New

Dexter Kozen
Department of Computer Science
Cornell University
Ithaca, New York 14853-7501, USA

Email: kozen®@cs.cornell.edu

March 17, 2012

Abstract
We propose a theoretical device for modeling the creation of new in-
discernible semantic objects during program execution. The method fits
well with the semantics of imperative, functional, and object-oriented lan-
guages and promotes equational reasoning about higher-order state.

1 Introduction

There are many situations in computing in which we want to create something
new. Often we do not really care exactly what is created, as long as it has the
right properties. For example, when allocating a new heap cell, we do not
care exactly what its address in memory is, but only that we can store and
retrieve data there. For that purpose, any heap cell is as good as any other. In
object-oriented programming, when we create a new object of a class, we only
care that it has the right fields and methods and is different from every other
object of that class previously created. In the A-calculus, when we a-convert to
rename a bound variable, we do not care what the new variable is as long as it
is fresh.

As common as it is, the intuitive act of creating a new object out of nothing
does not fit well with set-theoretic foundations. Such situations are commonly
modeled as an allocation of one of a previously existing collection of equivalent
candidates. One often sees statements such as, “Let Var be a countable set of
variables...,” or, “Let £ be a countable set of heap cells...” The set is assumed
to exist in advance of its use and is assumed to be large enough that fresh
elements can always be obtained when needed. Standard references on the
semantics of objects also tend to treat object creation as allocation [1, 17, 19].

The difficulty here is that the candidates for allocation should be theoreti-
cally indiscernible, whereas real implementations must somehow make a de-

terministic choice. But to choose requires some way of distinguishing the cho-
sen from the unchosen, thus the candidates cannot be indiscernible after all.
Moreover, cardinality constraints often interfere with closure conditions on the
language. For example, we only need a countable set of variables to represent
an infinitary A-term, but if all available variables already occur in the term,
there would be none left over in case we needed a fresh one for a-conversion.
One could permute the variables to free one up, but that is awkward.

The issue is related to the philosophical problem of the identity of indis-
cernibles. Leibniz proposed that objects that have all the same properties must
in fact be the same object. Although the subject of much debate in the philo-
sophical literature [6, 7, 10], it is certainly desirable in programming language
semantics, especially object-oriented programming, to allow the existence of
distinct but indiscernible semantic objects. But it can also be the source of
much confusion, as is well known to anyone who has ever tried to explain
to introductory Java students why one should never compare strings with ==.

The issue also arises in systems involving terms with variable binders, such
as quantificational logic and the A-calculus. We would like to treat bound
variables as indiscernible for the purposes of a-conversion and safe (capture-
avoiding) substitution. Several devices for the generation of fresh variables
have been proposed, both practical and theoretical, the earliest possibly being
the gensym facility of LISP. Popular variable-avoiding alternative representa-
tions of A-terms include de Bruijn indices and Stoy diagrams [4]. The NuPrl
system [2, 5] has a facility for generating nonces, or objects for which nothing
can be tested except identity. A particularly appealing approach for reason-
ing about syntactic terms with binders is nominal logic [8, 9, 20, 21]. Notions
of equivalence under a-conversion and freeness are handled quite elegantly in
this framework. Structures are assumed to be invariant with respect to permu-
tations on the candidates.

In this paper we propose a device for creating new indiscernible objects in a
semantic domain. Simply put, a semantic object is created by allocating a name
for it. The object itself is defined to be the congruence class of all its names. A
system such as nominal logic can be used to handle the generation of names in
the syntactic domain.

The idea can be illustrated with a very simple example. Consider a domain
of semantic objects D = {a,b,c,...}. Let ¢ be a first-order formula with free
variables, say x = y Ay # z. According to the usual Tarskian definition of
truth, we could interpret ¢ relative to a valuation ¢ : Var — D, provided
{x,y,z} C dom 0, and the judgment ¢ = ¢ would have a well-defined truth
value. For example, if 0(x) = o(y) = c and ¢(z) = a, then ¢ would satisfy ¢,
along with many other other valuations over D.

However, suppose we did not specify the actual values of x,y, z, but only
which variables represent the same values. Thus instead of ¢ : Var — D, we
would have a set of equations « C Var x Var specifying aliasing relationships
between the variables. For the ¢ above, « would consist of the single equation

x = y. The free algebra generated by {x,y,z} modulo the congruence induced
by x = y has two elements, namely the two congruence classes {x,y} and {z}.
Under the canonical interpretation

x = {xy} y = {xy} 2= {z},

the formula ¢ is satistied. The presentation « of the free algebra contains
enough information to determine the truth of the formula; there is no need
to represent the actual values.

The relation « is called an aliasing relation. It generates a congruence, that
is, the smallest relation on terms that contains « and is reflexive, symmetric,
transitive, and a congruence with respect to any operations defined on the ele-
ments. To represent the creation of a new object, we simply update « in a way
that ensures that there is no aliasing between the variable instantiated with the
new object and others of the same type currently represented in the state. We
do not have to worry about how to select a new semantic object from a pre-
viously defined set or whether there are enough of them available; in essence,
that responsibility is completely borne by the allocation of syntactic names.
The advantage of this approach is that objects in the semantic domain can be
generated ex nihilo and are truly indiscernible. An added benefit is that we can
reason equationally about the program state using a.

In this paper we develop this basic idea into an operational semantics for a
higher-order programming language with functional, imperative, and object-
oriented features. We give a set of operational rules that describe how the
state, as represented by ¢ and «, should be updated as each atomic action is
performed. The semantics is an extension of capsules [12, 13, 14]. We show
how objects, nonces, references, arrays, and records fit into this framework. As
an illustration, we show how to model safe substitution in the A-calculus with
nonces as variables and show that a#-conversion is an idempotent operation.

2 Background

2.1 Capsules
Capsules [12, 13, 14] are a precursor to the system introduced here. Capsule

semantics does not rely on heaps, stacks, or any other form of explicit memory,
but only on names and bindings.

2.1.1 Syntax

A capsule is a pair (e,), where e is a A-term or constant and ¢ is a partial
function from variables to irreducible A-terms or constants such that

(i) FV(e) € dom o, and

(ii) if x € dom o, then FV(c(x)) € dom o,

where FV(e) is the set of free variables of e. Thus the free variables of a cap-
sule are not really free; every variable in (e, o) either occurs in the scope of a
A or is bound by ¢ to a constant or irreducible expression, which represents its
value. A capsule represents a closed A-coterm (infinitary A-term). The closure
conditions (i) and (ii) preclude catastrophic failure due to access of unbound
variables. There may be circularities, which enables a representation of recur-
sive functions.

Capsules may be a-converted. Abstraction operators Ax and the occur-
rences of x bound to them may be renamed as usual. Variables in dom ¢ may
also be renamed along with all free occurrences. Capsules that are equivalent
in this sense represent the same value.

Values are also preserved by garbage collection. A monomorphism of capsules
h:(d, o) — (e, T) is an injective map h : dom ¢ — dom 7 such that

e 7(h(x)) = h(c(x)) for all x € dom o, and
° h(d) =e,

where hi(e) = e[x/h(x)] (safe substitution). The set of monomorphic preimages
of a given capsule contains an initial object that is unique up to a permutation
of variables. This is the garbage-collected version of the capsule.

2.1.2 Semantics

Capsule evaluation semantics looks very much like the original evaluation se-
mantics of LISP, with the added twist that a fresh variable is substituted for the
parameter in function applications. The relevant small-step rule is

((Ax.e) v, o) = (e[x/yl, ely/v]),

where y is fresh. In the original evaluation semantics of LISP, the right-hand
sideis (e, o[x/v]), which gives dynamic scoping. This simple change faithfully
models B-reduction with safe substitution in the A-calculus, providing static
scoping without closures [12, 13]. It also handles local variable declaration in
recursive functions correctly.

Another evaluation rule of particular note is the assignment rule:
(x:=v,0) = (O, o[x/7])

where v is irreducible. The closure condition (i) of §2.1.1 ensures that x is al-
ready bound in ¢, and the assignment rebinds x to v. Assignment is also used
to create recursive functions via backpatching, also known as Landin’s knot,
without the use of fixpoint combinators.

See [12, 13, 14] for further details and examples.

2.2 Nominal Logic

Nominal logic [8, 9, 20, 21] can be used to handle the allocation of fresh pro-
gram variables. We review the basic definitions of nominal logic here.

Let N be a countably infinite set of names and let Sy be the group of per-
mutations on N. A group action of Sy on a set U is a group homomorphism
T : Sy — Sy. Given a group action 7, we say that u € U is supportedby S € N
if 7(g) fixes u whenever g € Sy fixes S pointwise. An element of U is finitely
supported if it is supported by some finite subset of N.

A nominal set is a set U equipped with a group action 7 : Sy — Sy; such
that all elements of U are finitely supported.

The set of subsets of N supporting U is closed under superset and inter-
section. Thus if u has finite support, then it has a least finite support, denoted
suppu. If x € N — supp u, one says that x is fresh for u and write x#u.

The canonical example of a nominal set is the set A of finite A-terms over
A-variables N. Let T : Sy — Sp take g : N — N to the action 7(g) : A — A
that substitutes g(x) for x all occurrences of all variables x in a term to g(x).
The support of a term is the set of variables occurring in the term.

3 Syntax

In this section we define the syntax of our language. We use the same notation
for rebinding and substitution. Given a function ¢, we write ¢[x/v] for the
function such that ¢[x/v](y) = o(y) for y # x and o[x/v](x) = v. Given an
expression e, we write e[x/d| for the expression e with d substituted for all free
occurrences of x, renaming bound variables as necessary to avoid capture.

3.1 Types

Our type system distinguishes between constructive types and creative types.
Constructive objects are constructed from other objects (and perhaps them-
selves, in the case of coinductive types) using constructors. They are repre-
sented directly in the state, bound by an environment ¢ to a variable of the
same type. Creative objects, on the other hand, do not exist in advance and
are not built from constructors, but are created on the fly during program ex-
ecution using new. They can be used to model objects (in the sense of object-
oriented programming), references, arrays, records, and nonces. Creative ob-
jects have a weaker ontological status than constructive objects in that they
have no direct representation in the state, but only indirect representation in
the form of an aliasing relation «.

The collection of all types is denoted Type. Let Var = {x,y,z,...} be an
unlimited supply of variables. A type environment is a partial function I' : Var —

Type with finite domain dom T

3.1.1 Constructive Types

Constructive types are built from type constructors. We have the function space
constructor —, products and coproducts, and coinductive types defined with
finite systems of fixpoint equations.

Products and coproducts are of the form
[r= J] Tk Yr= Y T(x
x€dom I' x€dom I’

where I' is a type environment. The corresponding projections and injections
have type

7t 1T — T(x) :T(x) = LT

for x € dom I'. The unit type 1 is the empty product, and the type of booleans
is2=1+1.

Our product and coproduct types are not dependent types, as Var is not a
type. All function, product, and coproduct types are constructive.

3.1.2 Creative Types

In addition to constructive types, we have creative types C(IIT), where T' :
Var — Type is a type environment. The type C(IIT) represents a class of
objects having fields named x for x € dom I' in the sense of object-oriented
programming. Values of type C(IIT) are creative objects. The field x has type
I'(x), which can be either constructive or creative.

3.1.3 Coinductive Types

Coinductive types are defined by finite systems of fixpoint equations. For ex-
ample, the natural numbers IN are the type N = 1 4+ IN. Integer lists and
streams are defined by

intlist = 1 + (IN X intlist)
where N and intlist are type variables. Formally, intlist = }_ A, where
A(nil) =1 A(cons) =[IT I'(hd) =N ['(tl) = intlist
Then
YA=1+]IT i : 1= XA leons : 11T — LA
[IT = N x intlist Thg : [IT = N ty « TIT — intlist

Both constructive and creative types may appear in a coinductive type def-
inition.

3.2 Expressions

Expressions d, e, ... are defined inductively. Variables are expressions, as are
typed projections 71, and injections . The unit object () is the null tuple of
type 1, and booleans 0 = 315 () and 1 = i4rye (O are of type 2.

Compound expressions are formed with the following constructs, subject
to typing constraints.

® A-abstraction Ax.e

e application (de)

e assignment x:=eordx:=e
e tupling (ex | x € domT)
e case analysis [ex | x € dom I']
e projection e.x

e object creation new I'(e)

e identity test d=e

We also have defined expressions

e composition d;e (Ax.e)d
e conditional if bthendelsee [Ax.d, Ax.elb
e while loop while b do e letrecw = Ax.if b

thene; w O else QO inw O

local definition let x=dine (Ax.e)d

e recursive definition letrec x =dine letx= Lin(x:=d);e

It is not necessary to worry about the capture of free occurrences of x in the
composition, conditional, and while loop because the type of x is 1 in all cases.

The L in the definition of letrec is a special constant of the appropriate
type designated for this purpose. This technique is known as Landin’s knot.
The constant L is treated specially in the small-step operational semantics (see
§4.1) in that a variable bound to it is considered irreducible, effectively allowing
Landin’s knot to create self-referential objects.

The let rec construct is used to create recursive functions and values of coin-
ductive types. It specifies a value that is the unique solution of the given equa-
tion in a final coalgebra. For recursive functions, this is a A-coterm (infinitary
A-term), as in capsules (see §2.1). For coinductive datatypes, it is a realization

of the type as defined in [16]. In both cases, the infinite object is regular and has
a finite representation. For example, the type of integer lists and streams was
defined in §3.1.3. An element of this type is the infinite stream of alternating Os
and 1s, which can be defined by

letrec X = tcons (0, tcons (1, X)) ine

The mutually recursive definition
letrec xy =djand ... and x,, = d, ine

can be coded using the single-variable form of let rec with products and projec-
tions or with nested let recs.

The case analysis construct [ey | x € dom I'] corresponds to a case or match
statement of functional languages. It is used to extract the elements of a co-
product based on their types. For example, the map function that maps a given
function f : N — IN over a given integer list would be defined by let rec to
satisfy the equation

map = A(f : N = IN). [ini1, AX.leons (f (7Thg X), map f (71y x))]

This would be written more conventionally as

map (f : IN — IN) (¢ : intlist) : intlist =
case { of
\ lnil() — lnil()
‘ lcons X — lcons(f(n'hd x)/ map f (ntl x))

3.21 Typing Rules

Let A : Var — Type be a type environment. We write A - ¢ : « if the type a
can be derived for the expression e by the typing rules of Fig. 1. The constructs
letrec x =d in eand let x = d in e are typed as (Ax.e)d.

If A F e : a for some a, we say that e is A-well-typed, or just well-typed if A
is understood. Unless otherwise mentioned, we will assume that the use of an
expression in the text implies that it is well-typed.

3.2.2 Assignable Expressions

An assignable expression is a A-well-typed expression of the form xp.x7.....%x,,
n > 0, where x; € Var. It follows from the typing rules that each nonull
proper prefix is creative; that is, there are I'; for 0 < i < n such that A = T,
Ti(x;) = C€(IIT;4q) for0 <i<n—1,and x, € dom I';,. An assignable expres-
sion may appear on the left-hand side of an assignment operator := and is con-
sidered irreducible when appearing in that position (although non-irreducible

At c:type(c), c€ Const AFx:A(x), x €dom A

AFx:a AlFe:p AFd:a—=p Ale:na
AFAxe:a— B At (de): B

Abx:a Abe:a Abdx:a Abe:n
AFx:=e:1 AFdx:=e:1

AFDL:2 AFd:a AbFe:n AFb:2 Abe:1l
At ifbthendelsee: a A+ whilebdoe: 1

AFd:1 Abe:a Ad:e(IIT) Ake:e(IIT)

Ab-d;e:a AFd=e:2
AtFe:C(IIT) ThHx:pB Are:IIT
AlFex:p At new I(e): C(IIT)
Atey:T(x), xedomT Atey:T(x) — B, x edomT

AF (ex|x€domD) : [IT At [ex|xedomTI]: X T — B

Figure 1: Typing Rules

expressions may appear on the left-hand side of an assignment). The set of
A-well-typed assignable expressions is denoted AExp,, or just AExp if A is un-
derstood. This set can be infinite in general due to coinductive types, but it is
a regular set considered as a set of strings over Var. Assignable expressions are
denoted u, v, w,....

Assignable expressions can be either constructive or creative. The set of
A-well-typed creative (respectively, constructive) assignable expressions is de-
noted CExp, (respectively, NExp,), or just CExp (respectively, NExp) if A is un-
derstood. Like AExp, these sets can be infinite in general.

3.3 Aliasing Relations

Let &« C CExp x CExp be a set of pairs of creative assignable expressions such
that if (u,0) € a, then A+ u : C([IT) iff A+ v : €(IIT). The set a is called
an aliasing relation. It represents a set of well-typed equations between creative
assignable expressions.

The congruence generated by « is the smallest binary relation on AExp, con-
taining « and closed under the rules of Fig. 2. There is some redundancy among

(u,v) €« Aru:p abFu=vo atu=v atov=w
aFu=v aFu=u aFv=u aFu=w

Atu:CIIT) AFwv:C(IIT) xe€domT abu=vo
abFux=o0vx

Figure 2: Congruence Rules

the premises of the last rule (congruence), as one can show inductively that if
« - u = v, then u and v have the same type. Note that # and v can be con-
structive, even though the elements of « are all creative. The congruence class
of v € AExp is denoted [v],.

We can form the free algebra AExpy/a = {[uly | u € AExpp}. Itis an
algebra in the sense that the projections .x, regarded as unary operations, are
well-defined on congruence classes; that is, if [ul, = [v], then by congru-
ence, [u.x]y, = [v.x]y whenever u.x is well-typed, so it makes sense to define
[uly.x = [u.x1y. Intuitively, if A - u = v, then u and v are aliases for the same
object, so the values of the fields u.x and v.x should also be the same.

As mentioned, the set AExp can be infinite in general, but the computational
rules will maintain the invariant that AExp/« is finite. One can regard AExp/«

as a finite graph with nodes [u], and labeled edges [ul, — [u.x],.

We denote by CExp,/a and NExp, /a the sets of creative and constructive
elements of AExp, /&, respectively; that is, the sets

CEXpA/DC = {[u]lx | uec CEXPA}
NExpp /e = {[uly | u € NExpp} = AExpp/a — CExpp /o

3.4 Equational Reasoning

The congruence generated by « extends inductively to effect-free constructors
with the obvious syntactic congruence rule for each constructor. For example,
for products and injections,

atdey=ey, xedomT abd=e
ab (dy|xedomT) = (ex | x € domT) abied=1e

The only nonobvious rule is A-abstraction, in which we must treat the bound
variable specially.

a b dlx/z] = e[x/z], z fresh
a b Axd=Axe ’

10

There is no sound congruence rule for assignment := or new, as these con-
structs have side effects.

These rules, along with a-conversion, renaming by a permutation, garbage
collection (§3.6), and reduction will enable equational reasoning on program
states.

3.5 Program States
A program state is represented by a quadruple (e, A, o, zx}, where:

e A:Var — Typeis a type environment
o o C CExpp x CExpp is a A-well-typed equational presentation
e 0 : NExpy/a — NExpy is a A-well-typed valuation

e ¢is a A-well-typed expression

such that if A - u : § and B is constructive, then [ul, € dom ¢. The domain
of o is officially NExp, /&, but we will often abuse notation and write o(u) for

o([uly).

The first component ¢ is the expression to be evaluated. The typing of ex-
pressions is determined by A. The components ¢ and a comprise an environ-
ment that determines the interpretation of free variables. The condition on the
domain of ¢ takes the place of condition (ii) of §2.1.1 for capsules, and condition
(i) is implied by the fact that e is well-typed.

The set of states is a nominal set over the set of names Var (§2.2).

3.6 Garbage Collection

Our notions of a-conversion and garbage collection are based on capsules (see
§2.1.1) with appropriate modifications to account for the aliasing relation «.
As with capsules, values are preserved. These are important aspects of our
language, as they allow equational reasoning.

Any variable declared in A may be a-converted. If a fresh variable is needed
for a-conversion, its type is first declared in A. Renaming variables in some
type environment I' used in the declaration of a product or sum does not con-
stitute a-conversion and does not result in an equivalent state.

As with capsules, garbage collection is defined in terms of monomorphisms.
A monomorphism

h:le, A o, &) — (e, N, 0, d)

is an injective map : dom A — dom A’ such that

11

(i) his type-preserving, thatis, A(x) = A'(h(x));

(i) modulo « and &/, 1 is an algebra monomorphism AExp, /& — AExpps /a;
(i) o' ([h(x)lw) = h(o([x1y)) for all [x], € dom o; and
(iv) ¢ = h(e),

where h(e) = e[x/h(x)]. Like capsules, every state has an initial monomorphic
preimage, which is its garbage-collected version and which is unique up to a
permutation of variables and variation in the presentation a of AExp, /a.

However, unlike capsules, we cannot collect garbage simply by removing
variables inaccessible from e, because some of them may be needed in the equa-
tional presentation & of AExp,/a. Removing the equations containing them
could cause property (ii) to be violated; & would be a homomorphism but not
a monomorphism. To ensure (ii), we show that AExp, /« has a canonical pre-
sentation in which « is minimal and the pairs are of a certain form.

Lemma 3.1 Given an aliasing relation & on AExpy, there is a set of variables X, an
extension A" of A with domain X U dom A, and an aliasing relation «’ on AExpy
with the following properties:

(i) AExpp/a and AExpys /o’ are isomorphic;
(i) all pairs in o are of the form (x,z) or (x.y,z), where x,z € X;

(iii) every congruence class in CExpy/ /o’ contains exactly one variable of X.

Moreover, A’ and o' can be computed from A and « in almost linear time (O(n a(n)),
where w(n) is the inverse of Ackermann’s function).

Proof. Let A be the set of subterms of terms appearing in . Form the con-
gruence closure @ of & on A. The congruence closure is the smallest relation on
A that contains & and is closed under the rules of Fig. 2 applied only to terms
in A. Itis shown in [15] that for s, t € A, a F s = fiff (s, t) € @; that is, one need
not go outside of A to prove congruence between two terms in A.

It is known how to form the congruence closure for a signature involving
only unary functions in almost linear time [3, 11, 18]. By “forming the con-
gruence closure,” we do not mean computing the relation @ itself—that would
take too long to write down—but rather forming the congruence classes and
pointers from elements of A to their respective congruence classes so that we
can subsequently determine whether (s,t) € @ (thatis, a - s = t) fors, t € A
in constant time.

Let X be a set of variables such that each creative a-congruence class con-
tains exactly one element of X. If [1], does not contain a variable, we can add
a fresh variable x and the equation (x, 1) to &, although this step is not strictly

12

necessary, as our operational semantics maintains the invariant that every cre-
ative congruence class contains a variable. Let A’ be A extended as necessary
with the appropriate typings for x € X.

Now let
o =2 ({(x,z) | x€X, z€ Var} U{(xy,z2) | x,z € X}).
The set ' has the following properties:

e For each u € A, there is exactly one x € X such that o Fx=u.

e For each x € X and y € dom I, where A’(x) = C(IIT), there is exactly
one z € X such that (x.y,z) € «'.

It follows that « and a’ generate the same congruence closure &, thus AExp, /
and AExp,/ /o’ are isomorphic. O

Now we can collect garbage by forming the reduced presentation as de-
scribed in Lemma 3.1 and removing inaccessible variables from A, ¢, and «,
where a variable is accessible if it is in the smallest set of variables containing
the variables of e and closed under the following operations:

e If x is accessible, (x,z) € a or (x.y,z) € a, and z € X, then z is accessible;

e if x is accessible and z occurs in o ([x],) or o([x.yly), then z is accessible.

The image of the monomorphism # is the subalgebra of AExp, /« generated by
the accessible variables.

4 Operational Semantics

The operational semantics of the language is defined by the small-step rules
given below. In addition, there are context rules that define a standard shallow
applicative-order evaluation strategy (leftmost innermost, call-by-value) and
left-to-right evaluation of tuples and expressions e.x.

4.0.1 Irreducible States
Irreducible states are those for which no small-step operational rule applies.
Mostly (but not always), irreducible states are defined by their first compo-

nent, the expression to be reduced. The state (e, A, o, «) is irreducible if e is

e a constant,

e a A-abstraction,

13

e a creative assignable expression, i.e. an element of CExp,,

e avariable x such that o(x) = L,

e an expression (vy | x € dom I'), where all vy are irreducible,
e an expression [vy | x € dom I'], where all vy are irreducible.

e an expression . (v), where v is irreducible.

Note that assignable expressions of constructive type are not irreducible.

4.1 Operational Rules
4.1.1 Function Application

Our rule for function application is adapted from the rule for capsules (see
§2.1.2):

((Axe) v, A, o, a) — {e[x/y], Aly/D(x)], o, &),
where y is fresh and

(o, o) = {(U[[y],x/v], «) if A(x) is constructive

(o, a U{(y,v)}) if A(x) is creative.

As with capsules, a fresh variable y is conjured and given the same type as x,
resulting in a new global type environment A[y/A(x)]. If the type is construc-
tive, 0 is updated with the value v, and « is unchanged. If the type is creative,
o is unchanged, but « is updated with the new alias (y, v).

4.1.2 Creation
The following rule creates a new creative object:
(new T'(v), A, 0, a) — (y, Aly/C(I1T)], ¢/, &),

where y is fresh and

o' =aU{(yx, vx) | x € domT, I'(x) creative}

o' = o[ly.xly /vy | x € dom T, T(x) constructive]
The object is represented by a fresh variable y, which is added to the domain
of A with the appropriate creative type. The value v is a tuple supplying the

initial values of the fields. The entities « and ¢ are updated to assign the fields
of the new object their initial values.

14

4.1.3 Assignment to Constructive Expressions

Assignment for constructive types is essentially the same as for capsules. For
u € NExp and v irreducible of the same constructive type,

(u:=0v,AN,0,a) = (O, N o[luly/v], «).

Here A does not need to be updated, because u is already well-typed.

414 Assignment to Creative Variables

Before we can define the semantics of assignments to creative assignable ex-
pressions, we need to lay some groundwork. The issue is that assignment to a
creative expression may change the free algebra presented by « if the expres-
sion to be assigned is involved in the presentation.

First we consider the case of an assighment x := v to a creative variable x €
dom A. Let A’ = A[z/A(x)], where z ¢ dom A. Define ¢ : dom A — AExp,s by

gx)=1z g(u) =u, uedomA—{x}. (1)
Define : dom A’ — AExp, by
h(z) = x h(x) =wv h(u) =u, u € domA’ —{z,x}. (2

Extend / uniquely to a homomorphism / : AExpys — AExp, by inductively
defining h(u.y) = h(u).y fory € dom T, where A’ - u : C(IIT). Likewise,
extend g uniquely to a homomorphism g : AExpy — AExp,s. Define a new set
of axioms on AExpy::

o = {(x,8(v)} U{(g(s),8(t) | (s,1) € a}. 3)

Lemma 4.1 Modulo « and &', the homomorphisms g and h are well defined and are
inverses, thus the quotient algebras AExp /a and AExp,: /&' are isomorphic.

Proof. First we observe that & is a left inverse of g:
h(g(x)) =h(z) =x h(g(u)) =h(u) =u, u € domA — {x}.
Moreover, g is a left inverse of 1 modulo «':
g(h(z)) =g(x) =z g(h(u)) =g(u) =u, ucdomA’—{zx},
and since (x,¢(v)) is an axiom of &’ and g(h(x)) = g(v),
o'+ g(h(x)) = x.

Since & is a left inverse of ¢ on generators dom A of AExp,, and since and g
are homomorphisms, & is a left inverse of g on all elements of AExp,. Similarly,
g is a left inverse of h modulo &’ on all elements of AExp,.

15

Now we claim that
' Fs=t = akh(s)=h(t), 4)

thus & is well-defined modulo « and «’. By general considerations of universal
algebra, it suffices to show that (4) holds for the axioms (s,t) € «’. For the
axiom (x,¢(v)), we wish to show a F h(x) = h(g(v)). This follows immedi-
ately from the facts that h(x) = v and h is a left-inverse of g. For the axioms
(g(s),g(t)) for (s,t) € o, we have a s = t, and since & is a left-inverse of g,

a b= h(g(s)) = h(g(t))-
We have shown that 1 composed with the canonical map AExpy — AExp, /o
is well-defined on a’-congruence classes, therefore reduces to a homomorphism

B : AExppr /o’ — AExpy /. (5)

Likewise, one can show that & - s = t implies a’ - g(s) = g(t) by the same
argument, thus g reduces to a homomorphism

¢’ 1 AExpp /& — AExpp/a. (6)

Finally, since h is a left inverse of ¢ and g is a left inverse of 1 modulo &/, it
follows that ¢’ and &’ are inverses, thus constitute an isomorphism between
AExp, /o and AExpps /o, O

Lemma 4.1 allows us to define the semantics of assignment to a creative
variable:

(x:=0,A,0,&) = (O,Az/Nx)],d,),

where z is fresh, 0/ = c oI/, and &’ and h’ are as defined in (3) and (5), respec-
tively.

4.1.5 Assignment to Creative Fields

Now we treat the case of an assignment u.y := v, where both u and u.y are cre-
ative. As before, we need to ensure that u.y is not involved in the axiomatiza-
tion « of the quotient structure so that the assignment will have no unintended
consequences. However, unlike the previous case, if « - # = v, then assigning
to u.y also assigns the same value to v.y due to the aliasing. Moreover, there is
not necessarily an isomorphism between the two structures.

We first put « into the reduced form of Lemma 3.1. Let X be the set defined
in that lemma. We can find variables x,z, w € Xsuchthata Fu =x,a - v = w,
and (x.y,z) € a. We then define

(wy:=v, AN, 0,a) = (O, 0,)

where &/ = (« — {(x.y,2)}) U {(x.y,w)} and ¢’ is defined to agree with ¢ on
all constructive expressions of the form r or r.s, where r is a variable. By the
form of the reduced presentation, this determines ¢’ completely.

16

4.1.6 Other Small-Step Rules

(1) (x, A, 0, a) = (0([x]a), A, 0, «), 0([x]y) # L, x constructive
(i) (x.y, A, o, a) = (0([xyla), A, 0, &), x.y constructive
(i) (fe A 0, a) — (f(c), A, 0, a)

V) (u=v,A,0,a) > (0,A 0,a),a Fu=0o

(
(
(
(iv) (u=v,A,0,a) > (1,A 0,a),abu=vo
(
(vi) (rty((oy | x €domT)), A, o, &) — (vy, A, 0, &)
(

(vii) ([gx|x € domT1(yv), A, 7, &) = ((gyv), A, 7, &)

Defined rules are

(viii) (O ;e A, 0, a) = (e, A, 0, &)
(ix) (if 1 thend elsee, A, o, &) — (d, A, 0, &)
(x) (if0thendelsee, A, o, a) — (e, A, 0, a)
(xi) (while b do e, A, o, a) — (if b then (e; while b do e) else O, A, 0,)

The proviso “o([xly) # L” in (i) effectively makes x irreducible when this
property holds. This is to allow Landin’s knot to form self-referential terms.
Recall that letrec x = d in e abbreviates let x = L in (x :=d); e. The object L
is meant for this purpose only, and is not meant to be visible as the final value of
a computation. In a real implementation one would prevent L from becoming
visible by imposing syntactic guardedness conditions on the form of d, as done
for example in OCaml, or by raising a runtime error if the value of L is ever
required in the evaluation of d.

5 Applications

Nonces

A nonce is a creative object of type €(1). These are objects with no fields.
They can be used as unique identifiers. We illustrate the use of nonces as vari-
ables in §6.

Records

A record with fields of type T is an object of type C(IIT). Note that this
is different from [IT. The difference is that if x; = y; and x, = y», then
(x1,x2) = (y1,Yy2), whereas there can be distinct creative objects x and y with
x1l=yland x2 =y.2.

17

References

A reference is a record with a single field named !. The type of the reference
is 6(IIT), where dom T = {!}, and I'(!) is the type of the datum. For example,
an integer reference, which would be represented by the type int ref in OCaml,
would have I'(!) = Z. The following OCaml expressions would translate to
our language as indicated:

] OCaml \ our language \
letx=ref3in... | letx=newI'(3) in...
Ix x.!
x:=4 x!:=4

Arrays

An integer array of length m is a record with fields {0,1,...,m — 1, length}.
This would have type €(IIT), where dom I’ = {0,1,...,m — 1,length}, T'(i) =
Z for0 <i<m—1,and I'(length) = IN. The following Java expressions would
translate to our language as indicated:

] Java \ our language \
int[] x = new int[3]; | let x = new I'(0,...,0,3) in ...
x.length x.length
x[0] x.0
x[2] = x[3]; x.2:=x.3

Objects

Objects (in the sense of object-oriented programming) present no difficul-
ties. A creative type C(IIT) can be regarded as a class with fields whose types
are specified by I'. If self is a variable of type A(self) = C(IIT), then other
fields x € dom I' of the object can be accessed from within the object as self.x.
To create a new object of the class, we would say

let rec self = new I'(v) in self (7)

The value of this expression is a new object in which the references to self in v
have been backpatched via Landin’s knot to refer to the object just created. If
we like, we can even have self € dom I' with T'(self) = C(IIT'). The component
of v corresponding to self should be self. In order to have I'(self) = C(IIT), the
type must be coinductive.

Note that the use of Landin’s knot is essential here. The traditional ap-
proach involving fixpoint combinators does not work, as fixpoint combinators
do not interact correctly with new. Fixpoint combinators unwind a recursive
definition syntactically, which would spawn a separate call to new with each
recursive access.

18

Here is an example to demonstrate (7). Let dom I' = {self, f,n} with
['(self) = ¢(IIT) I'(f)=N—=0 I'(n) =NN.

Let us evaluate (7) with v = (self, Ay.(self.n := y), 3). Substituting the defini-
tions of let rec and let, we have

let rec self = new I'(self, Ay.(self.n :=y), 3) in self
= let self = L in (self := new I'(self, Ay.(self.n :=y), 3)); self
= (Aself.(self := new T (self, Ay.(self.n :=y), 3)); self) L.

Evaluating this expression in a state with A, ¢, and & would result in the state
((x:=new I'(x, Ay.(x.n:=y),3)); x, A, 0, a)

where x is fresh, A’ = A[x/C(IIT)], and &’ = a U {(x, L)}. One more step of
the evaluation would yield

{((x:=0);x, A", o, a")
where v is fresh and
A" =N[v/C(IT)] ¢ =cfv.f/Ay.(xn:=y)][o.n/3] &' =a" U {(vself,x)}.

Now performing the assignment leaves the expression x and changes the alias-
ing relation to (" — {(x,1)}) U {(x,v)}. Applying Lemma 3.1 with x € X
and collecting garbage, we are left with the final state

(x, Alx/C(IIT)], o[x.f/Ay.(x.n :=y)][x.n/3], a« U {(x.self, x)}).

To accommodate nominal classes in the sense of [19, §19.3], one could aug-
ment the new construct to allow new C(e), where C = C(I]T) is a class decla-
ration, although we have not done so here.

6 Substitution and a-Conversion

In this section we demonstrate how syntactic equivalence of computational
states gives rise to indiscernability in the semantic domain. We show how to
model A-terms semantically as elements of a coinductive datatype in which
variables are nonces. In the semantic domain, a-conversion is an idempotent
operation; that is, a-converting twice is the same as a-converting once. Equa-
tional reasoning using the aliasing relation a plays a large role in our argu-
ments.

A A-term is either a A-variable, an application, or an abstraction. An appli-
cation is a pair of A-terms, an abstraction consists of a A-variable (the param-
eter) and a A-term (the body), and A-variables are nonces. We can thus model

19

A-terms with the coinductive type

ATerm = AVar 4+ AApp + AAbs A-coterms

AApp = ATerm x ATerm applications
AAbs = AVar X ATerm abstractions
AVar = (1) A-variables

The type also contains A-coterms (infinitary A-terms), although they do not
figure in our development.

The free variables of a A-term are defined inductively by
FV(y) ={y} FV(titz) =FV(t1) UFV(t2) FV(Ay.to) = FV(to) — {y}

They can be computed (for well-founded terms) by the following recursive
program:

let rec isFreeln (x : AVar) (t: ATerm) : 2 =
case t of
|y —y=x
| 1 (t1,t2) — isFreelnx £ V isFreeln x t;
| 12 (y,t0) — y # x AisFreeln x fo

Likewise, safe (capture-avoiding) substitution is defined as a fixpoint of a sys-
tem of equations. The result of substituting e for x in t is denoted t[x/e] and is
defined inductively by

e ify=x
ylx/el = {y ify #x
(ht2)[x/e] = (h[x/e] ta[x/e])
Ay.to ify =x
(Ay.to)[x/e] = < Ay.(to[x/e]) ify #xandy & FV(e)

Az.(toly/z][x/e]) otherwise, wherez & {x} U FV(ty) U FV(e)

In the last rule, to satisfy the proviso z ¢ {x} U FV(tp) U FV(e), it suffices to
take z fresh. This leads to the following recursive program:

let rec subst (£ : ATerm) (x : AVar) (e : ATerm) : ATerm =
case t of
| 1oy — if y = x then e else t
| 17 (t1,t2) — 17 (substty xe, substty xe)
| 12 (y, to) — if y = x then ¢
else if = (isFreelnye) then 1y (y, substtyxe)
else let z = new AVar in 1, (z, subst (substtoy (19z)) x €)

20

If e is a variable w, this simplifies to

sl = {1 0=
(b b2) [x/w] = (t1[x/w]) (2[x/w])
Ay.to ify=x
(Ay.to)[x/w] = < Ay.(to[x/w]) ify#xandy # w
Az.(toly/z][x/w]) ifw =y # x, wherez & {x,w} UFV(ty).

let rec subst’ (t : ATerm) (x : AVar) (w : AVar) : ATerm =
case t of
| 1oy — if y = x then yw else t
| 11 (t1,t2) — 17 (subst’ t; x w, subst’ t, x w)
| 1 (y,t9) — if y = x then ¢
else if y # w then 1 (y, subst’ ty x w)
else let z = new AVar in 1 (z, subst’ (subst’ tyyz) x w)

Lemma 6.1 Modulo x-equivalence and garbage collection, the following big-step rules
are sound:

akEx=y
(subst/ (tpy) xv, A, 0, &) — (190, A, 0, &) ®
altfx =
Fx=y ©)

(subst’ (tpy) xv, A, 0, &) — {10y, A, 0, «)

(subst’egxv, A, 0, &) — (vg, A, 0, &) (subst’ ey xv, A, 0, &) — (v1, A, 0, &)
(subst’ (17 (ep,e1)) xv, A, 0, &) — {11 (vg,01), A, 0, &)

(10)
akFx=y (11)

(subst’ (13 (y, D) xv, A, 0, &) — (12 (y, D), A, 0, a)
atfx=y albfy=v (subst'txv, A o, a) = (u, A, o, a) (12)

(subst’ (1o (y, D) xv, A, 7,) — (12 (y, 1), A, 0, &)

Proof. We start with rule (8). Suppose « - y = x. Let

A = A[t'/ATerm][x’ /AVar][v' / AVar] A" = Ny’ /\Var]
o« =aU{(x,x) (v0)} & =a"U{(yy)} (13)
o =olt' /iyl

where t/,x',v,y are fresh. We will first give the steps of the derivation, then

21

give a brief justification of each step afterwards.

(subst’ (19y) xv, A, 0, &)

— ((Mxw.[Ay.if y = x then pw else 1oy, ...1t) (wy)xv, A, 0,) (14)
— ([\y.if y = ' then 190 else oy, ... 1¢, N, o/, &) (15)
— (if y' = x" then 190 else py/, A", o/, &) (16)
— (o, N, o, &) (17)
= (v, N, o, &) (18)
= (v, A, 0, a). (19)

For (14), we have just replaced subst’ with its definition. This is just an applica-
tion of small-step rule (i) of §4.1.6.

We obtain (15) from (14) by doing three successive function applications
as defined in §4.1.1. The first allocates a fresh constructive variable ' of type
ATerm, substitutes it for ¢ in the body of the function, and binds it to the argu-
ment iy in ¢ to get ¢’. The second and last allocate fresh creative variables x’
and v of type AVar, substitute them for x and w, respectively, in the body of
the function, and equate them to the arguments x and v, respectively, thereby
extending « to a’. The new type environment is A’

We obtain (16) from (15) by rule (vii) of §4.1.6, the small-step rule for the case
statement. After lookup of ', its value 1y is analyzed and the function corre-
sponding to index 0 in the tuple (the one shown) is dispatched. That function
is applied to y, which causes a fresh creative variable i’ of type AVar to be allo-
cated, substituted for y in the body, and equated with the argument y in &’ to
get a”. The new type environment is A”.

For (17), since & - y = x by assumption, we have a’ F i’ = x/, therefore
the conditional test succeeds, resulting in the value 1y v'. Since a” F v = ¢/, (17)
is equivalent to (18). Finally, (19) is obtained by garbage collection, observing
that t/,x’, v/, and i’ are no longer accessible from ¢ v.

The proof of rule (9) is very similar, except that at step (17) we obtain 1y’
instead of 19 v’ because a” I/ y' = x’.The proof of rule (11) is also very similar.

For rule (10), let
A = A[t'/ATerm][x"/AVar][v' /AVar] A" = A'ly'/AApp]
o =aU{(x,x), (v,9")}
o =clt' /i Cege1)] " =y / (e, e1)],
where t/,x/, v/, are fresh. By reasoning similar to the above, we have

(subst’ (11 Cep,e1)) xv, A, 7, &)

= ([..., Ay.iq (subst’ (moy) X' 0/, subst’ (rryy) X' '), ...1¢, AN, o/, o)

— (1 (subst’ (19 y’) X' ¥/, subst’ (1 y') x' 0"y, A", ¢, &)

= (g (subst’ (119y’) x v, subst’ (711 y') xv), A”, ", &').

22

The last equation follows from the fact that ' - x = ¥’ and &/ F v = 0.

Now evaluating 77y i’ gives ey, and by the left-hand premise of (10), subst’ eg x v
reduces to v in context. Similarly, by the right-hand premise, subst’ (7o y’) x v
reduces to v in context. This leaves us with

" / 14
<[1 (v()rvl)/ A , 0, K > = <ll (UO/vl)r A/ ag, 04>/

where the right-hand side is obtained from the left by garbage collection.
Finally, for rule (12), let
A = A[t'/ATerm][x"/AVar][v' /AVar][y' / AAbs]
K= aU (o), (00)) o =l /i 0l D)
where t/,x/, v/, are fresh. As above, we have
(subst’ (1 (y, 1)) x0, A, 0,)
— (1p (o y/, subst’ (1 y') ' o), A, o, &)
— (1 (y, subst’ tx'0'), A, o/, ')
= (15 (y, subst’ t xv), A, 0,) (20)
— (i (y,w), A, 0,). (21)

with (20) from the fact that a’ - x = ¥/, &’ - v = ¢/, and garbage collection,
and (21) from the premise of (12) applied in context. O

Lemma 6.2 Let A+ e: ATermand x,u,v € dom A. Assume that a V/ y = u and
a iy = v fory = x or any y occurring in e. The states

subst’ (subst' exu)uv, A, 0, & subst exv, A, 0, &
bst’ (subst’ A bst’ A

reduce to equivalent states modulo a-equivalence and garbage collection.

Proof. For the case e = 1py and a - y = x, by rule (8) both states reduce to
(0, A, 0, a):

(subst’ (subst’ (1gy) xu)uv, A, o, &) — (subst’' (pu)uv, A, o, &)
— (v, A, 0,)
(subst’ (oY) xv, A, 0, &) — {190, A, 0,).

If a t# y = x, by rule (9) both states reduce to {1y y, A, 0, a):

(subst’ (subst’ (1gy) xu)uv, A, o, &) — (subst’ (1py)uv, A, o, a)
— (loy, A, 0, «)
(subst’ (10y) xv, A, 0, &) — {10y, A, 0,).

23

For the case 11 (eg,e1), we have
(subst'egxu, A, 0, a) — (ef, A, 0, &) (subst’equv, A, 0, &) — (ef, A, 0, &)
(subst’ ey xu, A, o, &) — (¢}, A, o, a) (subst’ejuv, A, o, a) — (¢], A, 0, &),
thus
(subst’ (subst’eg xu) uv, A, 0, &) — (subst' ey uv, A, o0, &) — (ey, A, 0, &)
(subst’ (subst’ ey xu) uv, A, o, &) — (subst'ejuv, A, o, a) — (e, A, 0, a).
By the induction hypothesis,
(subst’egxv, A, 0,) — (e, A, 0, &) (subst' ey xv, A, 0, &) — (ef, A, 0,).
By rule (10),
(subst’ (11 Ceg,e1)) xu, A, o, &) — (11 Cep, €}), A, o, &)
(subst’ (11 Cep, e) uv, A, o, a) — (11 (e, e]), A, o, a),
therefore
(subst’ (subst’ (11 (eg,e1)) xu)uv, A, o, &) — (subst’ (11 (e, e]))uv, A, o, a)
— <ll (66// e’l’)/ A/ ag, 0‘>/
(subst’ (11 Cep, €)) xv, A, 0,) — (11 (efj, €], A, o, a).

For the case 1 (y,1), if &« - y = x, by rule (11) and the fact that & / u = w
for any w occurring in ¢, we have

(subst’ (subst’ (1o (y, 1)) xu)uv, A, o, a) — (subst’ (12 (y,))uv, A, o, a)
— (o (y, 1), A, 0, a)
(subst’ (12 (y,) x0, A, 0, &) = (15 (y, D), A, 0,).

Ifa t/ y=x, wehavea I/ y = u and a I/ y = v by the assumptions of the
lemma, and

(subst'txu, A, o, &) — (t, A, o, &) (subst’'t' uv, A, o, a) = (t', A, 0, &),
thus
(subst’ (subst’ t xu)uv, A, o, &) — (subst’' t' uv, A, o, &) — (t”, A, o, a).
By the induction hypothesis,
(subst’txov, A, o,) — (', A, 0, a).
By rule (12),
(subst’ (12 (y, 1)) xu, A, 0, &) — (1o (y, 1), A, 0, &)

(subst’ (12 (y, t'))uv, A, 0, &) = (12 (W, t"), A, 0, &)
(subst’ (12 (y, 1)) xv, A, 7, a) = {1 (y, "), A, 0, a),

24

therefore
(subst’ (subst’ (1 (y,)) xu)uv, A, o, &) — (subst’ (i, (y,t"))uv, A, 0, &)
— (1 (, "), A, o, a).
O
To a-convert, we would map Ax.e to Az.(e[x/z]), where z ¢ FV(e) — {x}.

We choose z ¢ FV(e) — {x} to avoid the capture of a free occurrences of z in e
as a result of the renaming. Usually we would simply choose a fresh z.

In our language, this would be implemented by a function
alpha : AAbs — AAbs
alpha = At.let z = new AVar in (z, subst’ (711 t) (7o t) z),
or more informally,
alpha (x,e) = let z = new AVar in (z, subst’ e x z).
The following theorem illustrates how syntactic equivalence of computa-
tional states gives rise to indiscernability in the semantic domain. It states that

a-conversion is an idempotent operation; that is, performing it twice gives the
same result as performing it once.

Theorem 6.3 Modulo x-equivalence and garbage collection,
alpha (alpha (x,¢)) = alpha (x,¢).

Proof. In the evaluation of (alpha (x,e), A, o,), let t,u, v be fresh variables
and let

A = A[t/)\Abs] o =olt/(x,e)] o =auU{(u0)}
Suppose
(subst’ exu, Alu/AVar|, o, a) — (¢/, A[u/AVar], o, «).
The evaluation yields the following sequence of states:
(alpha (x,e), A, 0, &)
— (let z = new AVar in (z, subst’ (71 t) (7o t) 2), A, o/, &)
((Az.(z, subst’ (71 t) (7o t) 2)) v, A'[v/AVar], o’,)
((u, subst’ (7t t) (79 t) u), A'[v/AVar][u/AVar], o, ')
((u, subst’ exu), A'[v/AVar]|[u/AVar], ¢/, &)
= ((u, subst’ exu), A[u/AVarl], o, a) (22)
— {((u,e"), Alu/AVar], o, «).

%
%
—

25

Step (22) is by garbage collection. Using this,

(alpha (alpha (x,e)), A, 0, «)
(alpha (u,e'), Alu/AVar], o, &)

— ((v, subst’ ¢’ uv), Alu/AVar|[v/AVar], o, &) (23)
= ((v, subst’ exv), Alu/AVar][v/AVar], o, a) (24)
= ((v, subst’exv), A[v/AVar], o, &) (25)
= ((u, subst’ exu), Alu/AVarl], o, a) (26)

— {((u,e), Alu/AVar], o, «).

Step (23) is by the same argument as (22). Step (24) is by Lemma 6.2. Steps (25)
and (26) are by garbage collection and renaming of a creative variable. a

7 Conclusion

We have shown how to model the creation of new indiscernible semantic ob-
jects during program execution and how to incorporate this device in a higher-
order functional language with imperative and object-oriented features. Mod-
eling indescernables is desirable because it abstracts away from properties that
are only needed to allocate them from a preexisting set.

The explicit aliasing relation « facilitates equational reasoning about the
state of a higher-order computation. However, much more needs to be done to
develop and formalize this equational system.

Acknowledgments

Thanks to Robert Constable, Nate Foster, Jean-Baptiste Jeannin, Konstantinos
Mamouras, Andrew Myers, Dirk Pattinson, Mark Reitblatt, Aaron Stump, and
the members of the PLDG seminar at Cornell for stimulating discussions.

References
[1] Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in
Computer Science. Springer-Verlag, 2002.

[2] Stuart E. Allen. An abstract semantics for atoms in nuprl. Technical Report
TR2006-2032, Cornell University, 2006.

[3] Marco Almeida, Nelma Moreira, and Rogério Reis. Testing equivalence of
regular languages. J. Automata, Languages and Combinatorics, 15(1-2):7-25,
2010.

26

[4] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North
Holland, 1984.

[5] Mark Bickford and Robert Constable. Formal foundations of computer
security. In Orna Grumberg, editor, Formal Logical Methods for System Se-
curity and Correctness, pages 29-52. 10S Press, 2008.

[6] Max Black. The identity of indiscernibles. Mind, 61(242):153-164, 1952.

[7] George Boolos. To be is to be a value of a variable (or to be some values of
some variables). J. Philosophy, 81:430-450, 1984.

[8] Murdoch J. Gabbay and Aad Mathijssen. Nominal universal algebra:
equational logic with names and binding. J. Logic and Computation,
19(6):1455-1508, December 2009.

[9] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing, 13(3-5), July
2002.

[10] Ian Hacking. The identity of indiscernibles. J. Philosophy, 72(9):249-256,
May 1975.

[11] John E. Hopcroft and Richard M. Karp. A linear algorithm for testing
equivalence of finite automata. Technical Report 71-114, University of
California, 1971.

[12] Jean-Baptiste Jeannin. Capsules and closures. In Michael Mislove and Joél
Ouaknine, editors, Proc. 27th Conf. Math. Found. Programming Semantics
(MFPS XXVII), pages 191-213, Pittsburgh, PA, May 2011. Elsevier Elec-
tronic Notes in Theoretical Computer Science.

[13] Jean-Baptiste Jeannin and Dexter Kozen. Computing with capsules. Tech-
nical Report http://hdl.handle.net/1813/22082, Computing and In-
formation Science, Cornell University, January 2011.

[14] Jean-Baptiste Jeannin and Dexter Kozen. Capsules and separation. Techni-
cal Report http://hdl.handle.net/1813/28284, Computing and Infor-
mation Science, Cornell University, January 2012.

[15] Dexter Kozen. Complexity of finitely presented algebras. In Proc. 9th
Symp. Theory of Comput., pages 164-177. ACM, May 1977.

[16] Dexter Kozen. Realization of coinductive types. In Michael Mislove and
Joél Ouaknine, editors, Proc. 27th Conf. Math. Found. Programming Seman-
tics (MFPS XXVII), pages 148-155, Pittsburgh, PA, May 2011. Elsevier
Electronic Notes in Theoretical Computer Science.

[17] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd
edition, 1997.

27

[18] Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and
extensions. Information and Computation, 205:557-580, 2007.

[19] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[20] Andrew M. Pitts and lan Stark. Observable properties of higher order
functions that dynamically create local names, or: What's new? In Mathe-
matical Foundations of Computer Science: Proceedings of the 18th International
Symposium MFCS "93, number 711 in Lecture Notes in Computer Science,
pages 122-141. Springer-Verlag, 1993.

[21] Andrew M. Pitts and Ian Stark. Operational reasoning for functions with
local state. In Andrew Gordon and Andrew Pitts, editors, Higher Order Op-
erational Techniques in Semantics, pages 227-273. Publications of the New-
ton Institute, Cambridge University Press, 1998.

28

