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Abstract

We give a new proof of the completeness of the left-handed star rule of Kleene algebra. The
proof is significantly shorter than previous proofs and exposes the rich interaction of algebra and
coalgebra in the theory of Kleene algebra.

1 Introduction

Axiomatizations of the equational theory of the regular sets over a finite alphabet have received
much attention over the years. The topic was introduced in the seminal 1956 paper of Kleene [8],
who left axiomatization as an open problem. Salomaa [18] gave two complete axiomatizations, but
these depended on rules of inference that were sound under the standard interpretation but not
under other natural interpretations. Conway, in his monograph [3], coined the term Kleene algebra
(KA) and contributed substantially to the understanding of the question of axiomatization. An
algebraic solution was presented by Kozen [11, 12], who postulated two equational implications,
similar to the inference rules of Salomaa; but unlike Salomaa’s rules, they are universal Horn
formulas, therefore sound over a variety of nonstandard interpretations. The main goal of this
paper is to show that only one of the two implications is enough to guarantee completeness.

This result, which we shall call left-handed completeness, is a known result. It was claimed without
proof by Conway [3, Theorem 12.5]. The only extant proof, by Boffa [1], relies on a lengthy (137
journal pages!) result of Krob [15], who presented a schematic equational axiomatization repre-
senting infinitely many equations. Krob’s result was also later reworked and generalized in the
framework of iteration theories [5].

Purely equational axiomatizations are undesirable for several reasons. From a practical point of
view, they are inadequate for reasoning in the presence of other equational assumptions, which is
almost always the case in real-life applications. For example, consider the redundant assignment
x := 1 ; x := 1 and let a stand for x := 1. We have aa = a, since the assignment is redundant.
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We would expect this equation to imply a∗ = 1 + a (intuitively, performing the assignment x := 1
any number of times is equivalent to performing it zero or one times), but this is not entailed
by the equational theory plus the extra equation aa = a. To see this, consider the free R-algebra
(Conway’s terminology for an algebra satisfying all the equations of the regular sets) on the finite
monoid {1, a}, where aa = a. This algebra contains six elements: 0, 1, a, 1+ a, a∗, aa∗. The elements
a∗ and 1 + a are distinct, even under the assumption aa = a, which is not at all desirable. This is
an example of a finite algebra that satisfies all the equations of KA but is not a KA itself, because
in a finite KA a star is always equal to a finite sum of powers. This example shows that purely
equational axiomatizations would be inadequate for even the simplest verification tasks involving
iteration in the presence of other equations.

On the other hand, characterizing a∗ as a least fixpoint is a natural and powerful device, and is sat-
isfied in virtually all models that arise in real life. However, there are interesting and useful models
that satisfy only one of the two star rules. These models appear in program analysis and abstract
interpretation [9, 10] and proof theory for partial correctness logic [14]. For such applications, it is
useful to know that only one of the rules is needed for equational completeness.

Even though we present a new proof of a known result, there is added value in the exploration
of the exquisite interplay between algebra and coalgebra in the theory of regular sets, which is
visible throughout the technical development of the paper and notably in the novel definition of
a differential Kleene algebra, which captures abstractly the relationship between the algebraic and
coalgebraic structure of KA. The (syntactic) Brzozowski derivative provides the link from the
algebraic to the coalgebraic view of regular expressions, whereas the canonical embedding of a
given coalgebra into a matrix algebra plays the converse role. This interplay between algebra
and coalgebra, first explored in [7, 16], has opened the door to far-reaching extensions of Kleene’s
theorem and Kleene algebras [19].

Another contribution is a clear characterization of how far one can go in the proof of completeness
with just equations. We show that the equational implication is needed only at two places (Lem-
mas 3.3 and 4.3). Furthermore, we show that the existence of least solutions implies uniqueness of
solutions in the free algebra, which neatly ties our axiomatization with the original axiomatization
of Salomaa.

This paper is a full version of [13] containing detailed proofs of all results. Since the appearance of
this paper, other authors have investigated left-handed Kleene algebra and alternative proofs of
completeness [4, 6].

2 Axiomatization

2.1 Left-Handed Kleene Algebra

A weak Kleene algebra (weak KA) is an idempotent semiring with star satisfying

a∗ = 1 + aa∗ (ab)∗a = a(ba)∗ (a + b)∗ = a∗(ba∗)∗ a∗∗ = a∗ (1)

The second and third equations of (1) are called sliding and denesting, respectively. The axioms
(1) were studied in depth by Conway [3] under the names productstar for the combination of the
first two in the single equation (ab)∗ = 1 + a(ba)∗b, sumstar, and starstar, respectively. Although
incomplete, these equations are sufficient for many arguments involving the star operator.
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Conway studied many other useful families of axioms, including the powerstar rules

a∗ = (an)∗
n−1

∑
i=0

ai, (2)

although we will not need them here.

A left-handed Kleene algebra (LKA) is a weak KA satisfying a certain universal Horn formula, called
the left-handed star rule, which may appear in either of the two equivalent forms

b + ax ≤ x ⇒ a∗b ≤ x ax ≤ x ⇒ a∗x ≤ x, (3)

where≤ is the natural partial order given by a ≤ b⇔ a+ b = b. One consequence is the left-handed
bisimulation rule

ax ≤ xb⇒ a∗x ≤ xb∗.

2.2 Matrices

Let Mat(S, K) be the family of square matrices with rows and columns indexed by a finite set
S with entries in a semiring K. Conway [3] shows that under the appropriately defined matrix
operations, the axioms (1) imply themselves for matrices. This is also true for (3) [12]. It is known
for the powerstar rules (2) too, but only in a weaker form [3].

The characteristic matrix Pf of a function f : S→ S has (Pf )st = 1 if f (s) = t, 0 otherwise. A matrix
is a function matrix if it is Pf for some f ; that is, each row contains exactly one 1 and all other entries
are 0.

Let S1, . . . , Sn ⊆ S be a partition of S. A matrix A ∈ Mat(S, K) is said to be block diagonal with blocks
S1, . . . , Sn if Ast = 0 whenever s and t are in different blocks.

Lemma 2.1. Let A, Pf ∈ Mat(S, K) with Pf the characteristic matrix of a function f : S → S. The
following are equivalent:

(i) A is block diagonal with blocks refining the kernel of f ; that is, if Ast 6= 0, then f (s) = f (t);

(ii) APf = DPf for some diagonal matrix D;

(iii) APf = DPf , where D is the diagonal matrix Dss = ∑ f (s)= f (t) Ast.

Proof. Suppose APf = DPf , where D is diagonal. Then

(DPf )su = ∑
t

Dst(Pf )tu = Dss(Pf )su (APf )su = ∑
t

Ast(Pf )tu = ∑
u= f (t)

Ast,

so if Ast 6= 0 and f (t) = u, then Dss(Pf )su 6= 0, therefore f (s) = u. Thus, (ii) implies (i).

If (i) holds, then Ast = 0 if f (s) 6= f (t), therefore

(APf )su = ∑
u= f (t)

Ast = ∑
u= f (t)= f (s)

Ast =

 ∑
f (s)= f (t)

Ast

 (Pf )su = Dss(Pf )su = (DPf )su,
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Mat(S, TK1) Mat(S, TK2)

Mat(S, K1) Mat(S, K2)

T(Mat(S, K1)) T(Mat(S, K2))

Mat(S, α1)

Mat(S, Th)

Mat(S, h)

Mat(S, α2)

T(Mat(S, h))

τK1 τK2 TK1 TK2

K1 K2

α1

Th

h

α2

Figure 1: Weak KA homomorphisms

where D is the diagonal matrix with Dss = ∑
f (s)= f (t)

Ast. Thus, (i) implies (iii). We can now con-

clude the proof, since (iii) implies (ii) trivially.

For any function h : K1 → K2, let ĥ = Mat(S, h) : Mat(S, K1) → Mat(S, K2) denote the func-
tion on matrices obtained by applying h componentwise; that is, for A ∈ Mat(S, K1), ĥ(A)st =
h(Ast).

Lemma 2.2. If h : K1 → K2 is a weak KA homomorphism, then so is ĥ : Mat(S, K1)→ Mat(S, K2). Thus
the matrix construction Mat(S,−) constitutes an endofunctor on the categories of weak and left-handed
Kleene algebras.

Proof. The KA operations on matrices are defined uniformly in terms of regular expressions on
their components; for example,[

a b
c d

] [
e f
g h

]
=

[
ae + bg a f + bh
ce + dg c f + dh

] [
a b
c d

]∗
=

[
(a + bd∗c)∗ (a + bd∗c)∗bd∗

(d + ca∗b)∗ca∗ (d + ca∗b)∗

]
Composing these definitions, any KA expression over matrices e(A1, . . . , Am), Ai ∈ Mat(S, K), can
be transformed inductively to a matrix E of expressions over K, and the value of e(A1, . . . , Am) in
the matrix algebra is the matrix obtained by evaluating the components of E in K.

Formally, the transformation of an expression over matrices to a matrix of expressions constitutes
a natural transformation τ : T(Mat(S,−)) → Mat(S, T(−)), where T is the term monad for the
signature of KA. Viewing weak KAs as Eilenberg-Moore algebras with evaluation maps α : TK →
K, the evaluation mechanism for matrices can be formally described as

α̂ ◦ τK = Mat(S, α) ◦ τK : T(Mat(S, K))→ Mat(S, K).

The desired conclusion of the lemma is expressed by the commutativity of the outer rectangle in
the left-hand diagram of Fig. 1. In that diagram, the upper rectangle commutes because τ is a
natural transformation, and the lower rectangle commutes because it is the Set functor Mat(S,−)
applied to the right-hand diagram, which commutes since h is a homomorphism.

2.3 Differential Kleene Algebra

A differential Kleene algebra (DKA) K is a weak KA containing a (finite) set Σ ⊆ K, called the actions,
and a subalgebra C, called the observations, such that
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δa(e1 + e2) = δa(e1) + δa(e2) ε(e1 + e2) = ε(e1) + ε(e2)

δa(e1e2) = δa(e1)e2 + ε(e1)δa(e2) ε(e1e2) = ε(e1)ε(e2)

δa(e∗) = ε(e∗)δa(e) e∗ ε(e∗) = ε(e)∗

δa(b) =

{
1 if a = b,
0 if a 6= b,

b ∈ Σ ε(b) = 0, b ∈ Σ

δa(c) = 0, c ∈ C ε(c) = c, c ∈ C

Figure 2: Brzozowski derivatives

(i) ac = ca for all a ∈ Σ and c ∈ C, and

(ii) C and Σ generate K,

and supporting a Brzozowski derivative consisting of a pair of functions ε : K → C and δa : K → K
for a ∈ Σ satisfying the equations in Fig. 2. Thus ε : K → C is a retract (a KA homomorphism
that is the identity on C, which immediately implies 0, 1 ∈ C). The functions δa and ε impart a
coalgebra structure of signature −Σ × C in addition to the Kleene algebra structure.

This definition is a modest generalization of the usual situation in which C = 2 = {0, 1} and the
function ε and δa are the (syntactic) Brzozowski derivatives. We will be primarily interested in
matrix DKAs in which C is the set of square matrices over 2 (see Theorem 2.5 below).

2.4 Examples

One example of a DKA with observations 2 is Brz = (2Σ∗ , δ, ε), where ε(A) = 1 iff A contains the
null string and 0 otherwise, and δa : 2Σ∗ → 2Σ∗ is the classical Brzozowski derivative

δa(A) = {x ∈ Σ∗ | ax ∈ A}.

This is the final coalgebra of the functor−Σ × 2 [16]. It is also an LKA under the usual set-theoretic
operations.

Another example is the free LKA KΣ on generators Σ. It is also a DKA, where δa and ε are defined
inductively on the syntax of regular expressions according to Fig. 2. The maps δa and ε are easily
shown to be well defined modulo the axioms of LKA.

These structures possess both an algebra and a coalgebra structure, and in fact are bialgebras [7].
Our main result essentially shows that the latter is isomorphically embedded in the former.

2.5 Properties of DKAs

Silva [19] calls the following result the fundamental theorem in analogy to a similar result proved
for infinite streams by Rutten [17], closely related to the fundamental theorem of calculus. It is
fundamental in the sense that it connects the differential structure, given by δa and ε, with the
axioms of LKA. We show here that the result holds under weaker assumptions than those assumed
in [19]: in fact, we prove this theorem using only equations.
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Theorem 2.3. Let K be a DKA. For all elements e ∈ K,

e = ∑
a∈Σ

aδa(e) + ε(e). (4)

Proof. We proceed by induction on the generation of e from Σ and C using only equations of weak
KA and properties of derivatives. For e ∈ C, ε(e) = e and δa(e) = 0, thus (4) holds. For e = a ∈ Σ,
the right-hand side of (4) reduces to a, thus (4) holds in this case as well.

For the induction step, the case of + is straightforward. For multiplication,

e1e2 = (∑
a∈Σ

aδa(e1) + ε(e1))e2 = ∑
a∈Σ

aδa(e1)e2 + ε(e1)(∑
a∈Σ

aδa(e2) + ε(e2))

= ∑
a∈Σ

aδa(e1)e2 + ∑
a∈Σ

aε(e1)δa(e2) + ε(e1)ε(e2)

= ∑
a∈Σ

a(δa(e1)e2 + ε(e1)δa(e2)) + ε(e1e2) = ∑
a∈Σ

aδa(e1e2) + ε(e1e2).

For e∗, we use the identity

(x + y)∗ = y∗ + y∗x(x + y)∗, (5)

which follows easily from the axioms of weak KA. Using this identity with x = ∑a∈Σ aδa(e) and
y = ε(e),

e∗ = (∑
a∈Σ

aδa(e) + ε(e))∗ = ε(e)∗ ∑
a∈Σ

aδa(e)e∗ + ε(e)∗ by (5)

= ∑
a∈Σ

aε(e)∗δa(e)e∗ + ε(e)∗ = ∑
a∈Σ

aδa(e∗) + ε(e∗).

2.6 Matrix DKAs

We have already argued that Mat(S, K) is a weak KA if K is and an LKA if K is. In this section we
show that the coalgebraic structure of Fig. 2 can be similarly lifted to matrices (Theorem 2.5).

Let δ̂a = Mat(S, δa) and ε̂ = Mat(S, ε) as described in §2.2. Let ∆(a) ∈ Mat(S, K) be the diagonal
matrix with ∆(a)ss = a.

Lemma 2.4. Let K be a DKA. Then Mat(S, K) satisfies (4); that is,

E = ∑
a∈Σ

∆(a)δ̂a(E) + ε̂(E). (6)

Proof. For indices s, t ∈ S,

Est = ∑
a∈Σ

aδa(Est) + ε(Est) = ∑
a∈Σ

∆(a)ss δ̂a(E)st + ε̂(E)st

= ∑
a∈Σ

∑
u

∆(a)su δ̂a(E)ut + ε̂(E)st = ∑
a∈Σ

(∆(a)δ̂a(E))st + ε̂(E)st

= (∑
a∈Σ

∆(a)δ̂a(E) + ε̂(E))st.

As s, t ∈ S were arbitrary, (6) follows.
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Theorem 2.5. Let K be a DKA with observations C and actions Σ. Then Mat(S, K) is a DKA with
observations Mat(S, C) and actions ∆(a), a ∈ Σ.

Proof. Embed K into Mat(S, K) by a 7→ ∆(a). By (i) for K, ∆(a)A = A∆(a) for A ∈ Mat(S, C),
therefore (i) holds for Mat(S, K), and it is easily shown that Mat(S, K) is generated by Mat(S, C)
and ∆(a) for a ∈ Σ, so (ii) holds as well.

We now verify the Brzozowski properties of Fig. 2. For ε̂, this is immediate from Lemma 2.2. For δ̂a,
all cases are straightforward except multiplication and star. For multiplication, for indices s, t ∈ S,

δ̂a(AB)st = δa((AB)st) = ∑
u

δa(AsuBut) = ∑
u

δa(Asu)But + ∑
u

ε(Asu)δa(But)

= ∑
u

δ̂a(A)suBut + ∑
u

ε̂(A)su δ̂a(B)ut = (δ̂a(A)B + ε̂(A)δ̂a(B))st.

As s, t were arbitrary,

δ̂a(AB) = δ̂a(A)B + ε̂(A)δ̂a(B). (7)

For star, we again use (5), this time with x = ∑a∈Σ ∆(a)δ̂a(E) and y = ε̂(E). By this and Lemma
2.4, we have

E∗ = ε̂(E∗) + ∑
a∈Σ

ε̂(E∗)∆(a)δ̂a(E)E∗.

By linearity of δ̂a,

δ̂a(E∗) = δ̂a(ε̂(E∗)) + ∑
b∈Σ

δ̂a(ε̂(E∗)∆(b)δ̂b(E)E∗)

= δ̂a(ε̂(E∗)) + ∑
b∈Σ

δ̂a(ε̂(E∗))∆(b)δ̂b(E)E∗

+ ∑
b∈Σ

ε̂(E∗)δ̂a(∆(b))δ̂b(E)E∗ + ∑
b∈Σ

ε̂(E∗)ε̂(∆(b))δ̂a(δ̂b(E)E∗) (8)

= ε̂(E∗) ∑
b∈Σ

∆(δa(b))δ̂b(E)E∗ (9)

= ε̂(E∗)δ̂a(E)E∗. (10)

Step (8) follows from two applications of (7). Step (9) follows from the facts δ̂a(ε̂(E∗)) = 0,
ε̂(∆(b)) = 0, and δ̂a(∆(b)) = ∆(δa(b)). Step (10) follows from the fact that ∆(δa(b)) is the identity
matrix if a = b and the zero matrix if a 6= b.

2.7 Systems of Linear Equations

A system of (left-)linear equations over a weak KA K is a coalgebra (S, D, E) of signature −Σ × K,
where Σ ⊆ K, D : S→ SΣ, and E : S→ K. A finite system corresponds to a finite coalgebra, that is
the set of states S is finite. We curry D so as to write Da : S→ S for a ∈ Σ. The map D : Σ→ S→ S
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extends uniquely to a monoid homomorphism D : Σ∗ → S → S, thus we have Dx : S → S for
x ∈ Σ∗. A solution in K is a map ϕ : S→ K such that

ϕ(s) = ∑
a∈Σ

aϕ(Da(s)) + E(s). (11)

Every finite system of linear equations has a solution. To see this, form an associated matrix A ∈
Mat(S, K), where

A = ∑
a∈Σ

∆(a)P(a) ∈ Mat(S, K),

where ∆(a) is the diagonal matrix with diagonal entries a and P(a) is the characteristic matrix of
the function Da. Regarding ϕ and E as column vectors indexed by S, the solution condition (11)
takes the form ϕ = Aϕ+ E. Since Mat(S, K) is a weak KA, the vector A∗E is a solution by the weak
KA axiom a∗ = 1 + aa∗. We call this solution the canonical solution. If in addition K is an LKA, then
the canonical solution is also the least solution.

If K is freely generated by Σ, then the map a 7→ ∆(a)P(a) extends uniquely to a KA homomor-
phism χ : K → Mat(S, K), called the standard embedding. It will follow from our results that χ is
injective.

Lemma 2.6. Suppose (K, δ, ε) is a DKA with observations C and actions Σ and (S, D, E) is a system
of equations with E : S → C. Then ϕ : S → K is a solution iff it is a coalgebra homomorphism ϕ :
(S, D, E)→ (K, δ, ε).

Proof. Suppose (K, δ, ε) is a DKA. If ϕ : S→ K is a solution, then applying δa and ε to both sides of
(11),

δa(ϕ(s)) = ∑
b∈Σ

δa(b)ϕ(Db(s)) + ∑
b∈Σ

ε(b)δa(ϕ(Db(s))) + δa(E(s)) = ϕ(Da(s))

ε(ϕ(s)) = ∑
b∈Σ

ε(b)ε(ϕ(Db(s))) + ε(E(s)) = E(s),

so ϕ is a coalgebra homomorphism. Conversely, if ϕ is a coalgebra homomorphism, then by The-
orem 2.3,

ϕ(s) = ∑
a∈Σ

aδa(ϕ(s)) + ε(ϕ(s)) = ∑
a∈Σ

aϕ(Da(s)) + E(s),

so (11) holds.

2.8 Bisimilarity and Completeness

Let (S, D, E) be a coalgebra of signature −Σ × 2. We say that states s, t ∈ S are bisimilar, and write
s ≈ t, if E(Dx(s)) = E(Dx(t)) for all x ∈ Σ∗. The relation ≈ is the maximal bisimulation on S and
is the kernel of the unique coalgebra morphism LS : S→ Brz, where

LS(s) = {x ∈ Σ∗ | E(Dx(s)) = 1}.
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Soundness and completeness can be expressed in these terms. Let E be a set of equations or
equational implications on regular expressions, and let Con E be the set of consequences of E in
ordinary equational logic. The axioms E are sound if Con E refines bisimilarity; equivalently, if
the Brzozowski derivative is well-defined on the free weak KA modulo E. A sound set of axioms
are complete if Con E and bisimilarity coincide; that is, if the unique coalgebra morphism to the
final coalgebra Brz is injective. We have mentioned above that the LKA axioms are sound; indeed,
soundness has been shown in [12] for a larger set of axioms, namely those of KA. To prove that
they are complete, our task is to show that the unique coalgebra morphism LKΣ : KΣ → Brz is
injective.

This characterization of soundness and completeness was first observed by Jacobs [7] for classical
regular expressions and KA and largely explored in the thesis of Silva [19] for generalized regular
expressions. See [19] for a comprehensive introduction to this characterization.

3 Decompositions

3.1 Simple Strings

Let (S, D, E) be a finite coalgebra of type −Σ × 2. Let KΣ be the free LKA on generators Σ. Extend
D to a monoid homomorphism D : Σ∗ → S → S. The corresponding characteristic matrices P
also extend homomorphically by matrix multiplication, giving a map P : Σ∗ → Mat(S,2). Let
χ : KΣ → Mat(S, KΣ) with χ(a) = ∆(a)P(a) be the standard embedding as defined in § 2.7.

Call x ∈ Σ∗ simple if P(y) 6= P(z) for all distinct suffixes y, z of x. If x is simple, then so are all its
suffixes. Define

M = {x | x is simple}
Mx = {y | |y| > 0 and P(yx) = P(x), but all proper suffixes of yx are simple}.

Let n = |S|. If y ∈ Mx, then 1 + |x| ≤ |yx| ≤ nn, as each function S → S is represented at most
once as P(z) for a proper suffix z of yx.

We now define a family of elements Rx, Ty,x, and Vx of KΣ for x, y ∈ Σ∗.

Rx =

(
∑

y∈Mx

Ty,x

)∗
T1,x = 1 Tay,x = RayxaTy,x, a ∈ Σ (12)

Vx = Tx,1R1 V = ∑
x∈M

Vx. (13)

Intuitively, if x is a simple word labeling a path from s to t, then all words represented by Vx lead
from s to t, and V represents all words in Σ∗. The expressions Rx and Ty,x allow the encoding of
loops.

The definitions of Rx and Ty,x in (12) are by mutual induction, but it is not immediately clear that
the definition is well-founded: note that Rx depends on Ty,x for y ∈ Mx, which depends on Ryx.
To prove well-foundedness, we define a binary relation � on tuples (R, x) and (T, y, x) defined as
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follows. For x, y ∈ Σ∗ and a ∈ Σ, let

(R, x) � (T, y, x), y ∈ Mx (T, ay, x) � (R, ayx) (T, ay, x) � (T, y, x).

The relation � describes the dependencies in the definition (12).

Lemma 3.1. The relation � is well-founded; that is, there are no infinite �-paths.

Proof. Assign numbers to the tuples as follows:

(R, x) 7→

(nn−|x|+2
2 )− 1 if |x| ≤ nn,

0 otherwise,
(T, y, x) 7→

(nn−|x|+1
2 )− 1 + |y| if |x| ≤ nn − 1,

|y| otherwise.

As observed above, if y ∈ Mx, then 1 ≤ |y| ≤ nn− |x|. Using this fact, one can show by elementary
arithmetic that the numbers assigned to the tuples are nonnegative and decrease strictly with
�.

Note that Rx = 1 for |x| ≥ nn, since the sum in the definition of Rx in (12) is vacuous in that case.
It follows inductively that Ty,x = y for |x| ≥ nn.

Lemma 3.2. For all x, y ∈ Σ∗ and a ∈ Σ,

(i) V1 = R1 and Vax = RaxaVx.

(ii) Vyx = Ty,xVx.

Proof. For (i),

V1 = T1,1R1 = R1 Vax = Tax,1R1 = RaxaTx,1R1 = RaxaVx.

For (ii), we proceed by induction on |y|. The basis Vx = T1,xVx is immediate. For the induction
step, using (i),

Vayx = RayxaVyx = RayxaTy,xVx = Tay,xVx.

In the following two lemmas, we will exploit the fact that RzVz = Vz, which can be proven by case
analysis on z using the fact that RzRz = Rz.

Lemma 3.3.
(

∑
a∈Σ

a
)∗

= V.

Proof. For the forward inequality, we use the left-handed star rule (3). Let x ∈ M and a ∈ Σ. By
Lemma 3.2(i),

aVx ≤ RaxaVx = Vax.

If ax ∈ M, then Vax ≤ V. If ax 6∈ M, say x = yz with P(ax) = P(ayz) = P(z), then ay ∈ Mz and
z ∈ M. By Lemma 3.2,

Vax = Vayz = Tay,zVz ≤ RzVz = Vz ≤ V.

10



The fact that RzVz = Vz follows from Lemma 3.2(i), since Vz begins with Rz, and Rz is a star
(definition (12)), so RzRz = Rz. Thus in either case, aVx ≤ V. Since a ∈ Σ and x ∈ M were
arbitrary, (∑a∈Σ a)V ≤ V. Also 1 ≤ V, since 1 ≤ V1 = R1. By (3), (∑a∈Σ a)∗ ≤ V.

The reverse inequality follows from monotonicity.

3.2 Pumping

Every string can be reduced to a simple string by repeatedly removing certain substrings while
preserving the value of the map P. This is the well-known pumping lemma from automata theory.
If y is not simple, find a suffix vw such that P(vw) = P(w) and v 6= ε, and remove v. The resulting
string is shorter and P is preserved. Repeating this step eventually produces a string x ∈ M such
that P(y) = P(x). If we always choose the shortest eligible suffix vw, so that v ∈ Mw—this strategy
is called right-to-left greedy—we obtain a particular element γ(y) ∈ M related to the construction
of Vy.

Lemma 3.4. For all y ∈ Σ∗, Vy ≤ Vγ(y).

Proof. If v ∈ Mw, then, by Lemma 3.2(ii), we have that Vvw = Tv,wVw ≤ Vw, since Tv,w ≤ Rw and
RwVw ≤ Vw. The result follows inductively from the right-to-left construction of γ(y).

3.3 Decompositions

Let (S, D, E) be a finite coalgebra of type −Σ × 2 with standard embedding

χ : KΣ → Mat(S, KΣ) χ(a) = ∆(a)P(a).

Let e ∈ KΣ. A decomposition of e (with respect to χ) is a family of expressions ex ∈ KΣ indexed by
x ∈ M (recall that M is the set of simple strings) such that

(a) e = ∑x ex, and

(b) χ(ex) = ∆(ex)P(x) for all x ∈ M.

It follows that

χ(e) = ∑
x

∆(ex)P(x). (14)

If P, Q are function matrices, we say that the decomposition respects P, Q if in addition

(c) P(x)Q = P for all x such that ex 6= 0.

We say that e is decomposable if it has a decomposition. We will eventually show that all expressions
are decomposable.

Lemma 3.5. Let x 7→ ex be a decomposition of e. The decomposition respects P, Q iff χ(e)Q = ∆(e)P.

Proof. If the decomposition respects P, Q, then

χ(e)Q = ∑
x

∆(ex)P(x)Q = ∑
x

∆(ex)P = ∆(∑
x

ex)P = ∆(e)P.

11



Conversely, if ex 6= 0 and P(x)Q 6= P, then ∆(ex)P(x)Q 6= ∆(ex)P, therefore

χ(e)Q = ∑
x

∆(ex)P(x)Q 6= ∆(e)P.

We have specified the index set M in the definition of decomposition to emphasize that the P(x)
must be generated by the P(a), but in fact any finite index set will do, provided the function
matrices are so generated.

Lemma 3.6. Let eα and Pα be finite indexed collections of elements of KΣ and function matrices, respectively,
such that

e = ∑
α

eα χ(eα) = ∆(eα)Pα

and such that each Pα is P(yα) for some yα ∈ Σ∗. Then ex = ∑x=γ(yα) eα is a decomposition of e.

Proof. By Lemma 3.4, if x = γ(yα), then P(x) = P(yα). Easy calculations then show

e = ∑
x

ex χ(ex) = ∆(ex)P(x).

Decompositions can be combined additively or multiplicatively. The sum and product of two de-
compositions F : M→ KΣ and G : M→ KΣ are, respectively, the decompositions

(F + G)(x) = F(x) + G(x) (F× G)(x) = ∑
x=γ(yz)

F(y)G(z),

respectively.

Lemma 3.7.

(i) If F is a decomposition of e and G is a decomposition of d, then F + G is a decomposition of e + d. If
F and G both respect P, Q, then so does F + G.

(ii) If F is a decomposition of e and G is a decomposition of d, then F× G is a decomposition of ed. If F
respects P, Q and G respects Q, R, then F× G respects P, R.

Proof. Both (i) and (ii) are quite easy. We argue (ii) explicitly. Given F : x 7→ ex and G : x 7→ dx, we
have

ed = (∑
y

ey)(∑
z

dz) = ∑
(y,z)

eydz = ∑
x

∑
x=γ(yz)

eydz = ∑
x
(F× G)(x),

χ(eydz) = ∆(ey)P(y)∆(dz)P(z) = ∆(eydz)P(yz) = ∆(eydz)P(γ(yz)),

therefore

χ( ∑
x=γ(yz)

eydz) = ∑
x=γ(yz)

∆(eydz)P(γ(yz)) = ∆( ∑
x=γ(yz)

eydz)P(x),

and P(γ(yz))R = P(yz)R = P(y)Q = P.
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To handle star, we describe a monad structure on systems built on top of the string monad. The
motivation is that we wish to consider the elements of M as single letters of an alphabet. To avoid
confusion, we use α, β, . . . to denote words in M∗. In §2.7, we constructed the standard embedding
χ with respect to a coalgebra (S, D, E) of type −Σ × C. Now we wish to do the same for the
alphabet M. We thus have a coalgebra (S, D̂) with D̂x : S→ S of type−M with D̂x = Dx. The only
difference is that on the left-hand side, x is considered as a single letter, whereas on the right-hand
side, Dx is defined inductively from Da for a ∈ Σ. The standard embedding is η, defined in the
same way for (S, M) as χ was defined for (S, D):

η : KM → Mat(S, KM) η(x) = ∆(x)P(x), x ∈ M.

Now let M̂ be constructed as in §3.1 for the alphabet M as M was constructed for Σ.

Lemma 3.8. Suppose that (∑x∈M x)∗ ∈ KM has a decomposition dα, α ∈ M̂ with respect to η and that
e ∈ KΣ has a decomposition σ : x 7→ ex with respect to χ. Let µ(x) = ∑x=γ(α) dα. Then σµ : x 7→
σ(∑x=γ(α) dα) is a decomposition of e∗ with respect to χ. Moreover, if the decomposition of e respects Q, Q,
then so does the decomposition of e∗.

Proof. By Lemma 2.2, the map σ extends uniquely to a homomorphism

σ : KM → KΣ σ̂ : Mat(S, KM)→ Mat(S, KΣ).

We have

e = ∑
x∈M

ex χ(ex) = ∆(ex)P(x) ( ∑
x∈M

x)∗ = ∑
α

dα η(dα) = ∆(dα)P(α).

Then for all x ∈ M,

χσ(x) = χ(ex) = ∆(ex)P(x) = ∆(σ(x))P(x) = σ̂(∆(x)P(x)) = σ̂η(x).

As χσ and σ̂η are homomorphisms and agree on the generators x ∈ M of KM, they coincide.

Now σµ : x 7→ σ(∑x=γ(α) dα) is a decomposition of e∗ with respect to χ:

e∗ = (∑
x

ex)
∗ = σ((∑

x
x)∗) = σ(∑

α

dα) = ∑
α

σ(dα) = ∑
x

σ( ∑
x=γ(α)

dα) = ∑
x

σµ(x)

χ(σµ(x)) = χσ( ∑
x=γ(α)

dα) = ∑
x=γ(α)

σ̂η(dα) = ∑
x=γ(α)

σ̂(∆(dα)P(α))

= ∑
x=γ(α)

∆(σ(dα))P(x) = ∆(σ( ∑
x=γ(α)

dα))P(x) = ∆(σµ(x))P(x).

Finally, if the decomposition of e respects Q, Q, then by Lemma 3.5, χ(e)Q = ∆(e)Q. By Lemma
2.1, χ(e) is block diagonal with blocks refining the kernel of Q, therefore so is χ(e∗). Again by
Lemma 2.1,

χ(e∗)Q = ∑
x

∆(σµ(x))P(x)Q = DQ

for some diagonal matrix D. Thus P(x)Q = Q for all x such that σµ(x) 6= 0, so the decomposition
of e∗ respects Q, Q.
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3.4 Existence of Decompositions

Let (S, D, E) be a finite coalgebra of type −Σ × C with standard embedding χ : KΣ → Mat(S, KΣ).
Let M ⊆ Σ∗ and Mx ⊆ Σ∗ for x ∈ M be defined as in §3.1. Let Rx, Ty,x, and Vx ∈ KΣ be as defined
in §3.1 with respect to M and Mx.

In the following, the term decomposition refers to decompositions with respect to χ. A universal
decomposition is a decomposition for the universal expression (∑a∈Σ a)∗.

We remark that Lemmas 3.9 and 3.10 are co-dependent and require proof by mutual induction
on the well-founded relation � and on dimension of the associated matrices. Lemma 3.9 can be
proved for permutations without reference to Lemma 3.10 (this is the basis of the induction), but
the general case requires Lemma 3.10 for lower dimension; and the proof of Lemma 3.10 depends
on Lemma 3.9 for permutations.

Lemma 3.9. For x, y ∈ Σ∗,

(i) Ty,x has a decomposition respecting P(yx), P(x);

(ii) Rx has a decomposition respecting P(x), P(x);

(iii) x 7→ Vx is a universal decomposition.

Proof. The proof is by induction on the well-founded relation �, using the fact that χ and ∆ are
homomorphisms, and on dimension. Let us assume that the lemma is true for all matrices of
smaller dimension.

For (i), T1,x = 1 has the trivial decomposition 1 7→ 1 and x 7→ 0 for all x ∈ M − {1}, and this
clearly respects P(x), P(x).

For ay, we have Tay,x = RayxaTy,x. By the induction hypothesis, we have a decomposition for Rayx
respecting P(ayx), P(ayx) and a decomposition for Ty,x respecting P(yx), P(x). We also have the
trivial decomposition a 7→ a and x 7→ 0 for all x ∈ M − {a}, which respects P(ayx), P(yx). By
Lemma 3.7(ii), the product of these three decompositions in the appropriate order is a decomposi-
tion for Tay,x respecting P(ayx), P(x).

For (ii), we have Rx = e∗, where e = ∑y∈Mx Ty,x. By the induction hypothesis, we can assume
decompositions of Ty,x for each y ∈ Mx respecting P(yx), P(x). Since P(yx) = P(x) for y ∈ Mx,
these decompositions also respect P(x), P(x). By Lemma 3.7(i), the sum of these decompositions
gives a decomposition of e respecting P(x), P(x). By Lemma 3.5, χ(e)P(x) = ∆(e)P(x).

If P(x) is invertible, then χ(e) = ∆(e), therefore

χ(Rx) = χ(e)∗ = ∆(e)∗ = ∆(Rx).

In this case, we can decompose Rx trivially as 1 7→ Rx and y 7→ 0 for y ∈ M \ {1}, which respects
P(x), P(x), and we are done.

If P(x) is not invertible, we can use Lemma 3.10 to reduce the problem to a lower dimension.
By that lemma, we have a universal decomposition that we can use with Lemma 3.8 to obtain a
decomposition of e∗ respecting P(x), P(x).
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For (iii),

χ(Vx) = χ(Tx,1)χ(R1) = χ(Tx,1)P(1)χ(R1) = ∆(Tx,1)P(x)∆(R1)

= ∆(Tx,1R1)P(x) = ∆(Vx)P(x).

Combined with Lemma 3.3, this makes x 7→ Vx a universal decomposition.

Lemma 3.10. There exists a universal decomposition.

Proof. The proof is by induction on dimension and on the number of letters of Σ. We can assume
by Lemma 3.9 that we already have a universal decomposition for the subalphabet of Σ consisting
of all a such that P(a) is invertible. Now we show how to add in the rest of the elements of Σ one
by one.

Suppose we have constructed a universal decomposition x 7→ ex for a subalphabet Γ ⊆ Σ includ-
ing all a such that P(a) is invertible. Let e = ∑a∈Γ a and a ∈ Σ \ Γ. We have

e∗ = ∑
x

ex χ(ex) = ∆(ex)P(x),

and we wish now to construct a decomposition for (a + e)∗.

Since P(a) is not a permutation, the range of the corresponding function is a proper subset C ⊂ S.
Equivalently stated, the S× (S \ C) submatrix of P(a) is the zero matrix.

We can reduce to a lower dimensional C × C problem. Let X be the S × C matrix whose C × C
submatrix is the identity matrix and whose other entries are 0, and let XT be its transpose. Then
XTX is the C × C identity matrix and XXT is the S × S matrix whose C × C submatrix is I and
whose other entries are 0.

Let G be the subalgebra of Mat(S, KΣ) consisting of matrices that are block lower triangular in the
sense that their C × (S \ C) submatrices are 0. All P(xa) are block lower triangular in this sense.
Consider the map A 7→ XT AX, which takes an S × S matrix to its C × C submatrix. It is easily
shown that if A, B are block lower triangular, then so are A + B, AB, and A∗; moreover,

XT(A + B)X = XT AX + XT BX XT ABX = XT AXXT BX XT A∗X = (XT AX)∗,

therefore restricted to G, the map A 7→ XT AX : G → Mat(C, KΣ) is a KA homomorphism. In
addition, the following facts are easily verified:

P(xa) = P(xa)XXT XT A = XT AXXT , A ∈ G. (15)

To construct a decomposition of (a + e)∗, observe that

(a + e)∗ = (e∗a)∗e∗ = (1 + e∗a(e∗a)∗)e∗.

By Lemma 3.7, we know how to combine decompositions additively and multiplicatively, and we
have decompositions of a, e∗, and 1. It thus suffices to construct a decomposition of a(e∗a)∗. To
this end, let

Q(x) = XT P(xa)X ∈ Mat(C,2)
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and consider the system

η : KM → Mat(C, KM) η(x) = ∆(x)Q(x)

of dimension C× C. By the induction hypothesis on dimension, we have a universal decomposi-
tion with respect to η:

( ∑
x∈M

x)∗ = ∑
α∈M̂

dα η(dα) = ∆(dα)Q(α).

Let

R(α) = P(a)XQ(α)XT , α ∈ M̂ σ(x) = exa, x ∈ M.

The map σ extends uniquely to a KA homomorphism σ : KM → KΣ. We claim that aσ(dα) and
R(α), α ∈ M̂, form a decomposition of a(e∗a)∗ with respect to χ. We must show that

a(e∗a)∗ = ∑
α

aσ(dα) χ(aσ(dα)) = ∆(aσ(dα))R(α). (16)

According to Lemma 3.6, we must also show that the R(α) are generated by the P(a), a ∈ Σ. The
left-hand equation of (16) is a straightforward calculation:

a(e∗a)∗ = a(∑
x

exa)∗ = aσ((∑
x

x)∗) = aσ(∑
α

dα) = ∑
α

aσ(dα).

That the R(α) are generated by the P(a) can be shown inductively using (15):

R(1) = P(a)XQ(1)XT = P(a)XXT P(a)XXT = P(a2)

R(xα) = P(a)XQ(xα)XT = P(a)XQ(x)Q(α)XT = P(a)XXT P(xa)XQ(α)XT = P(ax)R(α).

It remains to prove the right-hand equation of (16). Since

χσ(x) = χ(exa) = ∆(ex)P(x)∆(a)P(a) = ∆(exa)P(xa),

the map χσ : KM → Mat(S, KΣ) takes values in G. As mentioned above, the map A 7→ XT AX is
a homomorphism on G, therefore the composition XT(χσ(−))X : KM → Mat(C, KΣ) is a homo-
morphism.

Now XT(χσ(−))X = σ̂η, as they are both homomorphisms KM → Mat(C, KΣ) and agree on the
generators x ∈ M:

XT(χσ(x))X = XT(χ(exa))X = XT(∆(exa)P(xa))X = ∆(exa)XT P(xa)X = ∆(exa)Q(x)
σ̂η(x) = σ̂(∆(x)Q(x)) = ∆(σ(x))Q(x) = ∆(exa)Q(x).

Thus the value they take on dα ∈ KM is the same:

XTχ(σ(dα))X = σ̂η(dα) = σ̂(∆(dα)Q(α)) = ∆(σ(dα))Q(α). (17)
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Calculating, we find

χ(aσ(dα)) = ∆(a)P(a)χ(σ(dα))

= ∆(a)P(a)XXTχ(σ(dα))XXT by (15) and (16)

= ∆(a)P(a)X∆(σ(dα))Q(α)XT by (17)

= ∆(a)∆(σ(dα))P(a)XQ(α)XT

= ∆(aσ(dα))R(α) by definition of R(α).

Theorem 3.11. All expressions are decomposable.

Proof. We proceed by induction on the structure of the expression. Every element a ∈ {0, 1} ∪ Σ
has a trivial decomposition 1 7→ a and x 7→ 0 for x ∈ M \ {1}. Closure under sum and product
follow from Lemma 3.7. For star, suppose we have a decomposition ex, x ∈ M, of e. By Lemma
3.10, we have a decomposition for the universal expression (∑x∈M x)∗. Lemma 3.8 then provides
a decomposition for e∗ via the substitution x 7→ ex.

4 Completeness

Recall from §2.8 that to prove that the LKA axioms are complete, we must show that the unique
coalgebra morphism LKΣ : KΣ → Brz is injective, where Brz (defined in §2.4) is the final coalgebra
for the functor −Σ × 2.

Recall also that any coalgebra (S, D, E) for that functor gives rise to an associated matrix

A = ∑
a∈Σ

∆(a)P(a) ∈ Mat(S, KΣ),

where ∆(a) is the diagonal matrix with diagonal entries a and P(a) is the characteristic matrix of
the function Da, and that the map a 7→ ∆(a)P(a) extends to the standard embedding χ : KΣ →
Mat(S, KΣ) as defined in §2.7. Let ≈ be the relation of bisimilarity as defined in §2.8.

Lemma 4.1. Let s, t ∈ S. If s ≈ t then (A∗E)s = (A∗E)t.

Proof. We have

A = ∑
a∈Σ

∆(a)P(a) = ∑
a∈Σ

χ(a) = χ(∑
a∈Σ

a),

thus by Lemma 3.9,

A∗ = χ(∑
a∈Σ

a)∗ = χ((∑
a∈Σ

a)∗) = χ( ∑
x∈M

Vx) = ∑
x∈M

χ(Vx) = ∑
x∈M

∆(Vx)P(x).

Now for any s ∈ S,

(A∗E)s = ( ∑
x∈M

∆(Vx)P(x)E)s = ∑
x∈M

Vx(P(x)E)s

= ∑
x∈M

Vx ∑
u∈S

P(x)suEu = ∑
x∈M

VxE(Dx(s)).
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If s ≈ t, then E(Dx(s)) = E(Dx(t)) for all x ∈ Σ∗, therefore

(A∗E)s = ∑
x∈M

VxE(Dx(s)) = ∑
x∈M

VxE(Dx(t)) = (A∗E)t.

Consider a finite subcoalgebra (S, δ, ε) of KΣ, where δ and ε comprise the Brzozowski derivative
as defined in Fig. 2. Recall that every e ∈ KΣ generates a finite subcoalgebra, since it has finitely1

many Brzozowski derivatives [16].

Lemma 4.2. e = (χ(e)E)e.

Proof. Theorem 3.11 guarantees a decomposition ex, x ∈ M of e. If ex 6= 0, then there exists y ∈ Σ∗

such that y ≤ ex. Since χ is monotone,

∆(y)P(y) = χ(y) ≤ χ(ex) = ∆(ex)P(x),

therefore P(y) = P(x). Moreover, 1 ≤ δy(ex) ≤ δy(e), therefore ε(δy(e)) = 1. Since P(y) = P(x),
ε(δx(e)) = 1.

We have shown that if ex 6= 0, then ε(δx(e)) = 1; in other words, ex = exε(δx(e)). Using (14),

(χ(e)E)e = (∑
x

∆(ex)P(x)E)e = ∑
x

ex(P(x)E)e = ∑
x

exε(δx(e)) = ∑
x

ex = e.

Lemma 4.3. e = (A∗E)e.

Proof. By Lemma 4.2, Lemma 3.3, and the monotonicity of χ,

e = (χ(e)E)e ≤ (χ((∑
a∈Σ

a)∗)E)e = (χ(∑
a∈Σ

a)∗E)e = (A∗E)e.

For the reverse inequality, Theorem 2.3 says that the identity map e 7→ e is a solution to (11), and
as noted in §2.7, A∗E is the least solution in a LKA.

Theorem 4.4 (Completeness). If d ≈ e then d = e.

Proof. Immediate from Lemmas 4.1 and 4.3.

An interesting consequence is that the canonical solution in KΣ is not only the least, but in fact the
unique solution.

Theorem 4.5 (Uniqueness of the Canonical Solution). For all finite coalgebras (S, D, E) specifying a
system of linear equations as described in §2.7, there is a unique solution ϕ : S→ KΣ.

Proof. We have argued in §2.7 that ϕ(s) = (A∗E)s is a solution. For uniqueness, let h : (S, D, E)→
(KΣ, δ, ε) be any solution. By Lemma 2.6, both ϕ and h are coalgebra homomorphisms. For all
s ∈ S, h(s) ≈ s and ϕ(s) ≈ s, therefore h(s) ≈ ϕ(s). By Theorem 4.4, h(s) = ϕ(s).

1The finiteness of the subcoalgebra generated by e ∈ KΣ only requires the axioms for associativity, commutativity, and
idempotence of + (hence, only equations).
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5 Discussion

In this paper, we have given a new, significantly shorter proof of the completeness of the left-
handed star rule of Kleene algebra. In this section, we discuss connections with existing work and
give pointers for future work.

We have shown that the left-handed star rule is needed only to guarantee the existence of least
solutions. It would be interesting to explore how one could prove the existence of least solutions
just using the equations assumed by Krob [15], which are of the form

M∗ = ∑
m∈M

ε−1
M (m)

for M a finite monoid.

A well-known algorithm to obtain the minimal deterministic automaton is the Brzozowski algo-
rithm [2]. Starting from a possibly nondeterministic automaton, (i) reverse the transitions, ex-
changing final and initial states, then (ii) perform the subset construction, removing inaccessible
states; then repeat (i) and (ii). The resulting automaton is a minimal automaton for the original
language.

Starting from a finite automaton (S, D, E) with a start state s, we can build an automaton (2S, D̂, Ê)
with start state E, and

D̂( f ) = D ◦ f Ê = ξ(s),

where ξ(s) denotes the characteristic function of the singleton set containing s. This new au-
tomaton recognizes the reverse of the original language. Interestingly, this is also reflected in the
construction of the expressions Vf for the new automaton. There is apparently a relationship to
the Brzozowski construction, but the exact relationship remains to be explored.
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