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1 Introduction

NetKAT is a relatively new language and logic for reasoning about packet switch-
ing networks. The system was introduced quite recently by Anderson et al. [1]
and further developed by Foster et al. [10]. The present paper provides an ac-
cessible self-contained introduction to the NetKAT language, some examples of
things one can do with it, and a flavor of ongoing work. All the results described
here have appeared previously [1, 10].

1.1 Software-Defined Networking

Traditional network architecture is fairly low-level, consisting of routers and
switches that do little besides maintaining routing tables and forwarding pack-
ets. The components of the network are typically configured locally, making it
difficult to implement end-to-end routing policies and optimizations that require
a global perspective. This state of affairs is ill-suited to modern data centers and
cloud-based applications that require a higher degree of coordination among
network components to function effectively.

Software-defined networking (SDN) is a relatively new paradigm for network
management. The main idea behind SDN is to permit centralized control of
the network in the form of a controller that communicates with the individual
network components. As the Open Networking Foundations’s 2012 white paper
“Software-Defined Networking: The New Norm for Networks” [11] describes it,

In the SDN architecture, the control and data planes are decoupled,
network intelligence and state are logically centralized, and the under-
lying network infrastructure is abstracted from the applications. As a



result, enterprises and carriers gain unprecedented programmability, au-
tomation, and network control, enabling them to build highly scalable,
flexible networks that readily adapt to changing business needs.

One can think of a centralized controller or set of controllers that have global
knowledge of the topology of the network over which they exercise control and
can interact with individual network components via a standardized communica-
tion interface. The controller can receive traffic flow information and operational
status from the components and can reconfigure them on the fly if necessary to
balance load, reroute traffic to circumvent failures, or implement security poli-
cies.

1.2 NetKAT

NetKAT is a new domain-specific language and logic for specifying and verifying
network packet-processing functions that fits well with the SDN paradigm. It is
part of the Frenetic suite of network management tools [9, 12, 28, 29]. NetKAT
is based on Kleene algebra with tests (KAT), a generic algebraic system for
reasoning about partial correctness that has been studied since the 1990’s [23].
KAT, in turn, is based on Kleene algebra (KA), the algebra of regular expressions
[19]. NetKAT is essentially KAT with primitives for modifying and testing packet
headers and encoding network topologies along with axioms for reasoning about
those constructs.

One might at first be skeptical about the expressive power of regular ex-
pressions in this context, but in fact regular expressions are sufficient to encode
network topology and express many common reachability and security queries,
which can now be verified automatically. In §3 we give some examples of the
types of queries one can express with NetKAT. This expressive power, coupled
with NetKAT’s formal mathematical semantics, complete deductive system, and
decision procedure, make NetKAT a viable tool for SDN programming and ver-
ification.

2 NetKAT Basics

In this section we describe the syntax and semantics of NetKAT. This requires
us to say a few words about Kleene algebra (KA) [19] and Kleene algebra with
tests (KAT) [23] on which NetKAT is based.

2.1 Kleene Algebra (KA)

Kleene algebra is the algebra of regular expressions. Regular expressions are
normally interpreted as regular sets of strings, but there are many other useful
interpretations: binary relation models used in programming language seman-
tics, the (min,+) algebra used in shortest path algorithms, models consisting
of convex sets used in computational geometry. Perhaps surprisingly, a formal
model of packet-switching networks can also be added to this list.



Abstractly, a Kleene algebra is any structure

(K,+, ·,∗ , 0, 1)

where K is a set, + and · are binary operations on K, ∗ is a unary operation on
K, and 0 and 1 are constants, satisfying the following axioms:

p+ (q + r) = (p+ q) + r p(qr) = (pq)r

p+ q = q + p 1 · p = p · 1 = p

p+ 0 = p+ p = p p · 0 = 0 · p = 0

p(q + r) = pq + pr (p+ q)r = pr + qr

1 + pp∗ ≤ p∗ q + px ≤ x ⇒ p∗q ≤ x
1 + p∗p ≤ p∗ q + xp ≤ x ⇒ qp∗ ≤ x

where we define p ≤ q iff p + q = q. The axioms above not involving ∗ are
succinctly stated by saying that the structure is an idempotent semiring under
+, ·, 0, and 1, the term idempotent referring to the axiom p+ p = p. Due to this
axiom, the ordering relation ≤ is a partial order. The axioms for ∗ together say
that p∗q is the ≤-least solution of q + px ≤ x and qp∗ is the ≤-least solution of
q + xp ≤ x.

One of the nice things about KA is that all properties are expressed as
equations and equational implications (Horn formulas), and reasoning is purely
equational. No specialized syntax or rules are needed, only the axioms and rules
of classical equational logic. This is also true of KAT and NetKAT.

2.2 Kleene Algebra with Tests (KAT)

To get KAT from KA, we add Boolean tests. Formally, a KAT is a two-sorted
structure (K,B,+, ·,∗ , , 0, 1), where B ⊆ K and

– (K,+, ·,∗ , 0, 1) is a Kleene algebra
– (B,+, ·, , 0, 1) is a Boolean algebra
– (B,+, ·, 0, 1) is a subalgebra of (K,+, ·, 0, 1).

The elements of B are called tests. Note that the semiring operations +, ·, 0, 1 are
heavily overloaded, but this does not create any conflict. On tests, + and · behave
as Boolean disjunction and conjunction, respectively, and 0 and 1 stand for
falsity and truth, respectively. The overline is the Boolean negation operator,
sometimes written as a prefix operator ¬.

The axioms of Boolean algebra are

a+ bc = (a+ b)(a+ c) ab = ba

a+ 1 = 1 a+ a = 1

aa = 0 aa = a



in addition to the axioms of KA above. KAT can model standard imperative
programming constructs

p ; q = pq

if b then p else q = bp+ bq

while b do p = (bp)∗b

as well as Hoare partial correctness assertions {b} p {c}, which can be written in
any one of three equivalent ways:

bp ≤ pc bp = bpc bpc = 0.

Hoare-style rules become universal Horn sentences in KAT. For example, the
Hoare while-rule

{bc} p {c}
{c}while b do p {bc}

becomes the universal Horn sentence

bcp ≤ pc ⇒ c(bp)∗b ≤ (bp)∗bbc.

For purposes of program verification, KAT expressions are typically inter-
preted in binary relation models. Each expression is interpreted as a binary
relation on the set of program states, the input/output relation of the program.
The tests are interpreted as subidentities, subsets of the identity relation on
states; a test acts as a guard that either passes the state through unaltered or
fails with no output state.

2.3 NetKAT

NetKAT, in its simplest form, is a version of KAT in which the atomic actions
and tests take a particular network-specific form, along with some additional
axioms for reasoning about programs built using those primitives. The atomic
actions are for modifying, duplicating, and forwarding packets, and the atomic
tests are for filtering packets based on values of fields.

Formally, the atomic actions and tests are

– x← n (assignment)
– x = n (test)
– dup (duplication)

We also use pass and drop for 1 and 0, respectively.
We will describe the formal semantics below, but intuitively, a NetKAT ex-

pression is a program that transforms input packets to output packets. The
assignment x ← n assigns the constant value n to the field x in the current



packet. The test x = n tests whether the current value of the field x of the
current packet is n and drops the packet if not. For example, the expression

switch = 6 ; port = 8 ; dest ← 10.0.1.5 ; port ← 5

expresses the command: “For all packets incoming on port 8 of switch 6, set the
destination IP address to 10.0.1.5 and send the packet out on port 5.”

The NetKAT axioms consist of the following equations in addition to the
KAT axioms:

x← n ; y ← m = y ← m ;x← n (x 6= y) (2.1)

x← n ; y = m = y = m ;x← n (x 6= y) (2.2)

x = n ; dup = dup ;x = n (2.3)

x← n ;x = n = x← n (2.4)

x = n ;x← n = x = n (2.5)

x← n ;x← m = x← m (2.6)

x = n ;x = m = 0 (n 6= m) (2.7)

(
∑
n x = n) = 1 (2.8)

These equations have the following intuitive interpretations:

(2.1) Assignments to distinct fields may be done in either order.
(2.2) An assignment to a field does not affect the value of a different field.
(2.3) When a packet is duplicated, the field values are preserved.
(2.4) An assignment of a value to a field causes that field to have that value.
(2.5) An assignment to a field of a value that the field already has is redun-

dant.
(2.6) With two assignments to the same field, the second assignment erases

the effect of the first.
(2.7) A field may have no more than one value.
(2.8) A field must have at least one value.

2.4 Semantics

The standard model of NetKAT is a packet-forwarding model. Operationally, a
NetKAT expression describes a process that maps an input packet to a set of
output packets. However, in order to reason about packet trajectories, we need
to keep track of changes to the packet as it moves through the network. Thus the
standard semantics interprets an expression as a function that maps an input
packet history to a set of output packet histories.

Formally, a packet π is a record with constant values n assigned to fields x.
A packet history is a nonempty sequence of packets

π1 :: π2 :: · · · :: πk.



The head packet is π1, which represents the current values of the fields. The re-
maining packets π2, . . . , πk describe the previous values from youngest to oldest.

Every NetKAT expression e denotes a function:

JeK : H → 2H

where H is the set of all packet histories. The function JeK takes an input packet
history σ ∈ H and produces a set of output packet histories JeK(σ) ⊆ H.

The semantics of expressions is compositional and is defined inductively. For
the primitive actions and tests,

Jx← nK(π :: σ) = {π[n/x] :: σ}

Jx = nK(π :: σ) =

{
{π :: σ} if π(x) = n

∅ if π(x) 6= n

JdupK(π :: σ) = {π :: π :: σ}

where π[n/x] denotes the packet π with the field x rebound to the value n. Thus
the assignment x ← n rebinds the value of x to n in the head packet; the test
x = n simply drops the packet (logically, the entire history) if the test is not
satisfied and passes it through unaltered if it is satisfied, thus behaving as a
packet filter; and dup simply duplicates the head packet. The KAT operations
are interpreted as follows:

Jp+ qK(σ) = JpK(σ) ∪ JqK(σ)

JpqK(σ) =
⋃

τ∈JpK(σ)

JqK(τ)

Jp∗K(σ) =
⋃
n

JpnK(σ)

J1K(σ) = JpassK(σ) = {σ}
J0K(σ) = JdropK(σ) = ∅

J¬bK(σ) =

{
{σ} if JbK(σ) = ∅
∅ if JbK(σ) = {σ}

To compose p and q sequentially, the action p is done first, producing a set
of packet histories JpK(σ), then q is performed on each of the resulting histories
individually and the results accumulated. This is often called Kleisli composition.

The operation + simply accumulates the actions of the two summands. Thus
the expression (port ← 8) + (port ← 9) describes the behavior of a switch
that sends copies of the packet to ports 8 and 9. This is a departure from the
usual Kleene interpretation of + as nondeterministic choice—NetKAT treats
+ as conjunctive in the sense that both operations are performed, rather than
disjunctive, in which one of the two operations would be chosen nondeterminis-
tically. Nevertheless, the axioms of NetKAT are sound and complete over this
interpretation [1].



3 Examples

In this section we show some useful things that can be done with NetKAT. These
examples are all from [1,10], except some minor improvements have been made
in some cases. We will show how various reachability and security properties can
be represented as equations between NetKAT terms, thus can be checked auto-
matically by NetKAT’s bisimulation-based decision procedure [10]. Specifically,
we show how to encode the following queries:

– Reachability: Can host A communicate with host B? Can every host com-
municate with every other host?

– Security: Does all untrusted traffic pass through the intrusion detection sys-
tem located at C?

– Loop detection: Is it possible for a packet to be forwarded around a cycle in
the network?

Several automated tools already exist for answering such questions [16, 17, 27].
Many of these encode the topology and policy as a logical structure, then trans-
late the query into a Boolean formula and hand it to a SAT solver. In contrast,
NetKAT expresses such properties as equations between NetKAT terms, which
can then be decided by the NetKAT decision procedure.

3.1 Encoding Network Topology

The topology of the network can be specified by a directed graph with nodes rep-
resenting hosts and switches and directed edges representing links. In NetKAT,
the topology is expressed as a sum of expressions that encode the behavior of
each link. To model a link, we use an expression

switch = A ; port = n ; switch ← B ; port ← m

where A and n are the switch name and output port number of the source of
the link and B and m are the switch name and input port number of the target
of the link. This expression filters out all packets not located at the source end
of the link, then updates the switch and port fields to the location of the target
of the link, thereby capturing the effect of sending the packet across the link.

3.2 Switch Policies

Each switch may modify and forward packets that it receives on its input ports.
The policy for switch A is specified by a NetKAT term

switch = A ; pA

where pA specifies what to do with packets entering switch A. For example, if a
packet with IP address a entering on port n should have its IP address modified
to b and sent out on ports m and k, this behavior would be expressed by

port = n ; ip = a ; (port ← m+ port ← k) ; ip ← b



and pA is the sum of all such behaviors for A.
Let t be the sum of all link expressions and p the sum of all switch policies.

The product pt describes one step of the network in which each switch processes
its packets, then sends them along links to the next switch. Axioms (2.4) and
(2.7) guarantee that cross terms in the product vanish, thus the expression cor-
rectly captures the linkage. The expression (pt)∗ describes the multistep behavior
of the network in which the single-step behavior is iterated.

3.3 Reachability

To encode the question of whether it is possible for any packet to travel from
an output port of switch A to an input port of switch B given the topology and
the switch policies, we can ask whether the expression

switch = A ; t(pt)∗ ; switch = B (3.1)

is equivalent to 0 (drop). Intuitively, the prefix switch = A filters out histories
whose head packet does not satisfy switch = A, and the postfix switch = B
filters out histories whose head packet does not satisfy switch = B.

However, more can be said. Using the axioms (2.1)–(2.8), it can be shown
that (3.1) is equivalent to a sum of terms of the form

switch = A ;x1 = n1 ; · · · ;xk = nk ;x1 ← m1 ; · · · ;xk ← mk ; switch = B

and each such nonzero term describes initial conditions under which a packet
can travel from A to B. Note that only the initial and final values of the fields
appear; the intermediate values vanish due to axioms (2.4), (2.6), and (2.7). We
can retain the intermediate values using dup if we wish; an example of this is
given below.

3.4 All-Pairs Reachability

We may wish to check whether every host in the network can physically com-
municate with every other host. To test this, we use the switch policies

switch = A ;
∑
n

port = n ;
∑
m

port ← m (3.2)

where the first sum is over all the active input ports n of node A and the second
is over all the active output ports m of A. This expression simply tests whether
the packet is currently located at an input port of A and if so forwards it out
over all active output ports unaltered. This is a little different from the query of
§3.3 in that the switch policies of §3.2, which can modify packets and thus affect
traffic flow, are not taken into account, but only the physical network topology.

Let q be the sum of all policies (3.2) over all A. Then q performs this action
for all A. Let t be the encoding of the topology as described in §3.1. Consider
the equation

(qt)∗ =
∑
A

(switch = A ;
∑
n

port = n) ;
∑
B

(switch ← B ;
∑
m

port ← m)



where n ranges over all active input ports of A and m ranges over all active input
ports of B. The expression qt represents a program that forwards all packets from
the input port of any node along all outgoing links to an input port of a node
that is reachable in one step. The left-hand expression (qt)∗ is the multistep
version of this; it starts at an input port of any node A and forwards to all
input ports of all nodes reachable from A. The right-hand expression represents
a program that, given any packet located a some input port of some node, no
matter where it is located, immediately forwards to all input ports of all possible
nodes. The left-hand side is contained in the right, since intermediate nodes in a
path are elided by axiom (2.6); and if there are A,n,B,m such that input port
m of B is not reachable from input port n of A, then

switch = A ; port = n ; switch ← B ; port ← m

will be contained in the right-hand side but not the left.

3.5 Waypointing

A waypoint W between A to B is a location that all packets must traverse
enroute from A to B. It may be important for security purposes to ensure that
all traffic of a certain type traverse a waypoint; for example, we may wish to
ensure that all traffic from an untrusted external source to a trusted internal
destination traverse a firewall.

We can do this by modifying the switch policy to duplicate the head packet
in the firewall component F . That is, the expression switch = F ; pF in the sum
p is replaced by switch = F ; dup ; pF . This is a way to mark traffic through F .
Now we ask whether

switch = A ; t(pt)∗ ; switch = B

≤ switch = A ; t(pt)∗ ; switch = F ; dup ; pF ; t(pt)∗ ; switch = B

which holds if and only if all output packet histories contain a dup generated by
traversing F (assuming F 6∈ {A,B}).

The solution to this problem presented in [1] inserted a dup in all switch
policies; however, the complexity of the decision procedure of [10] is exponential
in the number of occurrences of dup, so for performance reasons it is desirable
to minimize this quantity. The solution given here has four occurrences.

3.6 Forwarding Loops

A network has a forwarding loop if some packet would endlessly traverse a cycle
in the network. Forwarding loops are a frequent source of error and have caused
outages in both local area networks and on the Internet [15]. They are usually
handled by introducing a TTL (time-to-live) field, a runtime mechanism in which
a counter is decremented at each hop and the packet is dropped when the counter
hits 0.



We can use NetKAT to check for loops by checking whether there is a packet
that visits the same state twice. This is done by checking

α ; pt(pt)∗ ;α = 0

for each valuation α such that

in ; (pt)∗ ;α

does not vanish. Here α represents a valid assignment to all fields and in repre-
sents a set of initial conditions on packets. The set of α that need to be checked
is typically sparse. This algorithm has been used to check for loops in networks
with topologies containing thousands of switches and configurations with thou-
sands of forwarding rules on each switch.

3.7 Other Applications

The papers [1, 10] present a few other important applications: traffic isolation,
access control, and correctness of a compiler that maps a NetKAT expression
to a set of individual flow tables that can be deployed on the switches. It is
interesting that so much can be done with regular expressions.

4 Soundness and Completeness

Let ` denote provability in ordinary equational logic, assuming the NetKAT
axioms (the axioms of KAT plus (2.1)–(2.8)) as premises.

Theorem 1 ([1]). The NetKAT axioms are sound and complete with respect to
the packet-switching semantics of §2.4. That is, ` p = q if and only if JpK = JqK.

The completeness proof is quite interesting. It introduces a language model
for NetKAT that is isomorphic to the packet-switching model of §2.4. The lan-
guage model also plays a role in the decision procedure of [10]. The language
model consists of the regular sets of reduced strings of the form

αp0 dup p1 dup p2 · · · pn−1 dup pn, n ≥ 0, (4.1)

where α is a complete test x1 = n1 ; · · · ;xk = nk, the pi are complete assignments
x1 ← n1 ; · · · ;xk ← nk, and x1, . . . , xk are all of the fields occurring in the
expressions of interest in some arbitrary but fixed order. Every string of atomic
actions and tests is equivalent to a reduced string modulo the NetKAT axioms.
The set of reduced strings is described by the expression At · P · (dup · P )∗,
where At is the set of complete tests and P the set of complete assignments. The
complete tests are the atoms (minimal nonzero elements) of the Boolean algebra
generated by the primitive tests. Complete tests and complete assignments are
in one-to-one correspondence as determined by the sequence of values n1, . . . , nk.



The standard interpretation over this model is the map G that assigns a
regular set of reduced strings to each NetKAT expression:

G(x← n) = {αpα[x← n] | α ∈ At}
G(x = n) = {αpα | α ∈ At, x = n appears in α}
G(dup) = {αpα dup pα | α ∈ At}

G(p+ q) = G(p) ∪G(q)

G(pq) = {xy | ∃β xpβ ∈ G(p), βy ∈ G(q)}

G(p∗) =
⋃
n≥0

G(pn)

where p[x ← n] denotes the complete assignment p with the assignment to
x replaced by x ← n, αp is the complete test corresponding to the complete
assignment p, and pβ is the complete assignment corresponding to the complete
test β.

It follows that for p ∈ P and α ∈ At,

G(p) = {αp | α ∈ At} G(α) = {αpα}.

The NetKAT axioms (2.1)–(2.8) take a simpler form for reduced strings:

α dup = dupα pαp = p αpα = α

αα = α αβ = 0, α 6= β qp = p
∑
α∈At α = 1.

5 NetKAT Coalgebra and a Decision Procedure

Coalgebra is a general framework for modeling and reasoning about state-based
systems [3, 4, 31, 33, 35]. A central aspect of coalgebra is the characterization of
equivalence in terms of bisimulation. The bisimulation-based decision procedure
for NetKAT presented in [10] was inspired by similar decision procedures for
KA and KAT [3, 4, 31]. However, to apply these techniques to NetKAT, it is
necessary to develop the coalgebraic theory to provide the basis of the algorithm
and establish correctness.

5.1 NetKAT Coalgebra

Formally, a NetKAT coalgebra consists of a set of states S along with continu-
ation and observation maps

δαβ : S → S εαβ : S → 2

for α, β ∈ At. A deterministic NetKAT automaton is a NetKAT coalgebra with
a distinguished start state s ∈ S. The inputs to the automaton are the NetKAT



reduced strings (4.1); that is, elements of the set N = At ·P ·(dup ·P )∗ consisting
of strings of the form

αp0 dup p1 dup · · · dup pn

for some n ≥ 0. Intuitively, δαβ attempts to consume αpβ dup from the front
of the input string and move to a new state with a residual input string. This
succeeds if and only if the reduced string is of the form αpβ dup x for some x ∈
(P · dup)∗ ·P , in which case the automaton moves to a new state as determined by
δαβ with residual input string βx. The observation map εαβ determines whether
the reduced string αpβ should be accepted in the current state.

Formally, acceptance is determined by a coinductively defined predicate Accept :
S ×N → 2:

Accept(t, αpβ dup x) = Accept(δαβ(t), βx)

Accept(t, αpβ) = εαβ(t).

A reduced string x ∈ N is accepted by the automaton if Accept(s, x), where s is
the start state.

5.2 The Brzozowski Derivative

The Brzozowski derivative for NetKAT comes in two versions: semantic and
syntactic. The semantic version is defined on subsets of N and gives a coalgebra
(2N , δ, ε) that is a final coalgebra for the NetKAT signature.

δαβ : 2N → 2N εαβ : 2N → 2

δαβ(A) = {βx | αpβ dup x ∈ A} εαβ(A) =

{
1 if αpβ ∈ A,

0 if αpβ 6∈ A.

One can show that this is the final coalgebra for the NetKAT signature by
showing that bisimilarity implies equality.

There is also a syntactic derivative

Dαβ : Exp→ Exp Eαβ : Exp→ 2,

where Exp is the set of reduced NetKAT expressions. The syntactic derivative
also gives a coalgebra (Exp, D,E). The maps D and E are defined inductively:

Dαβ(p) = 0 Dαβ(b) = 0 Dαβ(dup) = α ·

{
1 if α = β,

0 if α 6= β.

Dαβ(e1 + e2) = Dαβ(e1) +Dαβ(e2)

Dαβ(e1e2) = Dαβ(e1) · e2 +
∑
γ
Eαγ(e1) ·Dγβ(e2)

Dαβ(e∗) = Dαβ(e) · e∗ +
∑
γ
Eαγ(e) ·Dγβ(e∗)



Eαβ(p) =

{
1 if p = pβ ,

0 if p 6= pβ
Eαβ(b) =

{
1 if α = β ≤ b,
0 otherwise

Eαβ(dup) = 0 Eαβ(e1 + e2) = Eαβ(e1) + Eαβ(e2)

Eαβ(e1e2) =
∑
γ
Eαγ(e1) · Eγβ(e2)

Eαβ(e∗) =
∑
γ
Eαγ(e) · Eγβ(e∗) +

{
1 if α = β,

0 if α 6= β.

Note that the definitions for ∗ are circular, but both are well defined if we take
the least fixpoint of the resulting system of equations.

The standard language interpretation G : Exp→ 2N is the unique coalgebra
morphism to the final coalgebra.

5.3 Matrix Representation

By currying, one can view the signature of NetKAT coalgebra as

δ : X → XAt×At ε : X → 2At×At

and observe that XAt×At and 2At×At are isomorphic to the families of square
matrices over X and 2, respectively, with rows and columns indexed by At.
Moreover, as the reader may have noticed, many of the operations used to define
the syntactic derivative Dαβ , Eαβ closely resemble matrix operations. Indeed, we
can view δ(t) as an At×At matrix over X and ε(t) as an At×At matrix over 2.
Moreover, if X is a KAT, then the family of At×At matrices over X again forms
a KAT, denoted Mat(At, X), under the standard matrix operations [7]. Thus we
have

δ : X → Mat(At, X) ε : X → Mat(At, 2).

With this observation, the syntactic coalgebra defined in §5.2 takes the following
concise form:

D(p) = 0 D(b) = 0 D(dup) = J D(e1 + e2) = D(e1) +D(e2)

D(e1e2) = D(e1) · I(e2) + E(e1) ·D(e2) D(e∗) = E(e∗) ·D(e) · I(e∗),

where I(e) is the diagonal matrix with e on the main diagonal and 0 elsewhere
and J is the matrix with α on the main diagonal in position αα and 0 elsewhere;
and

E(dup) = 0 E(e1 + e2) = E(e1) + E(e2)

E(e1e2) = E(e1) · E(e2) E(e∗) = E(e)∗.

In this form E becomes a KAT homomorphism from Exp to Mat(At, 2).



Likewise, we can regard the set-theoretic coalgebra presented in §5.2 as hav-
ing matrix type

δ : 2N → Mat(At, 2N ) ε : 2N → Mat(At, 2).

Again, in this form, ε becomes a KAT homomorphism.
This matrix representation is exploited heavily in the implementation of the

decision procedure of [10] described below in §6.

5.4 Kleene’s Theorem for NetKAT

The correctness of the bisimulation algorithm hinges on the relationship between
the coalgebras described in §5.1 and the packet-switching and language models
described in §2.4 and §4, respectively. This result is the generalization to NetKAT
of Kleene’s theorem relating regular expressions and finite automata.

Theorem 2 ([10]). A set of NetKAT reduced strings is the set accepted by
some finite-state NetKAT automaton if and only if it is G(e) for some NetKAT
expression e.

Given a NetKAT expression e, an equivalent finite NetKAT automaton can be
constructed from the derivatives of e modulo associativity, commutativity, and
idempotence (ACI), with e as the start state. The continuation and observation
maps are the syntactic derivative introduced in §5.2. A careful analysis shows
that the number of states is at most |At|·2`, where ` is the number of occurrences
of dup in e.

6 Implementation

The paper [10] describes an implementation of the decision procedure for NetKAT
term equivalence. It converts two NetKAT terms to automata using Brzozowski
derivatives, then tests bisimilarity. The implementation comprises roughly 4500
lines of OCaml and includes a parser, pretty printer, and visualizer. The imple-
mentation has been integrated into the Frenetic SDN controller platform and
has been tested on numerous benchmarks with good results.

The bisimilarity algorithm is fairly standard. Given two NetKAT terms, all
derivatives are calculated, and the E matrices of corresponding pairs are checked
for equality. The procedure fails immediately if they are not. This coinductive
algorithm can be implemented in almost linear time in the combined size of
the automata using the union-find data structure of Hopcroft and Karp [13] to
represent the bisimilarity classes.

6.1 Optimizations

The implementation incorporates a number of important enhancements and op-
timizations to avoid combinatorial blowup. It uses a symbolic representation that



exploits symmetry and sparseness to reduce the size of the state space. Interme-
diate values that do not contribute to the final outcome are aggressively pruned.
To further improve performance, the implementation incorporates a number of
other optimizations: hash-consing and memoization, sparse multiplication, base
compaction, fast computaton of fixpoints. These enhancements are described in
detail in [10].

Although the algorithm is still necessarily exponential in the worst case (the
problem is PSPACE-complete), the tool tends to be fast in practice due to the
constrained nature of real-world problems.

7 Related Work

Software-defined networking (SDN) has emerged in recent years as the dominant
paradigm for network programming. A number of SDN programming languages
and verification tools have appeared [2,5,8,9,12,16–18,26,28–30,34,36–39], and
SDN is being actively deployed in industry [14,20,21].

NetKAT [1, 10] was developed as a part of the Frenetic project [9, 12, 28,
29]. Compared to other tools, NetKAT is unique in its focus on algebraic and
coalgebraic structure of network programs. NetKAT largely inherits its syntax,
semantics, and application methodology from these earlier efforts but adds a
complete deductive system and PSPACE decision procedure.

The algebraic and coalgebraic theories of KA and KAT and related sys-
tems have been studied extensively [6, 22–25, 33, 35]. This work has uncov-
ered strong relationships between the algebraic/logical view of systems and the
combinatorial/automata-theoretic view. These ideas have figured prominently in
the development of NetKAT.

The implementation uses many ideas and optimizations from the coalgebraic
implementations of KA and KAT and other related systems [3,4, 31] to provide
enhanced performance, making automated decision feasible even in the face of
PSPACE completeness.

8 Conclusion

This paper surveys recent work on NetKAT, a relatively new language and logic
for specifying and verifying network packet-processing functions. NetKAT was
introduced in [1] and further developed in [10]. We have attempted to make the
presentation self-contained and accessible, but a more comprehensive treatment
can be found in the original papers.

NetKAT consists of Kleene algebra with tests [23] with specialized primitives
for expressing properties of networks, along with equational axioms for reason-
ing with those constructs. The standard semantics is a packet-switching model
that interprets NetKAT expressions as functions from packet histories to sets of
packet histories. There is also a language model that is isomorphic to the packet-
switching model and a coalgebraic model that is related to the other two models



via a version of Kleene’s theorem. The NetKAT axioms are sound and complete
over these interpretations. The coalgebraic model admits a bisimulation-based
decision procedure that is efficient in many cases of practical interest, although
the general problem is PSPACE-complete. There is a full implementation in
OCaml that is efficient in practice and compares favorably with the state of the
art. Several applications of interest have also been described.
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