑎𝑘 (m)) 𝜃

(∑
m

𝑐mm

)
=

∑
m

𝑐m𝜃 (m),

where m denotes a monomial and #𝑎𝑖 (m) denotes the number of occurrences of 𝑎𝑖 in m.

Theorem 15. If 𝑡2 is of the shape (13), then 𝑡𝑛 is of the shape

𝑡𝑛 =

𝑛∑
𝑘=0

𝑐
(𝑛)
𝑘

∑
𝜃−1 (𝑘, 𝑛 − 𝑘) (14)

where 𝜃 : R[(𝑎, 𝜆𝑎), (𝑏, 𝜆𝑏)] → R[N2]. Moreover,

𝑐
(𝑛−1)
𝑘

= 𝑐
(𝑛)
𝑘+1𝜆𝑎 + 𝑐

(𝑛)
𝑘
𝜆𝑏 (0 ≤ 𝑘 ≤ 𝑛 − 1). (15)

Corollary 16. Under the assumptions of Theorem 15, if 𝜆𝑎 = 𝜆𝑏 = 0 then 𝑐 (𝑛)
𝑘

= 0 for each 𝑛 and

0 ≤ 𝑘 ≤ 𝑛. If 𝜆𝑎 ≠ 0 then the coefficients 𝑐
(𝑛)
𝑘

satisfy:

𝑐
(𝑛)
𝑘

=

𝑘∑
𝑖=0

(
𝑘

𝑖

)
𝑐
(𝑛−𝑘+𝑖)
0 (−𝜆𝑏)𝑖𝜆−𝑘𝑎 (16)

If follows from Corollary (16) that given an element of 𝑡2 of the shape (13) with either 𝜆𝑎 ≠ 0 or

𝜆𝑏 ≠ 0, each 𝑡𝑛 is uniquely defined by the choice of a single real number 𝑐 (𝑛)0 at each level 𝑛. With
this characterisation of the elements of 𝐸∞ we can prove the final condition which must be met in
the construction of [Melliès et al. 2018]. The proof of the following result relies heavily on the fact
that objects in RoBan are complete spaces.

Theorem 17. The positive projective tensor product ⊗̂ |𝜋 | commutes with the projective limits (12).

This completes the proof of existence, and the description of the exponential object. It allows us
to define J!TK := !JTK := JTK∞.

5.1.5 Order-Complete Types. As shown in [Fremlin 1974, 4C] the product L2 ( [0, 1]) ⊗̂ |𝜋 | L2 ( [0, 1])
is not order-complete, even though L2 ( [0, 1]) is. It follows that order-completeness does not
propagate through the grammar (5), even though the denotation of every ground type is order-
complete. Since order-completeness will be crucial in defining the semantics of conditionals and
while loops, it is important to identify a sub-grammar of types which are guaranteed to be order
complete. This is the purpose of the order-complete types given by the grammar (7).

Theorem 18. The semantics of an order-complete type is an order-complete space.
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5.1.6 Contexts. A context Γ will be interpreted as the positive projective tensor

JΓK =
△⊗

|𝜋 |
𝑖∈supp(Γ)

JΓ(𝑖)K.

and we put J∅K := R. A typing rule Γ ⊢ 𝑒 : Δ will be interpreted as a regular (in fact positive, see
Th. 26) operator J𝑒K : JΓK → JΔK.

5.2 Semantics of well-formed expressions

Let us now turn to the semantics of terms.

5.2.1 Constants. A constant 𝑐 ∈ 𝐺 whose ground type G is interpreted as the spaceM𝐺 will be
interpreted as the operator

J𝑐K : J∅K = R −→ JGK = M𝐺, 𝜆 ↦→ 𝜆𝛿𝑐

5.2.2 skip and Built-in Operations. The denotation of Γ ⊢ skip : Γ is JskipK := IdJΓK. Recall
that every built-in operation op comes with typing information (G1, . . . , G𝑛, T) where each G𝑖 is
of ground type and T is either of ground type or of type MG, for G a ground type. Each built-in
operation is interpreted via a function 𝑓op : 𝐺1 × . . . ×𝐺𝑛 → 𝑋 , with 𝑋 = 𝐺 or 𝑋 = M𝐺 , as the
unique regular operator which linearizesM 𝑓op ◦ × according to the universal property (3) of ⊗̂ |𝜋 | :

M𝐺1 × . . . ×M𝐺𝑛

×
��

⊗̂ |𝜋 |

// JG1K ⊗̂ |𝜋 | . . . ⊗̂ |𝜋 | JG𝑛K

JopK
qq

M(𝐺1 × . . . ×𝐺𝑛)
M 𝑓op ��

M𝑋

For example the boolean operator or of type (bool, bool, bool) would be interpreted, via the
function 𝑓or : 2 × 2 → 2 implementing the boolean join, as the linearisation of M 𝑓or ◦ × (which
is bilinear). Similarly, the operation normal of type (real, PosDef(1), Mreal) building a normal
distributions would be interpreted, via the obvious function 𝑓normal : R × R+ → MR, as the
linearisation of M 𝑓normal ◦ ×. If the input is deterministic, i.e. a tensor 𝛿𝜇 ⊗ 𝛿𝜎 for a mean 𝜇 ∈ R
and a standard deviation 𝜎 ∈ R+ (as would typically be the case), then JnormalK(𝛿𝜇 ⊗ 𝛿𝜎 ) outputs
a Dirac delta over the distribution N(𝜇, 𝜎). Note how we interpret the deterministic construction
of a distribution over 𝑋 differently from sampling an element of 𝑋 according to this distribution:
the former is a distribution over distributions, the latter just a distribution.

5.2.3 Variables, Assignments and Return. A variable on its own acts like a variable declaration and
introduces a context (see Fig. 3). Its semantics is simply given by the identity operator on the type
of the variable, formally the sequent [𝑖 ↦→ T] ⊢ x_𝑖 : [0 ↦→ T] is interpreted by Jx_𝑖K = IdJTK (where
we use the fact that the denotation of the contexts [𝑖 ↦→ T] and [0 ↦→ T] are both JTK).

The idea behind our semantics of assignment is to generalize the semantics of [Kozen 1981]
where an assignment x_𝑖 := 𝑥 to a variable of type, say, real is interpreted as M𝑐𝑥 : MR→ MR
where 𝑐𝑥 : R→ R, 𝑦 ↦→ 𝑥 is the constant function to 𝑥 . This interpretation sends any input measure
𝜇 to 𝑒𝑣R (𝜇)𝛿𝑥 , i.e. it coerces any input measure into the Dirac 𝛿 over 𝑥 ś which is what one would
expected of a deterministic assignment ś up to a scalar factor given by the total mass of the input
measure 𝑒𝑣R (𝜇). This last point is essential to make the semantics of assignment linear. In order to
generalise this semantics to more types and to random assignments we need to formalise the role
of the functional 𝑒𝑣R : MR→ R.
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Theorem 19. The denotation of any assignable type T admits a strictly positive functional 𝜙T with

norm ∥𝜙T∥ ≤ 1 built inductively from the evaluation functionals 𝑒𝑣𝐺 , whereM𝐺 = JGK ranges over
ground types.

The strictly positive functional 𝜙T built inductively by Theorem 19 can be thought of as a
generalisation to all assignable types of the ‘total mass’ functional on spaces of measures. With
this notion in place we can provide a semantics to assignments. Given a sequent Γ ⊢ 𝑒 : [0 ↦→ T],
let 𝜙T be the strictly positive functional on JTK constructed in Th. 19 and let us write JΓ [𝑖 ↦→ T]K as
JΓ1K ⊗̂ |𝜋 | JTK ⊗̂ |𝜋 | JΓ2K. We now define the multilinear map

JΓ1K × JTK × JΓ2K −→ JTK (𝛾1, 𝑡, 𝛾2) ↦→
{
𝜙T (𝑡)J𝑒K(𝛾1 ⊗ 𝑡 ⊗ 𝛾2) if Γ(𝑖) = T

𝜙T (𝑡)J𝑒K(𝛾1 ⊗ 𝛾2) else

This defines the unique linearizing operator3

Jx_𝑖 := 𝑒K : JΓ [𝑖 ↦→ T]K −→ J[𝑖 ↦→ T]K
As a simple example, it is easy to type-check the program x_𝑖 := 3.5 and see by unravelling

the definition that it is interpreted as the operator Jx_𝑖 := 3.5K : MR→ (MR)𝛿3.5 , 𝜇 ↦→ 𝜇 (R)𝛿3.5.
In particular any probability distribution gets mapped to 𝛿3.5. We thus recover the semantics of
assignment of [Kozen 1981]. The type system of Fig. 3 also allows us to interpret x_𝑖 := 3.5 more
finely as an assignment to a Bayesian type interpreted as the restriction of Jx_𝑖 := 3.5K to the
one-dimensional band J(real, 3.5)K = MR𝛿3.5 .

The denotation of the return rule exploits the fact that the functionals described in Th. 19 can
be used as deletion operators (since they are of type T → unit with JunitK = R). Writing again
JΓ [𝑖 ↦→ T]K = JΓ1K ⊗̂ |𝜋 | JTK ⊗̂ |𝜋 | JΓ2K we define Jreturn(x_𝑖)K : JΓ [𝑖 ↦→ T]K → JTK

Jreturn(x_𝑖)K : ©­«
⊗

𝑖∈supp(Γ1)
𝜙Γ1 (𝑖) ⊗ IdJTK ⊗

⊗
𝑖∈supp(Γ2)

𝜙Γ2 (𝑖)
ª®¬

as the operator which deletes (up to a scalar factor in order to remain linear) all registers apart
from the one corresponding to [𝑖 ↦→ T] which is returned on the ‘output channel’ 0.

Remark 20. We do not know if it is possible to define a strictly positive functional on an arbitrary
space of operators [𝑈 ,𝑉 ] given strictly positive linear functionals on 𝑈 and 𝑉 . It is easy, using the
Hahn-Banach theorem to find positive functionals of bounded norm, but they might vanish for
some positive operators in [𝑈 ,𝑉 ].

5.2.4 Exponential. The denotation of the exponential type constructor ensures that J!TK always
comes equipped with a comonoid and a comonad structure. In particular this provides morphisms

J!TK → J!TK ⊗ J!TK J!TK → JTK

through which the exponential’s rules of Fig. 3 are interpreted in the usual way [Melliès et al. 2018].

5.2.5 Sequential Composition. The semantics of sequential composition boils down to function
composition and tensoring. The only difficulty lies in the bookkeeping of contexts. Given

J𝑒1K : JΓ1K → JΔ1K and J𝑒2K : JΓ2K → JΔ2K, (17)

the side conditions ensure that we can build the join context

JΓ1 ⊕ (Γ2 ⊖ Δ1)K =
△⊗

|𝜋 |
𝑖∈supp(Γ1)∪supp(Γ2⊖Δ1)

JΓ(𝑖)K

3In fact a nuclear operator [Abramsky et al. 1999].
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where Γ(𝑖) = Γ1 (𝑖) if 𝑖 ∈ supp(Γ1) and Γ2 (𝑖) else. Since RoBan is symmetric monoidal, there exists
a linear operator permuting the factors in the context JΓ1 ⊕ (Γ2 ⊖ Δ1)K so that factors in Γ1 appear
first:

𝑇1 : JΓ1 ⊕ (Γ2 ⊖ Δ1)K →
(

△⊗
|𝜋 |

𝑖∈supp(Γ1)
Γ1 (𝑖)

)
⊗̂ |𝜋 |

(
△⊗

|𝜋 |
𝑖∈supp(Γ2)\supp(Γ1)

Γ2 (𝑖)
)

The first side condition of the sequential composition rule in Fig. 3 ensures that supp(Γ2)\supp(Γ1) =
supp(Γ2) \ supp(Δ1). The second side condition guarantees that there exists a permutation operator
𝑇2:

𝑇2 :

(
△⊗

|𝜋 |
𝑖∈supp(Δ1)

Δ1 (𝑖)
)
⊗̂ |𝜋 |

(
△⊗

|𝜋 |
𝑖∈supp(Γ2)\supp(Δ1)

Γ2 (𝑖)
)
→

(
△⊗

|𝜋 |
𝑖∈supp(Δ1)\supp(Γ2)

Δ1 (𝑖)
)
⊗̂ |𝜋 |

(
△⊗

|𝜋 |
𝑖∈supp(Γ2)

Γ2 (𝑖)
)

Finally, there is a permutation operator 𝑇3

𝑇3 :

(
△⊗

|𝜋 |
𝑖∈supp(Δ1)\supp(Γ2)

Δ1 (𝑖)
)
⊗̂ |𝜋 |

(
△⊗

|𝜋 |
𝑖∈supp(Δ2)

Δ2 (𝑖)
)
→ J(Δ1 ⊖ Γ2) ⊕ Δ2K

where J(Δ1 ⊖ Γ2) ⊕ Δ2K is defined exactly as in (17). With this bookkeeping in place we can now
define J𝑒1; 𝑒2K : JΓ1 ⊕ (Γ2 ⊖ Δ1)K → J(Δ1 ⊖ Γ2) ⊕ Δ2K as

J𝑒1; 𝑒2K = 𝑇3 ◦ (Id ⊗ 𝑒2) ◦𝑇2 ◦ (𝑒1 ⊗ Id) ◦𝑇1 (18)

As a simple example consider the program x_1 := 3.5 ; x_2 := x_1 + 7.3. Using the sequential
composition rule we can derive the following typing-checking proof:

∅ ⊢ 3.5 : [0 ↦→ real]
[1 ↦→ real] ⊢ x_1 := 3.5 : [1 ↦→ real]

[1 ↦→ real] ⊢ x_1 : [0 ↦→ real] ∅ ⊢ 7.3 : [0 ↦→ real]
[1 ↦→ real] ⊢ x_1 + 7.3 : [0 ↦→ real]

[1 ↦→ real, 2 ↦→ real] ⊢ x_2 := x_1 + 7.3 : [2 ↦→ real]
[1 ↦→ real, 2 ↦→ real] ⊢ x_1 := 3.5 ; x_2 := x_1 + 7.3 : [1 ↦→ real, 2 ↦→ real]

The semantics of the program is computed step-by-step as follows

Jx_1 := 3.5K : MR→ MR, 𝜇 ↦→ 𝑒𝑣R (𝜇)𝛿3.5
Jx_1 + 7.3K : MR→ MR, 𝜇 ↦→ (+)∗ (𝜇 × 𝛿7.3)
Jx_2 := x_1 + 7.3K : MR ⊗̂ |𝜋 | MR→ MR, 𝜇 ⊗ 𝜈 ↦→ 𝑒𝑣R (𝜈) (+)∗ (𝜇 × 𝛿7.3)
Jx_1 := 3.5 ; x_2 := x_1 + 7.3K : MR ⊗̂ |𝜋 |MR→MR ⊗̂ |𝜋 |MR, 𝜇 ⊗ 𝜈 ↦→ 𝑒𝑣R (𝜇)𝛿3.5 ⊗ 𝑒𝑣R (𝜈)𝛿10.8
since (+)∗ (𝛿3.5 × 𝛿7.8) = 𝛿10.8. Note that if we had replaced the instruction x_2 := x_1 + 7.3 by
x_2 := x_1 ∗ sin(x_1), we would not have been able to type-check the problem. The linearity of
our system would prevent us from using twice x_1 unless it was explicitly declared as duplicable.
The tensor rule of Fig. 3 is interpreted in a very similar way by tensoring with the identity IdJΔK up
to permutations.

5.2.6 𝜆-abstraction and Function Application. These are interpreted exactly as expected in a
monoidal closed category, namely via the adjunction − ⊗̂ |𝜋 | JSK ⊣ [JSK,−] and ordinary func-
tion application.

Remark 21. While the denotation of 𝜆-abstraction is immediately given by the monoidal closed
structure of RoBan, the following point is worth making. Assume a context of ground types only.
In the system of [Kozen 1981], such a context is of the shape M(𝑋1 × . . . × 𝑋𝑛), i.e. any joint
distribution over the variables can be considered as an input to the program. If we were Cartesian
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closed, such a context would be of the shapeM𝑋1 × . . .×M𝑋𝑛 , i.e. only product distributions would
be considered as potential inputs to the program. Our semantics lies between these two possibilities
since the context is nowM𝑋1 ⊗̂ |𝜋 | . . . ⊗̂ |𝜋 | M𝑋𝑛 . This means that not all joint probabilities can
be 𝜆-abstracted on, only those which live in the tensor product (i.e. limits of Cauchy sequences of
linear combinations of product measures). Put differently, our system only allows 𝜆-abstraction
if the probabilistic state of the machine is prepared (to use a quantum analogy) to a distribution
in the positive projective tensor product. This is typically much larger than the set of product
distributions, but is smaller than the set of all joint distribution (unless the underlying sets are
finite, in which case all joint distribution can be expressed as elements of the tensor product).

5.2.7 Semantics of sampler and sample. The semantics of these commands are extensions of the
unit and co-unit of the Giry monad [Giry 1982] respectively. First we need the following easy result.

Theorem 22. The semantics of every measure type is isometrically and monotonically embedded in

a space of measures M𝑋 .

We can now define the semantics of sampler. Suppose we have J𝑒K : JΓK → JTK and, by Th.
22, that JTK is isometrically and monotonically embedded in the space M𝑋 . Now consider the
map 𝜂 : 𝑋 → M𝑋, 𝑥 ↦→ 𝛿𝑥 (which is not an operator) and define denotation of sampler(𝑒) as the
positive operator JΓK → MJTK

Jsampler(𝑒)K := M𝜂 ◦ J𝑒K. (19)

The semantics of sample works in the opposite direction. Suppose we have J𝑒K : JΓK → MJTK
with JTK isometrically and monotonically embedded in M𝑋 , then each element of MJTK is also an
element ofMM𝑋 . We can define a map

𝑚𝑋 : MM𝑋 → M𝑋 𝜌 ↦→ 𝜆𝐵.

∫
𝐵+ (M𝑋 )

𝑒𝑣𝐵 (𝜇) 𝑑𝜌 (20)

where we recall that 𝐵+ (M𝑋 ) is the positive unit ball of the space M𝑋 . To see that this map is
well-defined, recall first thatMM𝑋 is equipped with the Borel 𝜎-algebra generated by the total
variation norm. Since the evaluation maps 𝑒𝑣𝐵 : MM𝑋 → M𝑋 are always continuous w.r.t. the
total variation norm, they are in particular also measurable. Moreover, they are also tautologically
bounded on 𝐵+ (M𝑋 ) and this set has finite measure since 𝜌 is of bounded variation. It follows that
the integral in eq. (20) is well-defined. Themap𝑚𝑋 clearly defines a positive operator, and in the case
where 𝜌 is supported by the set of probability distributions, i.e. the shell {𝜇 ∈ (M𝑋 )+ : ∥𝜇∥ = 1} of
the positive unit ball,𝑚𝑋 coincides with the multiplication of the Giry monad. We are now ready
to define Jsample(𝑒)K : JΓK → JTK

Jsample(𝑒)K :=𝑚𝑋 ◦ J𝑒K.

We can now interpret the type of the Gaussian inference program in Fig. 4. In defining the semantics
of built-in operations we saw that the semantics of ∅ ⊢ normal(0, 1) : [0 ↦→ Mreal] is the linear
map R→ MMR mapping 1 to the Dirac delta over the normal distributionN(0, 1). It follows that

Jsample(normal(0, 1))K(1) = N(0, 1)
and by unravelling the definition we similarly find that

Jsample(normal(sample(normal(0, 1)), 1)K(1) = 𝜆𝐵.
∫
𝑥 ∈R

N(𝑥, 1) (𝐵) 𝑑N(0, 1) = N(0,
√
2)

which is the pushforward of N(0, 1) by the kernel 𝜆𝑥 . N(𝑥, 1) as described in (1). It follows that
the output of the Gaussian inference program is interpreted as a linear operator

(MR)N(0,
√
2) −→ (MR)N(0,1) .
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We will describe in ğ 5.2.9 what this operator actually is.

Remark 23. Although definitions eq. (19) and eq. (20) look a lot like the unit and multiplication
of the Giry monad, it is worth emphasising that we are not defining a monad. We do not need
to, since we are working at the ‘lifted’ level where all inputs are distributions and all programs
are interpreted as linear operators on these distributions. This means in particular that questions
of measurability, which are crucial to the definition of a Giry-like monad on quasi-Borel spaces
[Heunen et al. 2017] and of sequencing of stable functions [Ehrhard et al. 2017] (in each case via
an integral of the same form as in eq. (20)), do not apply here. We are only interested in linear
operators. Some of these will arise from measurable maps via the pushforward operation and others
will not, but non-measurable maps never enter into the picture.

5.2.8 Conditionals and while Loops. Given a boolean test Γ ⊢ 𝑒 : [0 ↦→ bool] interpreted as an
operator J𝑒K : JΓK → M2, the order-completeness of JΓK allows us to define the maps

𝑇𝑒 : JΓK
+→ JΓK+, 𝛾 ↦→

∧
{0 ≤ 𝛾 ′ ≤ 𝛾 : J𝑒K(𝛾 ′) (1) = J𝑒K(𝛾) (1)}

𝐹𝑒 : JΓK
+→ JΓK+, 𝛾 ↦→

∧
{0 ≤ 𝛾 ′ ≤ 𝛾 : J𝑒K(𝛾 ′) (0) = J𝑒K(𝛾) (0)}

Proposition 24. The maps 𝑇𝑒 and 𝐹𝑒 are positive, additive and R
+-homogeneous.

Since regular ordered Banach spaces have a generating cone, we can uniquely extend 𝑇𝑒 and
𝐹𝑒 to the entire space JΓK. The way to understand 𝑇𝑒 and 𝐹𝑒 is as operators computing a kind of
‘weakest pre-conditions’. Given a state 𝛾 ∈ JΓK, 𝑇𝑒 (𝛾) describes the smallest (positive) state on
which the test 𝑒 has the same probability of success as on 𝛾 . Similarly, 𝐹𝑒 (𝛾) describes the smallest
state below 𝛾 on which the test 𝑒 has the same probability of failure as on 𝛾 .

Using the operators 𝑇𝑒 and 𝐹𝑒 we define the semantics of Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : Δ as the
operator:

Jif 𝑒1 then 𝑒2 else 𝑒3K : JΓK → JΔK, 𝛾 ↦→ J𝑒2K ◦𝑇𝑒1 (𝛾) + J𝑒3K ◦ 𝐹𝑒1 (𝛾) (21)

In the case of deterministic tests, the semantics defined by (21) recovers precisely the semantics
of [Kozen 1981]. There, JΓK is a measure space M𝑋 and J𝑒1K : M𝑋 → M2 is of the shape M𝑏

for a measurable map 𝑏 : 𝑋 → 2 which specifies a measurable subset 𝐵 of 𝑋 . We claim that
𝑇𝑒 : M𝑋 → M𝑋 sends a probability measure 𝜇 to the measure 𝜇𝐵 defined by 𝜇𝐵 (𝐴) = 𝜇 (𝐴 ∩ 𝐵),
exactly as the operator 𝑒𝐵 of [Kozen 1981, 3.3.4]. By unravelling the definition we want to show:

𝜇𝐵 =

∧
{0 ≤ 𝜈 ≤ 𝜇 : 𝜈 (𝐵) = 𝜇 (𝐵)}

Note first that 𝜇𝐵 belongs to the set above, so it remains to show that it is its minimal element. Let
𝜈 also belong to this set, and let 𝐴 be a measurable set. We decompose 𝐴 as 𝐴 = (𝐴 ∩ 𝐵) ⊎ (𝐴 ∩ 𝐵𝑐 ).
By definition

𝜇𝐵 (𝐴 ∩ 𝐵𝑐 ) = 0 ≤ 𝜈 (𝐴 ∩ 𝐵𝑐 ) since 0 ≤ 𝜈.
Moreover we have

𝜇𝐵 (𝐴 ∩ 𝐵) = 𝜇 (𝐴 ∩ 𝐵) = 𝜈 (𝐴 ∩ 𝐵).
For if we had 𝜈 (𝐴 ∩ 𝐵) < 𝜇 (𝐴 ∩ 𝐵), then in order to keep 𝜇 (𝐵) = 𝜈 (𝐵) we would need 𝜈 (𝐴𝑐 ∩
𝐵) > 𝜇 (𝐴𝑐 ∩ 𝐵), a contradiction with 𝜈 ≤ 𝜇. Thus 𝜇𝐵 ≤ 𝜈 as claimed and the semantics of
if 𝑒1 then 𝑒2 else 𝑒3 : T becomes the operator

𝜇 ↦→ J𝑒2K(𝜇𝐵) + J𝑒3K(𝜇𝐵𝑐 )
exactly as in [Kozen 1981]. However, the semantics (21) also covers the case of probabilistic
tests. As an example consider the small program given in Fig. 5. For notational clarity let us
write 𝑒 for the program sample(normal(x_1, 1)) > 0. As we saw in ğ 5.2.3, the denotation of
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x_1:= sample(normal (0,1);

if sample(normal(x_1 ,1))>0 then

x_1:=x_1+1

else

x_1:=x_1 -1

Fig. 5. if then else program with a probabilistic guard and its output distribution (up to a scalar).

x_1:= sample(normal(0, 1)) is the operator MR→ MR, 𝜇 ↦→ 𝑒𝑣R (𝜇)N (0, 1), thus it is enough to
see how 𝑇𝑒 and 𝐹𝑒 operate on inputs of the shape 𝜆N(0, 1). Following the same computation as in
ğ 5.2.7, one gets that

J𝑒K(𝜆N(0, 1)) (1) = 𝜆N(0,
√
2) ( [0, +∞[) = 𝜆

2

since 𝜆N(0,
√
2) is symmetric and centred at 0. We thus have

𝑇𝑒 (𝜆N(0, 1)) =
∧ {

0 ≤ 𝜇 ≤ 𝜆N(0, 1) : J𝑒K(𝜇) (1) = 𝜆

2

}
= 𝜆N(0, 1)[0,+∞[

where 𝜆N(0, 1)[0,+∞[ is themeasure defined by 𝜆N(0, 1)[0,+∞[ (𝐵) = 𝜆N(0, 1) (𝐵∩[0, +∞[). Similarly,
𝑇𝑒 (𝜆N(0, 1)) = 𝜆N(0, 1)]−∞,0] . We can now compute the denotation of the entire program as the
operator MR→ MR depicted graphically in Fig. 5 and defined by

𝜇 ↦→ 𝑒𝑣R (𝜇)N (1, 1)[1,+∞[ + 𝑒𝑣R (𝜇)N (−1, 1)]−∞,−1]

The semantics of while loops is given precisely as in [Kozen 1981]: we want equivalence between
the programs

Γ ⊢ while 𝑒1 do 𝑒2 : Γ and Γ ⊢ if 𝑒1 then 𝑒2 ; while 𝑒1 do 𝑒2 else skip : Γ.

Using (21), the equivalence above means that the operator𝑊 : JΓK → JΓK denoting while 𝑒1 do 𝑒2
should be a solution of the equation

𝑊 =𝑊 ◦ J𝑒2K ◦𝑇𝑒1 + 𝐹𝑒1 (22)

Following [Kozen 1981, 3.3.5], the least fixed point of the operator𝑊 ↦→𝑊 ◦ J𝑒2K ◦𝑇𝑒1 + 𝐹𝑒1 exists
by order-completeness of JΓK.

5.2.9 Semantics of observe. Following the typing rule of observe given in Fig. 3, let us assume
that we have J𝑒K : J(S, 𝜇)K → JTK with S, T of measure type. We also make the assumption, which
we will justify in Th. 26 below, that J𝑒K is not just regular, but positive. Under this assumption if
𝜈 ≤ 𝐾𝜇, then J𝑒K(𝜈) ≤ 𝐾J𝑒K(𝜇), i.e. J𝑒K restricts to an operator

J𝑒K : (M𝑋 )𝑈𝐵
𝜇 → (M𝑌 )𝑈𝐵

J𝑒K(𝜇)

where (M𝑋 )𝑈𝐵
𝜇 is the set of measures uniformly bounded by a multiple of 𝜇 (see [Chaput et al.

2014]). The semantics of observe(𝑒) is then fundamentally contained in the Köthe dual operator

J𝑒K𝜎 :
(
(M𝑌 )𝑈𝐵

J𝑒K(𝜇)

)𝜎
→

(
(M𝑋 )𝑈𝐵

𝜇

)𝜎
.
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It is not hard to check by using the Riesz Representation and Functional Representations natural
transformations (RR and FR in Diagram (2)) that

(
(M𝑌 )𝑈𝐵

𝜈

)𝜎 ≃ (L𝑝 (𝑌, 𝜈))𝜎 ≃ (M𝑌 )𝜈 , and thus
J𝑒K𝜎 can, modulo these isomorphisms, be typed as an operator

J𝑒K𝜎 : (M𝑌 )J𝑒K(𝜇) → (M𝑋 )𝜇 (23)

which is what the typing rule for observe requires.
To illustrate how this semantics really implements the Bayesian inversion described in ğ 3.2.2, let

us again consider the simple Gaussian inference program given in Fig. 4. The underlying Bayesian
model is given by the probability kernel N(−, 1) : R→ MR and the prior N(0, 1) on R. Together
these define a Krn-arrow (R,N(0, 1)) → (R,N(0,

√
2)) which is implemented by the program

[x ↦→ (real, normal(0, 1))] ⊢ sample(normal(x, 1)) : [0 ↦→ real]
whose denotation is the positive operator

M− (N (−, 1)) : (MR)N(0,1) → MR.
Using the same argument as above, we can restrict this operator as follows

M− (N (−, 1)) : (MR)𝑈𝐵
N(0,1) → (MR)𝑈𝐵

N(0,
√
2) .

As stated above, all the information about the semantics of observe(sample(normal(x, 1))) is
contained in the Köthe dual of this operator, which, through the Riesz Representation and Functional
Representations natural transformation, can be typed modulo isomorphism as

(M− (N (−, 1)))𝜎 : (MR)N(0,
√
2) → (MR)N(0,1) .

Using the other half of diagram (2), that is to say the Radon-Nikodym and Measure Representation
natural transformations (RN and MR in diagram 2), this operator is equal, modulo isomorphism, to
the operator

M− (N (−, 1)†) : (MR)N(0,
√
2) → (MR)N(0,1) .

Here the Bayesian inverse of our original probability kernel appears explicitly, showing that our
semantics indeed captures the notion of Bayesian inverse.

There is one final subtlety which we need to account for. Given J𝑒K : J(S, 𝜇)K → JTK, the typing
rule for observe in fact makes the whole semantics described above parametric in a choice of
measure absolutely continuous w.r.t. the prior 𝜇 (see Fig. 3). This is a simple technicality: morally
and practically the parameter will always be set to the prior itself, in which case we get as output of
the program the Köthe dual described by (23). Mathematically however, we can choose as input any
𝜈 ≪ 𝜇; the output operator is then defined by the following tortuous path (similar to constructions
in [Chaput et al. 2014])

(M𝑌 )J𝑒K(𝜇)
≃ //

(
(M𝑌 )−J𝑒K(𝜇)𝑈𝐵

)𝜎 𝑖𝜎 //
(
(M𝑌 )𝑈𝐵

J𝑒K(𝜈)

)𝜎 J𝑒K𝜎// ((M𝑋 )𝑈𝐵
𝜈

)𝜎 ≃ // (M𝑋 )𝜈
𝑗 // (M𝑋 )𝜇

where 𝑖, 𝑗 are the obvious inclusions.

Remark 25. The semantics of observe in term of Köthe duals is more general than a semantics
in terms of Bayesian inversion/disintegration. Nothing prevents the introduction of ground types
which stand for measurable spaces in which disintegrations do not exist. However, the Köthe dual
will still exist. Thus our semantics is free of some of the ‘pointful’ technicalities surrounding the
existence of disintegrations, and follow the ‘pointless’ perspective advocated in [Clerc et al. 2017].
Similarly, we do not have to worry about the ambiguity caused by the fact that disintegrations are
only defined up to a null set: the Köthe dual of an operator between regular ordered Banach spaces
exists completely unambiguously.
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5.3 Properties of the Semantics

5.3.1 Norm. We can extend [Kozen 1981, Th. 3.3.8] by a straightforward induction and show that:

Theorem 26. The semantics of any program is a positive operator of norm at most 1.

However another result [Kozen 1981, Th. 6.1], namely that the denotation of a program is entirely
determined by its action on point masses does not hold any more. The reason is interesting and is
worth a few words. It is immediate from the type system (Fig. 3) and the denotation of Bayesian
types that the domain of the interpretation of an observe statement may not contain any point

masses at all. For example in the case of the Gaussian inference program of 4.2.3, this domain is
(MR)N(0,1) which contains no point masses at all.

5.3.2 Commutativity. The symmetric monoidal structure ofRoBan and the denotation of sequential
compositions given by (18) provide an easy proof of the commutativity of our semantics.

Theorem 27. Suppose Γ ⊢ 𝑒1 : [0 ↦→ T1] and Δ ⊢ 𝑒2 : [0 ↦→ T2], supp(Γ) ∩ supp(Δ) = ∅ are

derivable, then for 𝑗 ∉ supp(Γ), 𝑖 ∉ supp(Δ)

Jx_𝑖 := 𝑒1; x_ 𝑗 := 𝑒2K = Jx_ 𝑗 := 𝑒2; x_𝑖 := 𝑒1K

In [Staton 2017], a probabilistic language is given a semantics in terms of (s-finite) Markov kernels
composed using Kleisli composition. Commutativity is therefore shown via a Fubini theorem.
Here we are dealing with linear operators composing in the usual way. The connection between
the two approaches is of course that each kernel gives rise to a linear operator given by the
pushforward under a kernel defined in (1). The key difference is that our system is linear, and the
assignments x_𝑖 := 𝑒1 and x_ 𝑗 := 𝑒2 are therefore tensored rather than composed, which explains
why commutativity boils down to the symmetric monoidal structure of RoBan rather than a Fubini
theorem.

5.3.3 Comparison with Semantics à la Scott. There are interesting parallels to be drawn between
our semantics and the Scott-Strachey semantics in terms of domains.
Looking at ground types first, it is worth noting that just like the flat domain functor turns a

set (of integers for example) into a valid semantic object (a domain), so the functor M turns a
measurable set into a valid semantic object (a regular ordered Banach space). Similarly, just like
the flat domain functor can turn a partial map between sets into a total map between domains, so
the functorM turns a partial measurable map into a linear operator. Partiality is encoded by the
presence of the bottom element in the case of domain, and by the possibility to lose mass (i.e. get
subdistributions) in the case of spaces of measures.
We do not know yet if the semantics of every program in our language is 𝜎-order continuous,

which would be the equivalent of Scott-continuous in our setting. The fundamental difference
however is that our semantic category is not Cartesian closed, but monoidal closed.

5.3.4 A Note on Operational Semantics and Adequacy. Defining a small-step operational semantics
for probabilistic languages is far more intricate than in the non-probabilistic case; see e.g. [Borgström
et al. 2016; Staton et al. 2016]. The difficulty is compounded in the case of our system by the combined
presence of continuously-parametrized families of distributions over a range of types, higher-order
types, and the Bayesian inference command observe.
The presence of continuously-parametrized families of distributions, whose parameters might

only be fixed at sample time and which can be called arbitrarily many times from a while loop,
means that the operational semantics of sample will require a carefully designed global source of
randomness, perhaps in the form of a countable product of abstract measured spaces.
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The presence of higher-order types also introduces subtle issues. As mentioned, a natural
approach is to provide a fixed global source of randomness that can be sampled as necessary during
the computation. However, care must be taken: the naive approach of packaging the random source
with a function at the site of the function’s definition can in some circumstances lead to the reuse of
samples at different locations in the program, thereby breaking independence. For example, in the
evaluation of (𝜆𝑥 .𝑥𝑎(𝑥𝑏)) (𝜆𝑦.if flip=heads then 𝑐𝑦 else 𝑑𝑦), the same coin would be used twice in
the resolution of two flips when the body of the first expression is evaluated. To achieve adequacy
with respect to an operational semantics, it would be necessary that the source be dynamically
scoped to ensure that samples are not reused. Thus functions must allow the random source to
be supplied as a parameter at the call site. The difficulty here is that the form of the randomness
required by the function is not known to the calling context, so some conversion or approximation
would be required.

Finally, the operational interpretation of the observe command is at the moment very unclear.
One may be tempted to implement a rejection-sampling scheme, but this favours a (not terribly
good) Bayesian inference algorithm, on the sole basis that it has an easily understandable operational
behaviour. In fact the principle of separation of concerns in languages like Anglican, where the
programmer writes an observe statement in the model part of the code and then specifies separately
which inference algorithm will implement it, suggests an operational semantics that is parametric
in the choice of an inference algorithm.

With so many interesting but difficult questions, we believe that an operational semantics and a
proof of adequacy for the kind of language described in this work deserve a detailed treatment in a
future work.

6 CORRECTNESS OF GIBBS SAMPLING

We have now all the tools necessary to prove the denotational correctness of the Gibbs sampling
algorithm given in Fig. 1. We assume that xyz[i] and xyz[i, j], 𝑖 ≠ 𝑗 are syntactic sugar for built-in
functions associated with the obvious projections from JX × Y × ZK, e.g.

Jxyz[1]K = M𝜋X : MJX × Y × ZK → MJXK, Jxyz[1, 3]K = M𝜋X×Z : MJX × Y × ZK → MJX × ZK

The semantics of the built-in function write_X : (X × Y × Z, X, X × Y × Z) is given by the function
((𝑥,𝑦, 𝑧), 𝑥new) ↦→ (𝑥new, 𝑦, 𝑧) in theway described in ğ 5.2.2, and similarly for write_Y and write_Z.
For notational convenience we denote by mc the body of the loop, by P the product X × Y × Z and
by PX (resp. PY, PZ) the product Y × Z (resp. X × Z, Y × Y).

The pre-condition that the inputs cond_𝑖 , 𝑖 = 1, 2, 3 are the conditional distributions of the joint
distribution 𝜇 can be formalized as saying that:

Jsample(cond_1)K := M𝜋†
PZ

: MJPZK(𝜋PZ
)∗𝜇 → MJPK𝜇

Jsample(cond_2)K := M𝜋†
PY

: MJPYK(𝜋PY
)∗𝜇 → MJPK𝜇

Jsample(cond_3)K := M𝜋†
PX

: MJPXK(𝜋PX
)∗𝜇 → MJPK𝜇

where (𝜋PZ )∗𝜇 is the pushforward of the measure 𝜇 under the projection 𝜋PZ , and similarly for
the other permutations. Using the typing rules of Fig. 3 we can type-check the while loop of the
program

. . .

[1 ↦→!(PZ→P), 2 ↦→!(PY→P), 3 ↦→!(PX→P), 4 ↦→ P] ⊢ mc : [4 ↦→ P]
[1, 5 ↦→!(PZ→P), 2, 6 ↦→!(PY→P), 3, 7 ↦→!(PX→P), 4 ↦→ P] ⊢ mc : [4 ↦→ P, 5 ↦→!(PZ→P), 6 ↦→!(PY→P), 7 ↦→!(PX→P) ]

[4 ↦→ P, 5 ↦→!(PZ→P), 6 ↦→!(PY→P), 7 ↦→!(PX→P) ] ⊢ mc : [4 ↦→ P, 5 ↦→!(PZ→P), 6 ↦→!(PY→P), 7 ↦→!(PX→P) ]
[4 ↦→ P, 5 ↦→!(PZ→P), 6 ↦→!(PY→P), 7 ↦→!(PX→P) ] ⊢ while true do mc : [4 ↦→ P, 5 ↦→!(PZ→P), 6 ↦→!(PY→P), 7 ↦→!(PX→P) ]

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 57. Publication date: January 2020.



Semantics of Higher-Order Probabilistic Programs with Conditioning 57:27

and we can therefore interpret while true do mc as the linear operator

!JPZ→PK ⊗̂ |𝜋 | !JPY→PK ⊗̂ |𝜋 | !JPX→PK! ⊗̂ |𝜋 | JPK −→!JPZ→PK ⊗̂ |𝜋 | !JPY→PK ⊗̂ |𝜋 | !JPX→PK! ⊗̂ |𝜋 | JPK

defined by the fixpoint equation (22), that is to say satisfying

Jwhile true do mcK(𝑓1 ⊗ 𝑓2 ⊗ 𝑓3 ⊗ 𝜈) = Jwhile true do mcK(𝑓1 ⊗ 𝑓2 ⊗ 𝑓3 ⊗ 𝑇 (𝜈)) (24)

where 𝑇 = JmcK : MJPK𝜇 → MJPK𝜇 is the Markov operator representing the chain built by the
program and given by:

𝑇 = M𝜋†
PX
◦M𝜋PX ◦M𝜋†

PY
◦M𝜋PY ◦M𝜋†

PZ
◦M𝜋PZ

We now show that as long as the pre-conditions are satisfied the operator defined by (24) sends
Jcond_1K⊗ Jcond_2K⊗ Jcond_3K⊗𝜈 to Jcond_1K⊗ Jcond_2K⊗ Jcond_3K⊗ 𝜇, where 𝜇 is the desired
distribution. We start with the following, almost immediate, fact:

Theorem 28. 𝜇 ∈ fix(𝑇 )
The second observation is that 𝑇 is a Markov operator and that Markov operators satisfy the

mean ergodic theorem (see [Dunford et al. 1971]).

Theorem 29 (Lem. 8.3, Th. 8.24 [Eisner et al. 2015]). The limit 𝑃𝑇 := lim𝑛→∞
1
𝑛

∑𝑛−1
𝑗=0 𝑇

𝑗 exists in

the strong operator topology. Moreover, 𝑃𝑇 is a projection operator onto fix(𝑇 ) and 𝑃𝑇 ◦𝑇 = 𝑃𝑇 .

The last step is to show that 𝑇 is ergodic/irreducible. By [Prop. 7.15, [Eisner et al. 2015]] this
amounts to proving the following result which is easily shown by using the naturality the Radon-
Nikodym natural transformation of Diagram (10) and the functorial properties of (−)†.
Theorem 30. dimfix(𝑇 ) = 1.

We can now conclude by combining Theorems 28, 29 and 30 to get that the operator

(𝑓1, 𝑓2, 𝑓3, 𝜈) ↦→ (𝑓1, 𝑓2, 𝑓3, 𝑃𝑇 (𝑓1,𝑓2,𝑓3) (𝜈))
(where the copying of 𝑓1, 𝑓2, 𝑓3 is taken care of by the comonoidal structure of the exponential)
is a solution of the fixpoint equation (24) when 𝑓1, 𝑓2, 𝑓3 satisfy the pre-conditions. Moreover, if 𝜈
satisfies the pre-condition 𝜈 ≪ 𝜇, we get that the ‘output’ of the program is given by

Jwhile true do mcK(𝑓1, 𝑓2, 𝑓3, 𝜈) = (𝑓1, 𝑓2, 𝑓3, 𝜇)
as desired. If the return command was reached it would return the expected distribution 𝜇, and
we therefore have a proof of correctness of Gibbs sampling in the limit of an infinite number of

iterations. This mirrors the operational picture where sampling from 𝜇 is only guaranteed in the
limit of an infinite number of transitions through the chain described by 𝑇 .

Of course, it would be interesting to quantify how many iterations of the loop are necessary to
approach 𝜇 up to some pre-specified error, i.e. how quickly the sum 1

𝑛

∑𝑛
𝑖 𝑇

𝑖 converges to 𝑃𝑇 . This
is beyond the scope of the present work, but given the wealth of result in ergodic theory (results
on mixing times for example) it is a question which lends itself perfectly to our semantics. In other
words our semantics paves the way not just for correctness proofs, but also for more quantitative
results with obvious practical applications.
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