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In this paper we give a probabilistic analog PPDL of Propositional Dynamic Logic. We
prove a small model property and give a polynomial space decision procedure for formulas
involving well-structured programs. We also give a deductive calculus and illustrate its use by
calculating the expected running time of a simple random walk.  © 1985 Academic Press, Inc.

1. INTRODUCTION

This paper deals with the problem of defining a fully compositional, exogenous
formalism for reasoning about probabilistic programs at the propositional level.
Apart from related work in first-order and endogenous logics [SPH, FH, LS, Pn],
previous approaches to this problem have not met with the same level of success as
has Propositional Dynamic Logic (PDL) [FL]. Ramshaw [Ra] gave a Hoare-like
logic, but observed that even the if-then-else rule was incomplete. Reif [Re] gave a
logic that was not expressive enough to define if-then-else; moreover, one of its
proof rules was later shown unsound [FH]. Makowsky and Tiomkin [MT] gave
an infinitary system and an infinitary completeness result. Parikh and Mahoney
[PM] studied the equational properties of probabilistic programs. Feldman [F]
gave a less expressive version of the logic of [FH], though still with quantifiers,
and proved decidability by reduction to the first-order theory of the reals.

Previous approaches to this problem, with the exception of [PM], attempted to
deal with probability truth-functionally, whereas the natural semantics is arithmetic
[K]. For example, the Hoare-style if-then-else rule of [Ra] is incomplete because
absolute propositional information about the probabilistic behavior of programs p
and ¢, combined truth-functionally, does not yield complete propoesitional infor-
mation about the behavior of if A then p eilse g. Under the natural semantics,
however, if 4 then p else g is a sum Ap + 1 A%, not a join [ K]; this indicates that
the operator + is more appropriate for dealing with the if-then-else construct than
V.

This example illustrates the dichotomy between two forms of possibility, which
we will call the nondeterministic form and the probabilistic form, respectively. In the
former, events are either possible or impossible, with no further distinction. In the
latter, events occur according to a probability distribution; even if the distribution
is unknown, its very existence affects the theory. One might attempt to equate
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“possible” in the nondeterministic form with “nonzero probability” in the
probabilistic form, but this correspondence goes only so far: for example, the
program

x := flip; while x = heads do x := flip

is probabilistically total, since it halts with probability I, but not nondeter-
ministically total, since it has an infinite computation path.

Unfortunately, almost all of our logical apparatus belongs to the nondeter-
ministic form. The usual logical connectives and the existential quantifier are clearly
nondeterministic in nature. We must therefore be prepared to depart radically from
conventional logic in order to accommodate probability in a satisfactory way.

The approach of this paper is to replace the truth-functional propositional
operators with analogous arithmetic ones, which are more closely aligned with the
probabilistic form. We are led to consider a formal system which we call
Probabilistic Propositional Dynamic Logic (PPDL), although the “propositional” is
really a misnomer. Each logical construct in PDL has an arithmetic counterpart in
PPDL. For example, propositions A generalize to measurable functions f; they are
combined linearly, as in af+bg, not truth-functionally. States s generalize to
measures pi. Programs p are interpreted as real-valued functions. The program
operator v is replaced by +. The program operator * represents not an infinite
union of binary relations as in PDL, but rather an infinite sum of functions. The
modal construct {p} is a measurable function transformer; {p) 4 is a measurable
function which when applied to input state s yields the probability that program p
halts in a state satisfying 4. Finally, the notion of satisfiability (s}=A4) generalizes to
an integral |fdu, a real-valued function giving the probability that (generalized)
state p satisfies (generalized) proposition f.

The proof rules of PDL have natural analogs in PPDL, as well. For example, the
usual PDL axioms for * are equivalent to the axiom and rule

(p*> A=A v {pp*) 4
Av (pyB<B- (p*> A<B.
In PPDL, we have the analogous rules, for 0 <f,
p*>f=f+<pr*>f
fH<prg<g—<{p*)[f<g.

2. THREE EQUIVALENT SEMANTICS OF PROBABILISTIC PROGRAMS

In this section, familiarity with basic measure theory and topology is assumed.
Definitions of terms such as measure, measurable set, measurable Sfunction, o-algebra,
and integral can be found in [H].
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Let S be a set of states and X a d-algebra of measurable sets on S. Let B be the
space of finite measures on (S, 2') and F the space of bounded measurable functions
on (S, 2). 4, v,..., and f, g,..., denote elements of B and F, respectively. The integral
{ fdu, which we will sometimes denote (u, /), is a bilinear function Bx F— R. The
integral induces a weak topology on B and F, namely the weakest topology making
{fdu continuous in f and p.

There are three equivalent ways to interpret a program over (S, 2). The one
most analogous to binary relations in PDL is the Markov transition or measurable
kernel [SPH, Rev], which is a function

p:Sx2->R

satisfying (1) and (2) below. Intuitively, p(s, 4) is the probability that the program
p, starting in state s, will halt in a state satisfying A. For finite or countable S, p can
be represented by a Markov transition matrix giving the probability that s goes to ¢
under p for each pair of states s, 1.

By definition, Markov transitions must satisfy the properties:

(1) for fixed 4 € X, the function As- p(s, A) is an element of F,
(2) for fixed se S, the function A4 - p(s, 4) is an element of B.

These properties allow program composition by integration up the middle:

(pa)(s, 4)=|

te

. q(t, A) p(s, dt).

This formula reduces to ordinary matrix multiplication in the finite or countable
case.

ExaMPLE. In the BASIC programming language, numeric variables range over
R. The set of states S would be R”, the set of valuations of n program variables
Xy, X, Over R. X would be the family of Lebesgue measurable subsets of S. A
deterministic assignment

10let x, =x,+3

would be modeled by a (deterministic) Markov transition p: S x 2’ — R defined by

ps, A)y=1 ifre A,

=0 otherwise,

where 1 is the valuation obtained from s by changing the value of variable x, to 3
plus the value of variable x,. A random assignment

10 let x, =rnd
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gives a random real number in the interval [0, 1) with uniform probability; this
would be modeled by a Markov transition p: S x 2 — R such that, if s=<{ay,.., a,)
and A=A,x - xA,, where a;e R and the A4, are Lebesgue measurable subsets of
R, then

pls, A)y=A(A4,n [0, 1)) ifa,ed;,2<i<n,

=0 otherwise,

where A is the Lebesgue measure on R. (The value of p on elements of 2 of the form
A, x -+ x A, determines the value of p on measurable sets not of this form.)

For p a measure, f a bounded measurable function, and p a program, the proper-
ties (1) and (2) also allow the definition of the measure u{p) and the measurabie
function < p) f by integration on either side of p:

(<PYNA) = | pls, 4) u(ds)

(<> £)s) =] £(2) pls, ).

The map p — u{ p) is exactly the measure-transformer semantics of [K ], in which
a program p maps an input measure y forward into an output measure u{p. It is
the unique linear, continuous map B — B extending p. Moreover, any such map,
restricted to point masses, specializes to a Markov transition; thus these two
semantics are equivalent. The map f— {p) f can be thought of as a generalized
predicate transformer, mapping a measurable function f backward into a
measurable function {p) f. For measurable set A4 (or rather, its characteristic
function), the value of {p)> A on input s intuitively gives the probability that p,
started in state s, halts in a state satisfying 4. Again f— {p) fis the unique linear,
continuous map F — F extending p, and any such map, restricted to characteristic
functions of measurable sets, specializes to a Markov transition. Thus ali three
semantics are equivalent. The latter two are related by the equation

WP, )= <p>f)

which says intuitively that the probability that the output condition f'is satisfied by
the output measure u{p) is the same as the probability that the precondition
{p> [ is satisfied by the input measure u. The proof of this equation is essentially
Fubini’s theorem.

The equivalence of these semantics is a consequence of the functional duality
between F and B, ie., F~ B* and B~ F*, where B*(F*) denotes the space of linear,
continuous maps B - R(F— R) (see [S]). The topology on B and F is also the
appropriate topology for discussing the convergence of effects of approximants of a
while-loop to the effects of the while-loop. With respect to this topology, the step
functions are dense in F and the discrete measures are dense in B. This fact gives an
easy proof of Theorem 6.1 of [K].
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3. SYNTAX AND SEMANTICS OF PPDL

Terms of PPDL are of two types: programs and measurable functions. P, Q,...,
denote primitive program symbols and p,¢,.., denote program terms. F,G,...,
denote primitive measurable function symbols and f, g,., denote measurabie
function terms. There is a distinguished primitive function symbol 1. A4, B,..., denote
Boolean combinations of primitive function symbols, using the operators v, A, ™
to be defined below. These will be called propositions. Rational numbers are
denoted a, b, ¢, d,....

Compound program terms are formed inductively, by means of the operations

(1) ap+bq, provided0<aq, b (positive linear combination)

(2) p;q(orpq) (composition)
3) B (test)
4) p* (iteration).

Compound function terms are formed inductively, by means of the operations
(5) af+bg (linear combination)
(6) Bf (pointwise multiplication)
(7Y <p>f (eventuality).

In addition, we have the following defined operations:

AvB=A+B—AB

f=1-f
0=1
skip =1?
fail = 0?

if B then p else g= B + —1BYg
while B do p=(Bp)*; 7 B?
Lplf=—<p>f

A program will be called well-structured if it is formed from primitive programs
and tests using composition, if-then-else, and while-do.

A formula is an inequality /< g.

The semantics of the full version of PPDL requires extending the results of the
previous section to unbounded and infinite functions, but we will restrict our atten-
tion below to functions involving only well-structured programs, which are always
bounded.

A model M = (S, 2, M) consists of a set S of states, a g-algebra 2. of measurable
sets on S, and an interpretation M of the primitive programs P and functions F. P¥
is a positive, total Markov transition on S x X, i.e., one such that for any s and A4,
p(s, A)=0and p(s, S)=1. FM is a 0, 1-valued measurable function, i.e., the charac-
teristic function of a measurable set. 1* is always the constant function is- 1. In
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practice, the set of states might be the set of valuations of program variables, a
primitive program might be a deterministic assignment such as x := x+y or ran-
dom assignment x:= rnd, and a primitive measurable function might be the
characteristic function of a test such as x <y.

The interpretation M extends to compound program and function terms induc-
tively:
(1) (ap+bq)" =ap" +bg"
2) (Y =25, C {59 (1, C) p¥(s, di)
(3) B =15, C-C(s) B¥(s)
4) (p*)™ =320 (p")™, where p®=skip, p"*" = pp"
(5) (af+bg)" =af ™ +bg" s
(6) (Bf)™ = BMf™ (pointwise multiplication)

(M) Kp>NHY =LY ™,

where in (7), {(p™) is the predicate transformer corresponding to the Markov
transition p™ (see Sect.2).

A formula f<g is true in a model M if /™ <g" pointwise.

In the sequel, we often drop the superscript M and use the symbols p and f to
stand for both a term and its interpretation.

4. BASIC PROPERTIES

Below is a list of some valid properties. Some of these require the implicit proviso
that the arguments are everywhere defined, in order to rule out trivial counterexam-
ples involving nonconvergent * expressions:

(1) <ap+bg)f=alp>f+biq>f (linearity)

(2) <pilaf+bg)=alp)f+b{p>g  (linearity)

(3) 0</-»0<<(p>f (positivity of {p)
4) f<g-><{pf<ipre (monotonicity of {p)
(5) Kpa>f=<p><a>f

(6) <(B?)f=Bf

(1) [plf=0p10+<p>f

(8) OSf> < p*>f=f+<pp*>f

(9) O/ (p*>f=r+<p*p>f

(10 O0<f+<{prg<g—-<{p*>f<g (induction rule)
(11) <1 {p)f<1,for well-structured p

(12) 0<B=BB<I1.
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A special case of the induction rule is the while rule
T1Bf+ B(p) g<g— while Bdop) f<g
for f=0.

5. EXPRESSIVENESS

Let p be well-structured. The measurable function {p) 1 on input state s gives
the probability that p halts, and [p]0=1— {p) | the probability that it does not
halt. The formula 1< {p) 1 says that p is probabilistically total, i.e., halts on all
inputs with probability 1. The measurable function [p] 4 on input state s gives the
probability that p does not halt in 14. Axiom (7) of Section 4 says that this is
equal to the probability that p does not halt at all ([ p] 0) plus the probability that
it halts in 4 ({p)> A). From this it follows that the probabilistic counterpart of the
Hoare partial correctness assertion

{4} p{B}
is the formula

A<[p]B

which says that if A(s)=1, then
(Lp10)(s)+(Kp> B)(s)=1,

or in other words, if s satisfies 4 then with probability 1 either p does not halt or
halts in B.

In any model, the partial sums of p* are nondecreasing, since all programs are
positive, but p* may not converge to a finite value for all inputs. However, it can be
shown that if p is well structured, then it is everywhere defined and takes values in
[0,1]. Moreover, any function term containing only well-structured programs
represents a bounded function. For these reasons, it is tempting to take if-then-else
and while-do as primitive, and throw * away. However, it would be a mistake to do
so, because * can be used in practice to define certain useful programs and
functions. For example, to calculate the expected running time of a program, one
would modify the program to count each step in an integer variable ¢, then com-
pute the expected value of ¢ on output. This is usually done by integrating the
unbounded function

i ny(c=n)

n=0
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with respect to the output measure, where y(c = n) is the characteristic function of
the set of all states in which the value of ¢ is n. This function can be expressed

{c:i=c—=1%c212>1

in PPDL:

oo

(ei=c—1*%c212)1= ) (ci=c—mc=212) 1

Other moments can also be expressed; the nth moment is given by an expression of
*-depth n. The expected running time of p on input distribution u is the value of the
integral

(upr, {ci=c—1*c217)1)=(u, {p;c:=c—1*c=17)1).

If in addition u is computable by a simple probabilistic program ¢ from any start
state (e.g., a random graph on n nodes is computed by the program

fori, je {1,..,n}do X(E(ij):= 0+ E(i, j) := 1)),
then the expected running time is the value of the constant function
{g;p;ci=c—1%¢217> 1.

An example of a proof involving this device is given in Section 7.

6. DECISION PROCEDURE AND SMALL MODEL PROPERTY

In this section we give a polynomial space decision procedure for formulas f<g
involving well-structured programs. Halpern and Reif [HR] give a similar com-
plexity bound for well-structured, deterministic PDL.

Let PP and FF be fixed finite sets of primitive program and function symbols.
First we build a skeleton T of a tree model of bounded out-degree, and show that
every model is equivalent with respect to formulas over PP and FF to an instan-
tiation of this skeleton.

An atom is a product of elements of FF or their negations, such that each Fe FF
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appears exactly once, either as F or °F. Atoms are denoted R, S,... For any
proposition B over FF and distinct atoms R, S, either R < B or R< B, RS=0,
and 2R =1 in all models. Let the set of states of T consist of all programs of the
form

Ro?P R, 7P, R,?-- P, R, ",

where R; is an atom and P,e PP. T can be viewed as a forest with roots R? and
edges (s, sPR?). The state sPR? is call a P-successor of 5. If 5= - - R?is a state of T,
define R(s)=R.

An instantiation of this skeleton is a model whose states are the nodes of T, such
that for primitive function Fe FF and state s, F(s)=1iff R(s) < F, and for primitive
programs Pe PP, P(s, t)=0 unless ¢ is a P-successor of s.

The following lemma was proved independently by Feldman [F].

LEMMA 1. For any model M and state s of M, there exists an instantiation N of T
and a root r of N such that f*(s)=f™(r) for any f over FF and PP.

Proof. Each state u of T is also a program, and (Cu) 1)M(s) is the probability
that the program u halts in M, starting in state s. Define N as follows: for Pe PP,
let

CuPR?) 1M(s)

PN(u, uPR?) =W,

or 0 if the denominator is 0. Let 1, be the unit point mass on s in M, ie., the
measure with weight 1 on the point s and 0 elsewhere; 1, is defined formally by

1(A)=1 ifse A,
=0 otherwise.

Let 14,, be the unit point mass on R,? in N, where R,? is the unique atom such that
R}Y(s)=1. Let ¢ be a state of T. We show by induction on the length of ¢ as a
program that 1,,{¢)> is a point mass on ¢ with weight ({z> 1)™(s). Certainly,

e Ro?) = ({Ro?) 1)"(s) =1.
For any program P and atom S,
RS EPST) = (12 1)){ PS?,

and by induction hypothesis, 1r2{!) is a point mass on ¢ with weight (<> DM(s);
then (14,,<t>){PS?) is a point mass on tPS?, since the test S? annihilates mass on
other P-successors of ¢, and (i rp<t>){PS?) has weight

(1> )M(s) PM(1, tPS?) = ({tPS?> DM(s).
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Now, for any atom S, since
(1r2 €125 S)= (1ge, 2> S),
(1,15, 8§) =1, 1> S),

and
() 8=l if R(1)=S,

=0 otherwise,

we have that
(1r<1>s S)=(ls<t>{S)- (1)

It follows by induction on the structure of any f over PP and FF that

(1212, f) = (1,22, /).
The basis is given by (1). If f is of the form ag + bh, the result follows from the
linearity of the integral (, ). If fis of the form Bg then
(121>, Bg) = (122<1; B?), g)
=(1gp<12,8) if R()<B,
=0 otherwise,

and similarly for (1,{t), Bg). If fis of the form {p) g, then there are five cases,
depending on the form of p. For Pe PP,

(1,65, <P g)= (1, 1P}, g)
=Y (1, (tPS?), g),
S

where the sum is over all atoms S, and similarly for (1z,<{t>, (P g). The result
follows from the induction hypothesis. For p=aq+ br, we rewrite (p)g as
alqy g+ b{r>g and use the linearity of (,). For p=gr, we rewrite {gr) g as
{g>{r) g and use the induction hypothesis with respect to g. For p = B? we rewrite
{B?> g = Bg; this case was handled above. Finally, for p = ¢*, we rewrite {(¢*)> g=
> 0<q"> g and use the linearity and continuity of the integral to get

({15 <@*> )= 3 (gt <a"> 8)
n=0

o0

=Y (1,1, 49" g)

n=0

=(1,{t>, {q*> g).
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In particular,

FY(ReN) = (12 (R, f) = (1A R?>, /) =1"(5). B

By Lemma 1, to check of f— g > 0 is satisfiable, we need only look among instan-
tiations of 7.

A term is in normal form if it is a sum of terms of the form {p,>{p,> -
{p,>(al). Any term over well-structured programs can be put into normal form
with at most quadratic increase in size. We will assume for simplicity that the input
is of this form, although this is not essential to the algorithm. The Fischer—Ladner
closure FL of a term is defined as in PDL [FL].

We now describe a procedure for labeling nodes s of T with I'(s), 4(s), and ¢(s),
where I'(s) and A4(s) are sums of at most n elements of FL (repetitions allowed),
n=|f—g|, and c¢(s) is a rational number. The labeling proceeds inductively down
the tree. Each root r is labeled I'(r)=f—g. Now suppose node s has been labeled
I'(s) in normal form. Reduce 7I'(s) via the rules

(1) <psg>f-><pXXa>f
(2) (ifBthenpelseq) f—>{p>f ifR(s)<B,
—={g>f if R(s)< B
(3) (while Bdop)f—f if R(s)< B,
> (p>{while Bdop>f ifR(s)<B
(4) (B f-f ifR(s)<B,
-0 ifR(s)< 1B

Whenever (3) is applied with R(s) < B, mark the occurrence of the while loop to
indicate that it has been expanded. If ever (3) is about to be applied to a marked
term, then the term can be set to 0. This is because under R(s), if

{p>{while Bdop) f— --- - (while Bdop) f,

then the while loop will execute forever without changing the value of R(s). This
can be proved formally using the axioms of Section 4.

Thus I(s) can be reduced to a sum of terms of the form (P} f and al in FL,
where P is a primitive program and a is rational. Denote this reduced form of I'(s)
by 4(s). Note that I'(s) and A(s) are equivalent under R(s), and that the number of
terms of A4(s) is at most the number in I'(s), since no rule increases the number of
terms in the sum.

For each primitive program P, collect all terms of A(s) of the form (P} fto get
(PYfi+ -+ +{P>fi, and rewrite this as (P)(fi+ --- +f;). For each P-suc-
cessor t of s, label I'(t)=f, + ---+f,, and erase all marks from rule (3). Collect all
constant terms al in A(s) and add them to get c1, and let ¢(s)=c. If no constant
terms exist, let ¢(s)=0.
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This process is continued in a regular fashion all the way down the tree. Each
A(s) is a sum of at most »n elements of FL, and s, t with A(s) = 4(¢) have isomorphic
subtrees below them, therefore there are 2°'") isomorphism classes of labeled sub-
trees of T.

By a slight abuse of notation we may write 4*(s) for the value of 4(s) at s in
some instantiation M of T. 4™(s) depends on the values of 4*(¢) for immediate
sucessors ¢ of s, as follows. Let M(s, t) denote the probability assigned to the edge
(s, 1), i.e., M(s, t)= PM(s, t), where P is the unique primitive program such that ¢ is
a P-successor of s.

LEMMA 2. AM(s)=c(s)+ X . M(s, 1) AM(1).
Define

sup 4(s)=sup{4™(s)| M an instantiation of T'}.
By Lemma 1,
sup{(f—g)"(s)| M a model, se M}

= max {sup 4*(r)| M an instantiation of T, r a root of T'}.

We have not claimed that this supremum is actually achieved, but this follows from
the next lemma. Define an instantiation of 7 to be regular if the subtrees below any
pair of states s, ¢ with A(s) = A4(¢) are isomorphic with respect to edge probabilities.
Define a model to be deterministic if all edge probabilities are either 1 or 0.

LEMMA 3. For all s in T, sup A(s) is attained in a regular, deterministic instan-
tiation of T.

Proof. The proof is by induction on n(4(s)), the number of terms in the sum
A(s). If n(4(s)) =0, or if A(s) consists only of constant terms, then 4(s)= c(s); in
this case any arbitrary regular, deterministic assignment of probabilities below s
suffices, since it cannot affect the value of A(s).

Assume that n(4(s)) =1 and the lemma holds for n(4(r)) <n(4(s)). If 4(s) con-
tains terms (P> fand {Q) g with P# Q, or if A(s) contains a constant term al,
then n(4(1)) < n(4(s)) for every descendant ¢ of 5. Replace the subtree below ¢ with
a regular deterministic model maximizing 4(z), by adjusting the probabilities on the
edges below 1. Do this in a uniform fashion so that the model is regular for nodes ¢
with n(4(t)) <n(4(s)). For any assignment M to the edges out of s,

AM(s)y=c(s)+ >, M(s, t)sup A(t),
(s.1)
by Lemma 2. For each P such that some {P) f appears in 4(s), pick a P-successor
¢ of s such that sup A(¢) is maximal over all P-successors, and assign 1 to (s, ¢) and
0 to all other P-successors. If no (P f occurs in A(s), assign probabilities to P-suc-
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cessors arbitrarily (but deterministically), as above. Again by Lemma 2, with this
probability assignment M, 4*(s) =sup 4(s), and the model is of the desired form.

The only remaining case is A(s) of the form (P} f,+ --- + (P} f, for some P.
Let 4,,.., 4,, be the set of all labels with n(4,) <n(4(s)). For each 4,, choose a
regular deterministic model maximizing 4,, and replace the subtree below any ¢
with A(t) = 4, with that model. Let the edges in those subtrees be fixed, and con-
sider a probability assignment M to the other edges of 7. It follows from Lemma 2
that

AM(s)= ) M(s— 1)sup 4(1),

telU

where U is the set of states ¢ such that n(4(t)) <n(4(s)) and there is a path s - ¢
through only states u with n(4(u)) =n(4(s)), and M(s— t) is the product of the
probabilities on edges along that path. This equation holds because there are no
constant terms in A(s) or any 4(u) along the path to contribute to 4*(s). Then

AM(s)=Y Y M(s—t)supd,
! A(’:ijd,

=) e;sup 4,

i=1

where

e;= Yy M(s—u).
telU
a4(t)y=4;
But 3, ¢,< 1, because for each node along the path s — ¢ there is a unique P such
that all successors of that node are P-successors. Therefore

Y e;sup 4,<sup 4,

i=1

where sup 4,=max, sup 4,. Thus sup 4(s) is attained at s by picking a descendant
te U with A(t)= 4, and setting all edge probabilities on the path s — ¢ to 1, and all
other unfixed edges below s to 0. Moreover, such a path can be chosen with no
repeated labels, by the regularity of the labeling. If no such ¢ exists, an arbitrary
regular, deterministic labeling below s suffices. This gives an instantiation below s of
the desired form. |J

Since the model is regular, it can be collapsed into an equivalent finite model
with 290 states. This gives

TueoreM ! (Finite model property). A formula f<g involving only well-struc-
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tured programs is true in all models iff it it true in all deterministic regular models
with at most 2°077 8D states.

THEOREM 2. There is a polynomial-space algorithm to decide the validity of for-
mulas f< g involving only well-structured programs.

Proof. The procedure builds a deterministic, regular instantiation M of T non-
deterministically. It first guesses a root r and labels it I'(r) = f— g. At each node s, it
constructs A(s) from I'(s), remembers c(s), and for each P such that (P) f appears
in A(s), guesses a P-successor, then repeats the process on all guessed successors. It
also keeps a depth count, halting if the depth goes below a point such that some
A(s) must have been repeated. If there is a repetition, say A(s,) = 4(s,) and s, and
s, lie on the same path, then ¢(¢) =0 at every node ¢ on the path between s, and s, .
There are never more than n(I(r)) nodes being considered at any time, since the
labeling rules never increase n(/(s)), nor are there ever more than n(I°(r)) nonzero
¢(s) that have to be remembered. After the depth count runs out, the sum of the
numbers ¢(s) is computed, and the machine accepts iff this number is positive. By
Lemma 3, f— g >0 is satisfiable iff it is satisfied in a model obtained in this way.
The algorithm can be made deterministic by Savitch’s theorem. |

7. PROBABILISTIC PROGRAM ANALYSIS IN PPDL

In this section we illustrate how to use the formalism in probabilistic program
analysis. The example is quite modest, but serves to illustrate the importance of
linearity and the use of the device {c:= c—1%;¢=1?)> 1 in calculating expected
running times. Of course, in real program verification, PPDL must be fleshed out
with a language for the domain of computation, and properties of the domain of
computation must be used in the proof. However, much of the domain-independent
portion of the reasoning can be done in pure PPDL. -

Consider the following simple random walk: starting at a distance n>0 steps
from the goal, we flip a fair coin every minute, and depending on the outcome, we
either take one step closer or stay where we are. What is the expected time to reach
~ the goal? Expressed as a while program, the random walk is

X:i= n;
¢:=0; /*initialize step counter */
while x #0 do

begin
s(skip+x 1= x—1);
c:i=c+1

end

and we are interested in the expected final value of ¢. (Note the two different uses of
the symbol +: the first is to be interpreted in the linear space of Markov transitions
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and the second in the natural numbers.) In terms of the primitive PPDL operators,
this program is

p=x:=nc:=0;(x#0%3skip+x:=x—1);c:=c+1)*;x=0?
and to get the expected final value of ¢, we wish to calculate the value of the con-
stant function
{p;ci=c—1%¢c217) 1 (2)
Let

g=(x#0%i(skip+x:=x—1);c:=c+1)*

and observe by rule (9) and linearity, for any g,
{x:=n;q;x=07>g
={(x:=nmq;x#0%skip+x:=x—1);ci=c+1;x=07>g (3)
+{x:=n;skip;x=07> g
and
{x:= n;skip; x=0?) g=0,
using the assignment axiom <{x := n)(x = n) of Dynamic Logic and the assumption
n# 0. By linearity and simple facts about the integers,
(x#0iskip+x:=x—1)ci=c+1;x=07) g
=1(x#£07skip;c:=c+1;x=07)>¢g
+ix#£0hxi=x—1;ci=c+1;x=0?) g
=0+i{x=1%¢c:=c+1)g
therefore (3) is equal to

WUxi=mgx=1%c:=c+1)g

Using the * rules and facts about the integers, one can prove that for any 4,
{x:=nq;x=17)h
={x:=n(x#£0%iskip+x:=x—1);ci=c+1)*;x=17)h
={(x:=n;(Mskip+x:=x—1)c:=c+1)*;x=12)h
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which says that our original forrﬁula (1) is equivalent to
3¢ei=0;x:=n; (Yskip+x:= x—1);c:1= c+1)*;
x=1%c:=c+lci=c—1%c217) 1.

Using the definition p*=3"* . p", and linearity and continuity to take the sum-
mation out front, this is equivalent to

1Y ¥ Kei=0;x:=n; (Askip+x:= x—1);¢:= c+ 1)
i
x=1%c:=c+lici=c—1;c212)1

and by commutativity of statements involving disjoint sets of variables, this
becomes

Y (xi=n;(Askip+x:= x—1));x=1%¢:= 0;
P
ci=c+15ci=c+lic:=c—V;c212>1
=Y Y2 U x = n;(skip+x:=x—1);x=1?7)
iy

{c:i=i+1—jez12D1

=YY Y 2*““)(;() (n=k+1%j<i?) 1

i j k=0

=Zi:§2-(i+l)<ni1> ity t
:Z(i+1)2‘“*”< ‘ )1

n—1

using the facts
er=i+l—fez1?51=(i<i?) 1,

(skip+x:=x—1)'= i (;) (x:=x—1)F

(xi=mxi=x—15x=1")1=<{(n=k+1?) 1.

The final value of the expression is

& . (i—1
Z:OIZ (n—l)l’
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which reduces to 2n by elementary combinatorics [L, p. 32]. In general, one would
first translate a while program into PPDL, then apply elementary valid program
transformations until all programs are removed. The resulting expression can be
evaluated using elementary combinatorics as in the example above, or estimated
using Stirling’s formula.
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