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Abstract
We show that the Kolmogorov extension theorem and the Doob
martingale convergence theorem are two aspects of a common gen-
eralization, namely a colimit-like construction in a category of
Radon spaces and reversible Markov kernels. The construction pro-
vides a compositional denotational semantics for lossless iteration
in probabilistic programming languages, even in the absence of a
natural partial order.

Categories and Subject Descriptors G.3 [Probability and Statis-
tics]: Markov processes, Stochastic processes; F.1.2 [Modes of
Computation]: Probabilistic computation; F.3.2 [Semantics of
Programming Languages]: Algebraic approaches to semantics, De-
notational semantics, Operational semantics

Keywords Markov processes, Kolmogorov extension, martingale
convergence, compositionality, probabilistic computation

1. Introduction
Compositionality is a key desideratum in programming language
semantics. The behavior of a large complex program depends on
the behavior of its constituent parts, and it is essential for effective
reasoning that this dependence be properly understood. This is no
less true of probabilistic programs than deterministic ones.

Classical foundations of probability and measure theory provide
little support for compositional reasoning. Standard formalizations
of iterative processes prefer to construct a single monolithic sample
space from which all random choices are made at once. The central
result in this regard is the Kolmogorov extension theorem [16] (see
[1] or [6, Theorem 3.3.6]), which identifies conditions under which
a family of measures on finite subproducts of an infinite product
space extend to a measure on the whole space. This theorem is
typically used to construct a large sample space for an infinite
iterative process when the behavior of each individual step of the
process is known.

The Kolmogorov extension theorem is normally formulated in
terms of measures alone, but for purposes of compositional rea-
soning, a more general formulation is needed. Probabilistic pro-
grams are commonly interpreted denotationally as Markov kernels
[7, 19, 24, 25]. The chief benefit of this characterization is that it
allows programs to be composed sequentially via Lebesgue integra-
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tion. In [12], this formulation of the theorem was used to provide
a compositional semantics for a lossless iteration operator * in a
probabilistic language for packet switching networks.

Another important classical result that is relevant in this context
is the martingale convergence theorem of Doob [8] (see [20] or
[10, Theorem VII.9.2]). This theorem states that a martingale has
a pointwise limit that is unique up to a nullset. Martingales are
normally presented in introductory texts as a model of betting
strategies, but in fact they are much more general and quite relevant
in the semantics of probabilistic programming languages, as they
characterize the evolution of conditional probabilities as an infinite
process progresses.

Modern presentations of martingales go even further toward the
removal of any compositional aspect. They are typically formulated
in terms of a filtration, a sequence of ever finer σ-algebras on a
common set of states S. Intuitively, the states of S are infinite
sequences of intermediate states in an iterative process, but the
formalism does not reflect that intuition.1

Recently, martingales have emerged as a useful tool in the anal-
ysis of probabilistic algorithms. Dubhashi and Panconesi [9] give
a generalization of Chernoff-Hoeffding bounds using martingales.
These bounds exploit the tendency of certain smooth functions of
random variables to concentrate asymptotically in a narrow range.
Dubhashi and Panconesi’s generalization applies to more general
functions than just the sum and applies under weaker independence
conditions. Chakarovand and Sankaranarayanan [3, 4] present gen-
eral techniques based on martingales and supermartingales for the
synthesis of expectation invariants for probabilistic loops and al-
most sure termination. Fioriti and Hermanns [11] also treat almost
sure termination using supermartingales and provide soundness and
completeness results.

In this paper we derive an unexpected connection between Kol-
mogorov extension and martingale convergence: they are different
aspects of a common generalization, namely a colimit-like con-
struction in a category of Radon spaces and reversible Markov ker-
nels. A Markov kernel is reversible if it has a deterministic right2

inverse; this is simply an abstract way of remembering history. We
show that the limit object in the construction of [12], when applied
to reversible kernels, is again reversible. Moreover, the martingale
convergence theorem is essentially the statement of universality; in-
tuitively, given an event in a continuation following an iteration, the
finite approximants to the iteration comprise a martingale, which
converges to the probability of the event conditioned on the final
outcome of the iteration.

1 Dubhashi and Panconesi [9] remark that “the concept of martingales, as
found in probability textbooks, poses quite a barrier to the computer scien-
tist who is unfamiliar with the language of filters, partitions and measurable
sets from measure theory.”
2 in diagrammatic order



We say the construction is colimit-like because it is not a colimit
or even a weak colimit in the strict sense of the word. The exact
nature of the discrepancy is technical, but it is essentially due to the
fact that certain key properties hold only up to a nullset. Whether
the construction can be characterized as a true colimit or weak
colimit under stronger assumptions or using a point-free approach
is a tantalizing topic for future investigation.

This construction can be used to give a compositional denota-
tional semantics for iteration operators even when iteration is loss-
less. Normally, iteration is lossy in the sense that the probability
of halting may be strictly less than unity [7, 18, 19, 22, 24, 25].
This is usually modeled by allowing the output of a program to be
a subprobability distribution. However, in the system of [12], itera-
tion is lossless: a program is a packet filter that consumes an input
set of packets and produces an output set of packets according to
some probability distribution. “Halting” is not a relevant concept;
with probability one, the program “halts” and produces a set of
packets (which may be the empty set). An important distinction
is that lossy iteration aligns more closely with traditional domain-
theoretic semantics, as there is a natural partial order of approxima-
tion by which the partial executions of a loop approximate the loop.
With lossless iteration, there is no obvious partial order and no no-
tion of least fixpoint. The system of [12] identifies an appropriate
notion of convergence, but it is not order-theoretic.

Kolmogorov’s original formulation of the extension theorem
was in terms of finite subproducts of an infinite product space.
Many authors [2, 5, 13, 21, 23, 26, 27] have observed that this
is essentially a projective limit construction. Our development in-
volves a projective limit as well, but it is important to note that, un-
like projections, the morphisms of our category (reversible Markov
kernels) go in the chronologically positive direction. Connections
between Kolmogorov extension and martingale theory have also
been previously drawn in earlier work [21, 23, 27], although the
relationship presented here seems to have escaped notice.

2. Definitions and Notation
In this section we briefly review some basic definitions and nota-
tion. More comprehensive treatments can be found in [1, 6, 10, 14].

Let (S,B) be a Borel space. A probability measure µ : B →
[0, 1] is said to be inner regular if the measure of any A ∈ B can
be approximated arbitrarily closely from below by compact sets.
Formally, µ is inner regular if for all A ∈ B and ε > 0, there exists
a compact set C such that C ⊆ A and µ(A−C) < ε (see e.g. [1]).
A Borel space in which every probability measure is inner regular
is called a Radon space.

We will restrict our attention to Radon spaces. This assumption
is quite weak. Most natural spaces in real-life applications, includ-
ing all Polish and Suslin spaces, are Radon. This assumption is
needed for the Kolmogorov extension theorem.

Markov Kernels Let (S,BS) and (T,BT ) be Borel spaces. A
Markov kernel (Markov transition, measurable kernel, stochastic
kernel, stochastic relation) is a function P : S × BT → [0, 1] such
that

• for fixed A ∈ BT , the map P (−, A) : S → [0, 1] is a
measurable function; and

• for fixed s ∈ S, the map P (s,−) : BT → [0, 1] is a probability
measure.

Programs will be interpreted as Markov kernels. Some authors
allow subprobability measures in which the universal event may
occur with probability less than one; however, we will allow this
only in the form of guards (see below).

The Markov kernels are the morphisms of a category whose
objects are measurable spaces, the Kleisli category of the Giry

monad; see [7, 24, 25]. In this context, we write P : (S,BS) →
(T,BT ) or just P : S → T . Sequential composition is given by
Lebesgue integration: for P : S → T and Q : T → U ,

(P ; Q)(s,A) =

∫
t∈T

P (s, dt) ·Q(t, A).

Associativity of composition is essentially Fubini’s theorem (see
[14, VII.36.C] or [6, p. 59]). The the identity kernels

1(s,A) = χA(s) = δs(A) =

{
1, s ∈ A,
0, s 6∈ A

are left and right identities for composition. Here χA is the char-
acteristic function of A ∈ BS and δs is the Dirac (point mass)
measure on s ∈ S.

If P : S → T1 and Q : S → T2, the kernel P × Q :
S → T1 × T2 on a given s ∈ S gives the product measure
P (s,−)×Q(s,−) on T1 × T2. Thus for A ∈ BT1 and B ∈ BT2 ,

(P ×Q)(s,A×B) = P (s,A) ·Q(s,B).

Convergence We will have the occasion to consider convergence
of sequences of kernels. A common mode of convergence is point-
wise almost everywhere (a.e.) convergence with respect to an ambi-
ent measure µ. A sequence Pn converges pointwise a.e. to Q with
respect to µ if for all B, the measurable functions Pn(−, B) con-
verge to the measurable function Q(−, B) pointwise outside a µ-
nullset. Note that this does not immediately imply that Q is a ker-
nel, as it may not be countably additive in its second argument; that
has to be established separately. Note also that the µ-nullsets on
which the Pn(−, B) fail to converge may differ for different B.

Deterministic Kernels A Markov kernel S → T is deterministic
iff there is a measurable function f : S → T such that the kernel’s
value on s ∈ S and A ∈ BT is

1T (f(s), A) = 1S(s, f−1(A)).

Every measurable function f : S → T gives a deterministic kernel
of this form, thus the deterministic kernels and the measurable
functions are in one-to-one correspondence. We write f for both
the set function and its associated kernel, thus

f(s,A) = 1T (f(s), A) = 1S(s, f−1(A)).

Deterministic kernels compose on the left and right with arbi-
trary kernels as follows:

(f ; P )(s,A) =

∫
t

1(f(s), dt) · P (t, A) = P (f(s), A)

(P ; f)(s,A) =

∫
t

P (s, dt) · 1(t, f−1(A)) = P (s, f−1(A)).

Guards Every measurable set A ∈ BS gives rise to an associated
guard A : S → S of the same name, a subprobability kernel

A(s,B) = 1S(s,A ∩B).

Guards can be used in sequential composition expressions to limit
integration:

(P ; A ; Q)(s,B) =

∫
t∈A

P (s, dt) ·Q(t, B).

Reversible Kernels A Markov kernel P : S → T is reversible if
it has a deterministic right inverse f : T → S; thus P ; f = 1.
If P : S → T and Q : T → U are reversible with inverses
f : T → S and g : U → T respectively, then P ; Q is reversible
with inverse g ; f . The measurable spaces and reversible kernels
form a subcategory of the Kleisli category of the Giry monad.

Reversibility is simply an abstract way of saying that history is
preserved. Normally this is done with projections as in the usual



formulation of the Kolmogorov extension theorem. Any Markov
kernel P : S → T gives rise to a reversible kernel P ′ : S → S×T
by just remembering the first argument:

P ′(s,A×B) =

{
P (s,B), s ∈ A,
0, s 6∈ A.

The inverse is then the projection onto the first component.

Lemma 1.

(i) For any A ∈ BS and reversible P : S → T with right inverse
f : T → S, we have A ; P = P ; f−1(A).

(ii) For A ∈ BS and deterministic f : T → S, we have
f−1(A) ; f = f ; A.

(iii) The right inverse of any reversible kernel is surjective.

Proof. (i) For any s ∈ S and B ∈ BT ,

(A ; P )(s,B) =

∫
A(s, dt) · P (t, B)

=

{
P (s,B), s ∈ A,
0, s 6∈ A,

(P ; f−1(A))(s,B) =

∫
P (s, dt) · (f−1(A))(t, B)

= P (s,B ∩ f−1(A)).

If s 6∈ A, then

P (s,B ∩ f−1(A)) ≤ P (s, f−1(A))

= (P ; f)(s,A) = 1(s,A) = 0,

thus A ; P and P ; f−1(A) agree in that case. If s ∈ A, then
s 6∈ ∼A. By the above argument, P (s,B ∩ f−1(∼A)) = 0. Then

P (s,B ∩ f−1(A)) = P (s,B ∩ f−1(A)) + P (s,B ∩ f−1(∼A))

= P (s,B),

therefore A ; P and P ; f−1(A) agree in that case as well.
(ii) For any s ∈ S and B ∈ BT ,

(f−1(A) ; f)(s,B) = f−1(A)(s, f−1(B))

= 1(s, f−1(A ∩B)) = (1 ; f)(s,A ∩B)

= f(s,A ∩B)) = (f ; A)(s,B).

(iii) Suppose P is reversible with right inverse f . By (i), for any
s ∈ S,

(P ; f−1({s}) ; f)(s, S) = ({s} ; P ; f)(s, S)

= {s}(s, S) = 1(s, {s}) = 1,

so it cannot be that f−1({s}) = 0.

Conditional Expectation Let (S,B, µ) be a measure space with
µ a probability measure. The conditional expectation E(X | F) of
a B-measurable function X with respect to a σ-subalgebra F of B
is any F-measurable function such that for A ∈ F ,∫

A

E(X | F)(s) · µ(ds) =

∫
A

X(s) · µ(ds).

The conditional expectation exists and is unique up to a µ-nullset.
It can be obtained as a Radon–Nikodým derivative, as the integral
on the right-hand side, as a function of A ∈ F , is absolutely
continuous with respect to µ; that is, the integral vanishes whenever
A ∈ F and µ(A) = 0.

Applied to characteristic functions of measurable sets B ∈
B, conditional expectations are also measures as functions of B.
As such, they are Markov kernels EF : (S,F) → (S,B) with

EF (s,B) = E(χB | F)(s). This representation affords some
notational advantages:

(2.1) A well-known property is that for F ⊆ G ⊆ B,

E(E(X | G) | F) = E(X | F).

In our notation, this translates to

EF ; EG = EF .

(2.2) Suppose that F ⊆ G and we are given two kernels P :
(S,F) → T and Q : (S,G) → T , and we wish to show
that P (−, B) = E(Q(−, B) | F) with respect to an ambient
measure µ. We would need to show that for all A ∈ F ,∫

A

P (s,B) · µ(ds) =

∫
A

Q(s,B) · µ(ds).

Regarding µ as a kernel µ : S0 → S on a one-point space
S0, it suffices to show

µ ; A ; P = µ ; A ; Q

for allA ∈ F . This gives the desired equation for allB ∈ BT
uniformly. In particular, if Q(−, B) = χB , so Q = 1, then it
suffices to show

µ ; A ; P = µ ; A.

(2.3) A special case of the martingale convergence theorem is the
Lévy zero-one law, which states that if Fn is a sequence of
σ-algebras on S such that Fm ⊆ Fn for m ≤ n, and if
Fω is the smallest σ-algebra containing

⋃
n Fn, then for any

X : S → R measurable with respect to Fω , E(X | Fn)
converges to E(X | Fω) pointwise outside of a µ-nullset. In
our notation, this becomes

EFn → EFω pointwise a.e.

Martingales Let (S,Fω, µ) be a measure space. A sequence of
random variables and σ-algebras (Xn,Fn) on S, n ≥ 0, is called
a martingale if

(i) Fm ⊆ Fn for m ≤ n,

(ii) Fω is the σ-algebra generated by
⋃
n Fn,

(iii) Xn is Fn-measurable,

(iv) Xm = E(Xn | Fm) for all m ≤ n.

The martingale convergence theorem of Doob [8] (see [20] or [10,
Theorem VII.9.2]) states that the sequenceXn has a pointwise limit
Xω outside a µ-nullset.

By property (iv) of martingales and the definition of conditional
expectation, for all Am ∈ Fm and n ≥ m,∫

Am

Xm(s) · µ(ds) =

∫
Am

E(Xn | Fm)(s) · µ(ds)

=

∫
Am

Xn(s) · µ(ds),

thus by the martingale convergence theorem,∫
Am

Xm(s) · µ(ds) =

∫
Am

Xω(s) · µ(ds)

=

∫
Am

E(Xω | Fm) · µ(ds).

Again by the definition of conditional expectation, we have that

Xm = E(Xω | Fm). (2.4)



3. Main Results
Suppose we have a chain of Radon spaces (Sn,Bn), n ∈ ω along
with reversible Markov kernels Pmn : Sm → Sn for each m ≤ n
such that

Pkn = Pkm ; Pmn, k ≤ m ≤ n Pnn = 1Sn . (3.1)

Since the Pmn are reversible, their deterministic inverses fnm :
Sn → Sm for m ≤ n satisfy

fnk = fnm ; fmk, k ≤ m ≤ n fnn = 1Sn . (3.2)

The chain Sn has a projective limit Sω , where

Sω = {(sn | n ∈ ω) ∈
∏
n∈ω

Sn | ∀m ≤ n fnm(sn) = sm}.

Let Bω be the weakest σ-algebra on Sω such that all projections
πm : Sω → Sm are measurable. Then (Sω,Bω) is the limit of the
spaces (Sn,Bn) in the category of Radon spaces and measurable
functions.

The following local consistency condition corresponds to the
premise needed to apply the Kolmogorov extension theorem (see
[6, Theorem 3.3.6]).

Lemma 2. For all k ≤ m ≤ n,

Pkm(s,A) = Pkn(s, f−1
nm(A)).

Proof. This is equivalent to the assertion that Pkm = Pkn ; fnm.
But

Pkm = Pkm ; 1Sm = Pkm ; Pmn ; fnm = Pkn ; fnm.

Let Fn = {π−1
n (An) | An ∈ Bn} ⊆ Bω . Then

⋃
n Fn is a

Boolean subalgebra of Bω . By the monotone class theorem ([14,
Theorem I.6.B] or [6, Theorem 2.1.1]), Bω is the smallest class
containing

⋃
n Fn and closed under unions of countable ascending

chains and intersections of countable descending chains.

Lemma 3.

(i) If m ≤ n, Am ∈ Fm, and An ∈ Fn, then π−1
n (An) =

π−1
m (Am) if and only if An = f−1

nm(Am).
(ii) If m ≤ n, then Fm ⊆ Fn.

Proof. Clause (ii) and the reverse implication of clause (i) follow
from the fact that πm = πn ; fnm. Thus

π−1
m (Am) = π−1

n (f−1
nm(Am)) ∈ Fn.

For the forward implication of clause (i), assume that πn(s) ∈ An
iff πm(s) ∈ Am. Since πm = πn ; fnm, we have that

πn(s) ∈ An ⇔ fnm(πn(s)) ∈ Am ⇔ πn(s) ∈ f−1
nm(Am).

It follows from Lemma 1(ii) that the πn : Sω → Sn are surjective,
thus An = f−1

nm(Am).

We now wish to show that (Sω,Bω) is the colimiting object
of the chain. We need to define reversible Markov kernels Pmω :
Sm → Sω that commute with the Pmn. As with the Kolmogorov
extension theorem, inner regularity is needed for this part of the
argument; once this is done, the assumption of inner regularity is
no longer needed.

For each π−1
n (An) ∈ Fn with m ≤ n, define

Pmω(s, π−1
n (An)) = Pmn(s,An). (3.3)

We must argue that Pmω is well defined. If k ≤ m ≤ n with
π−1
m (Am) = π−1

n (An), we have by Lemma 3(i) that An =
f−1
nm(Am). Then

Pkn(s,An) = Pkn(s, f−1
nm(Am))

= (Pkn ; fnm)(s,Am) = Pkm(s,Am).

Theorem 1. The map Pnω : Sn ×
⋃
n Fn → [0, 1] extends to a

reversible Markov kernel Pnω : Sn → Sω with right inverse πn.

Proof. We must show:

(i) For fixed s ∈ Sn, the map Pnω(s,−) :
⋃
n Fn → [0, 1]

extends to a measure Pnω(s,−) : Bω → [0, 1].
(ii) For fixed A ∈ Bω , the map Pnω(−, A) : Sn → [0, 1] is a

measurable function.

For (i), using inner regularity one can show that for fixed s ∈ Sn,
the map Pnω(s,−) :

⋃
n Fn → [0, 1] is countably additive on⋃

n Fn, therefore by the Carathéodory extension theorem (see [14,
Theorem 13.A] or [17, Theorem 7.27.7]) extends to a measure
Pnω(s,−) : Sω → [0, 1]. This is essentially the Kolmogorov
extension theorem in this setting.

For (ii), the proof is by induction on the stage at which A
becomes an element of Bω via the monotone class theorem. The
basis is (3.3). For the induction step, we use the fact that the
pointwise supremum of a countable ascending chain of uniformly
bounded measurable functions is measurable. If A =

⋃
nAn for

a chain A0 ⊆ A1 ⊆ · · · , we have that the functions Pnω(−, Ai)
are measurable by the inductive hypothesis, and Pnω(−,

⋃
iAi) is

the pointwise supremum of the Pnω(−, Ai), therefore measurable.
The argument for intersections of countable descending chains is
similar.

That πn is the right inverse of Pnω , that is, Pnω ; πn = 1Sn , is
just (3.3) with m = n.

The next theorem establishes a universality property of the
space (Sω,Bω) as a form of colimit of the (Sn,Bn) with copro-
jections Pnω : Sn → Sω in the category of Radon spaces and
reversible Markov kernels. As mentioned, it is not a true colimit or
even a weak colimit; nevertheless, the space (Sω,Bω) is universal
in a sense to be made precise by part (ii) of the theorem.

Theorem 2.

(i) The kernels Pnω commute with the kernels Pmn in the sense
that for all m ≤ n, Pmω = Pmn ; Pnω .

(ii) Let (T,BT ) be any measurable space with reversible Markov
kernels Qn : Sn → T , each with a deterministic right inverse
gn : T → Sn such that Qm = Pmn ; Qn for all m ≤ n.
There exists a reversible Markov kernel

Qω : Sω → T̂

such that Qn = Pnω ; Qω , where T̂ is the completion of T
with respect to the pseudometric

dT (t, t′) =

2−n, if n is the least number
such that gn(t) 6= gn(t′),

0, if gn(t) = gn(t′) for all n.
(3.4)

Proof. (i) We have by (3.3) and Theorem 1 that for k ≥ n,

Pmω ; πk = Pmk = Pmn ; Pnk = Pmn ; Pnω ; πk.

Because of the composition with πk on the right, Pmω and Pmn ;
Pnω agree on the generators of Bω , therefore also on all of Bω .

(ii) Under the premises of the theorem, gm = gn ; fnm and
Qm ; gn = Pmn for all m ≤ n. Since (Sω,Bω) is the limit of
the (Sn,Bn) in the category of measurable spaces and measurable
functions, there is a measurable function g : T → Sω such that
gn = g ; πn for all n.

For all n ≥ m, we have

Qm ; g ; πn = Pmn ; Qn ; gn = Pmn = Pmω ; πn.



Because of the composition with πn on the right, (Qm ; g)(sm,−)
and Pmω(sm,−) agree on the generators

⋃
n Fn of Fω , therefore

also on Fω . Thus

Qm ; g = Pmω. (3.5)

We now construct a kernel Qω with right inverse g. Unfortu-
nately, the limit construction does not guarantee that g is surjective,
which by Lemma 1(iii) it must be in order to be the right inverse of
a kernel. However, its image g(T ) = {g(t) | t ∈ T} is dense in
Sω with respect to a certain metric, and we can form the comple-
tion T̂ of T without affecting the values of the Qn. This will allow
g to be extended to a surjective function ĝ : T̂ → Sω , which will
allow the construction of a kernel Sω → T̂ . Moreover, the ideal
{A ∈ BSω | A ∩ g(T ) = ∅} contains only Pmω-nullsets, since if
A ∩ g(T ) = ∅, then by (3.5),

Pmω(sm, A) = (Qm ; g)(sm, A) = Qm(sm, g
−1(A)) = 0,

thus points not in g(T ) can be deleted from Sω to give a kernel
g(T )→ T if desired.

The completion T̂ of T is taken with respect to the pseudometric
dT , where

dSω (s, s′) =

2−n, if n is the least number
such that πn(s) 6= πn(s′),

0, if s = s′

dT (t, t′) = dSω (g(t), g(t′)).

Concretely, let T̂ be the disjoint union of T and Sω − g(T ). Define

ĝ(t) =

{
g(t), t ∈ T,
t, t ∈ Sω − g(T ),

ĝn(t) =

{
gn(t), t ∈ T,
πn(t), t ∈ Sω − g(T ).

Extend BT to BT̂ by including all subsets of Sω − g(T ). Extend
Qn : S → T to Q̂n : S → T̂ by taking subsets of Sω − g(T )

as nullsets; that is, Q̂n(sn, B) = Qn(s,B ∩ T ). Note that g(T )

is dense in Sω under the metric dSω . One can show that Q̂n is
reversible with right inverse ĝn and that Pmn ; Q̂n = Q̂m.
Moreover, ĝ : T̂ → Sω is surjective. Let us therefore assume
henceforth that the original g is surjective and that T̂ = T .

We now show that the kernels Qn give rise to two collections
of martingales. For the first collection, fix B ∈ BT and s0 ∈ S0.
We show that the measurable functions (πn ; Qn)(−, B) form
a martingale with respect to the filtration {Fn | n ≥ 0} and
the ambient measure P0ω(s0,−) on Sω . Let us check the four
properties of martingales listed in §2.

(i) Fm ⊆ Fn for m ≤ n,
(ii) Fω is the σ-algebra generated by

⋃
n Fn,

(iii) (πn ; Qn)(−, B) is Fn-measurable,
(iv) (πm ; Qm)(−, B) = E((πn ; Qn)(−, B) | Fm) for m ≤ n.

Properties (i) and (ii) are immediate from Lemma 3. For (iii),
(πn ; Pnω)(−, B) is Fn-measurable because πn is. Finally, for
property (iv), by (2.2) it suffices to show that for any Am ∈ Bm,

P0ω ; π−1
m (Am) ; πm ; Qm = P0ω ; π−1

m (Am) ; πn ; Qn.
(3.6)

Let An = f−1
nm(Am). By Lemma 3(i), π−1

m (Am) = π−1
n (An).

Using this, Lemma 1(ii), Theorem 1, and the fact Qm = Pmn ;
Qn, (3.6) reduces to

Am ; Pmn = Pmn ; An.

But this is just Lemma 1(i).
By the martingale convergence theorem, the (πn ; Qn)(−, B)

converge pointwise to an Fω-measurable function Qω(−, B) out-
side a P0ω(s0,−)-nullset, thus the πn ; Qn converge pointwise
a.e. to Qω .

The map Qω will be our desired kernel. However, note that we
have not yet shown that Qω is a measure in its second variable nor
that it is reversible with right inverse g. We will do this below, but
we must be careful not to inadvertently use these properties until
they are established.

The Qk factor through Qω as desired: for k ≤ m ≤ n,

Pkω ; πm ; Qm = Pkω ; πn ; Qn = Qk,

therefore

Pkω ; Qω = lim
n

Pkω ; πn ; Qn = lim
n

Qk = Qk.

The second collection of martingales is defined on T . Define the
filtration

Gn = {g−1
n (A) | A ∈ Bn} = {g−1(A) | A ∈ Fn} ∈ BT

and let Gω ⊆ BT be the σ-algebra generated by
⋃
n Gn. As

above, fix B ∈ BT and s0 ∈ S0. We claim that the functions
(gn ; Qn)(−, B) form a martingale with respect to the filtration
{Gn | n ≥ 0} and the ambient measure Q0(s0,−) on T . The four
properties of martingales we must check are

(i) Gm ⊆ Gn for m ≤ n,
(ii) Gω is the σ-algebra generated by

⋃
n Gn,

(iii) (gn ; Qn)(−, B) is Gn-measurable,
(iv) (gm ; Qm)(−, B) = E((gn ; Qn)(−, B) | Gm) for m ≤ n.

As above, properties (i)–(iii) are straightforward: (i) is immediate
from Lemma 3, (ii) is by definition, and (iii) is from the fact that gn
is Gn-measurable. Finally, for (iv), by (2.2) we must show that for
any Am ∈ Bm,

Q0 ; g−1
m (Am) ; gm ; Qm = Q0 ; g−1

m (Am) ; gn ; Qn. (3.7)

Let An = f−1
nm(Am). By the fact that gm = gn ; fnm, we have

g−1
m (Am) = g−1

n (An). Using this, Lemma 1(ii), and Theorem 1,
(3.7) reduces to

Qk ; gm ; Am ; Qm = Qk ; gn ; An ; Qn,

which follows by equational reasoning from Lemma 1(i) and the
properties

Qm = Pmn ; Qn Qm ; gm = 1 Pkm ; Pmn = Pkn.

Again using the martingale convergence theorem, the (gn ;
Qn)(−, B) converge pointwise to a Gω-measurable function out-
side a Q0(s0,−)-nullset. In this case, the limit is (g ; Qω)(−, B):

lim
n

gn ; Qn = lim
n

g ; πn ; Qn = g ; Qω.

As above, the gn ; Qn converge pointwise a.e. to g ; Qω .
Note that none of these calculations required integration with

respect to the second argument of Qω . As the reader will recall,
we have yet to establish that Qω is countably additive in its second
argument. We do that now.

Lemma 4. gn ; Qn = EGn , the conditional expectation with
respect to the measure Q0(s0,−) on T .

Proof. Using Lemma 1,

Q0 ; g−1
n (An) ; gn ; Qn = Q0 ; gn ; An ; Qn

= P0n ; Qn ; g−1
n (An)

= Q0 ; g−1
n (An).



By the Lévy zero-one theorem (2.3), EGn converges pointwise
a.e. to EGω . We have already argued that g ; Qω is the a.e. pointwise
limit of the gn ; Qn. Thus by Lemma 4, g ; Qω = EGω a.e. This
says that for all t ∈ T ,

Qω(g(t),−) = (g ; Qω)(t,−) = EGω (t,−).

The kernel EGω is a conditional probability, therefore a measure in
its second argument. As g is surjective, Qω(s,−) is also measure
for all s ∈ Sω , therefore it is a Markov kernel.

It remains to show that Qω is reversible with right inverse g.
Observe that

Pnω ; πn = 1Sn = Qn ; gn = Pnω ; Qω ; gn.

Thus Qω ; gn and πn agree outside a Pnω-nullset, and this is true
for arbitrary n. By the universality of g to the projective limit Bω
of the spaces Bn, we have Qω ; g = 1Sω .

3.1 Discussion
The kernelQω constructed in the proof of Theorem 2 is not unique,
as the martingale convergence theorem determines Qω only up to
a nullset for each B ∈ BT . Moreover, there is some flexibility in
the formation of the completion T̂ . Thus the construction is at best
a weak colimit.

If g is not surjective, the kernel Qω does not give a universal
arrow in the strict sense of the word, as it is not necessarily of type
Sω → T . An extension of T to T̂ may be required to accommodate
the orphans s ∈ Sω . This can always be done in a straightforward
way as we have done in the proof of Theorem 2, but the type of
the arrow is then Sω → T̂ , not Sω → T . As we have noted, the
orphans can be omitted, giving a kernel of type S′ω → T for a
dense subset S′ω ⊆ Sω , but this is not of the correct type either.
However, under the assumption that T is complete with respect to
the pseudometric (3.4), the construction becomes a genuine weak
colimit.

We made use of inner regularity in the construction of the Pkω .
Moy [23, p. 907] seems to suggest that this assumption is not
necessary. But Moy is working in the space of real sequences,
which is implicitly inner regular. The claim does not hold more
generally, as the following counterexample shows. Let Fn be the
σ-algebra on N generated by the sets {0}, {1}, . . . , {n − 1} and
{n, n + 1, n + 2, . . .}. Then Fn is finite and

⋃
n Fn consists of

all finite and cofinite sets. The σ-algebra Fω generated by
⋃
n Fn

is the full powerset of N, as every set is a countable union of
singletons.

Now let U be a nonprinciple ultrafilter and let

µ(A) =


1

2
+

∑
n∈A

2−(n+2), A ∈ U,∑
n∈A

2−(n+2), A 6∈ U.

Then µ is nonnegative, finite-valued, and countably additive on
every Fn, but not countably additive on

⋃
n∈N Fn, since∑

n∈N

µ({n}) =
1

2
µ(N) = 1.

The space is not inner regular, as any set in U is at least 1/2 heavier
than any compact subset.

3.2 Encoding Kolmogorov Extension
The standard Kolmogorov extension theorem is a special case in-
volving measures on product spaces

Sn =

n∏
n=0

S′n Sω =

∞∏
n=0

S′n.

The functions fnm : Sn → Sm for m ≤ n and πn : Sω → Sn are
simply the projections onto lower-dimensional products:

fnm(s0, . . . , sn) = (s0, . . . , sm), m ≤ n
πn(s0, s1, . . . ) = (s0, . . . , sn).

The generalization to projective limits of spaces connected by mea-
surable functions fnm has been observed by several authors [2, 5,
13, 21, 26, 27].

In the classical treatment, we are given component probability
measures µn on the Sn satisfying the consistency condition µm =
µn ◦ f−1

nm for all m ≤ n. The Kolmogorov extension theorem
guarantees the existence of a unique probability measure µ on Sω
such that µn = µ ◦ π−1

n for every n.
In our framework, the kernels Pmn : Sm → Sn are the

conditional expectations Pmn(s,A) = Em(s,A) for s ∈ Sm
and A a measurable subset of Sn. The kernels compose properly
by virtue of (2.1). The necessary consistency condition among the
component measures is given by Lemma 2: for k ≤ m ≤ n, s ∈
Sk, andA a measurable subset of Sm, Ek(s,A) = Ek(s, f−1

nm(A)).

3.3 Encoding Martingales
The martingale convergence theorem is also a special case. Given a
[0, 1]-valued martingale (Xn,Fn) on a space (S,Fω, µ), we can
encode it as a cocone on a chain of measurable spaces and re-
versible kernels. This can be done in two distinct but equivalent
ways, the first closer in spirit to classical martingale theory on a sin-
gle space with a filtration of σ-algebras, the second closer to prob-
abilistic semantics involving a chain of state transition systems.

In the first approach, we define Sn = S, Bn = Fn, and for
m ≤ n, s ∈ S, and A ∈ Fn,

Pmn(s,A) = Em(s,A) fnm(s) = s.

As observed in §2, the conditional expectation Em(s,A) is a mea-
surable function in s and a measure in A, thus a Markov kernel.
Note that Pmn(s,A) does not depend on n. The standard property
(2.1) of conditional expectations implies that composition works
correctly: for k ≤ m ≤ n and A ∈ Fn,

(Pkm ; Pmn)(s,A) =

∫
t∈S
Ek(s, dt) · Em(t, A)

= Ek(s,A) = Pkn(s,A).

The function fnm is a measurable function with respect to the
measurable setsFn on its domain andFm on its range, sinceFm ⊆
Fn. Moreover, fnm is the right inverse of Pmn: for Am ∈ Fm,

(Pmn ; fnm)(s,Am) =

∫
t∈S
Em(s, dt) · 1(t, Am)

= Em(s,Am) = 1(s,Am).

The projective limit Sω of the Sn is just S itself, and πn(s) = s.
This gives

Pmω(s,A) = Pmω(s, π−1
n (A))

= Pmn(s,A) = Em(s,A), A ∈ Fn.
Since Pmω(s,−) and Em(s,−) agree on

⋃
n Fn, they agree on all

of Fω .
Now to encode the martingaleXn, letXω be the pointwise limit

of the Xn as guaranteed by the martingale convergence theorem.
Let

T = S × {0, 1} g(s, 0) = g(s, 1) = s

Gα = {g−1(A) | A ∈ Fα}
= {A× {0, 1} | A ∈ Fα}, α ∈ ω ∪ {ω}

BT = {(A× {1}) ∪ (B × {0}) | A,B ∈ Gω}.



The set BT is the σ-algebra generated by Gω ∪ {S × {1}}. Define
the kernel Q : S → T by

Q(s, (A× {1}) ∪ (B × {0}))
= Xω(s) · 1(s,A) + (1−Xω(s)) · 1(s,B)

forA,B ∈ Gω . In other words,Q(s,−) is a weighted sum of Dirac
measures on (s, 1) and (s, 0) with weights Xω(s) and 1−Xω(s),
respectively:

Q(s, S × {1}) = Q(s, {(s, 1)}) = Xω(s)

Q(s, S × {0}) = Q(s, {(s, 0)}) = 1−Xω(s).

Intuitively, from state s, flip an Xω(s)-biased coin and enter state
(s, 1) on heads and (s, 0) on tails. This Q will turn out to be
Qω : Sω → T for the sequence Qn : Sn → T we are about
to define.

For A ∈ Fω , we have

(Q ; g)(s,A) =

∫
t∈T

Q(s, dt) · g(t, A)

=
∑

i∈{0,1}

Q(s, {(s, i)}) · 1(g(s, i), A)

= Xω(s) · 1(s,A) + (1−Xω(s)) · 1(s,A)

= 1(s,A),

therefore g is the right inverse of Q.
Now define

Qn = Pnω ; Q gn(s, 0) = gn(s, 1) = s.

Then

Qm = Pmω ; Q = Pmn ; Pnω ; Q = Pmn ; Qn,

and for A ∈ Fn,

(Qn ; gn)(s,A) = (Pnω ; Q ; g)(s,A) = Pnω(s,A),

and since Pnω agrees with Pnn on A ∈ Fn, this is 1(s,A), thus
gn is the right inverse of Qn.

Finally, to show that Qn encodes the martingale,

Qn(s, S × {1}) = (Pnω ; Q)(s, S × {1})

=

∫
t∈S

Pnω(s, dt) ·Q(t, S × {1})

=

∫
t∈S
En(s, dt) ·Xω(t)

= E(Xω | Fn)(s) = Xn(s).

3.4 An Alternative Construction
There is another construction equivalent to the one of §3.3 but
closer in spirit to state transition systems as they arise in program-
ming language semantics. As above, suppose we are given a mar-
tingale (Xn,Fn) on a probability space (S,Fω, µ). For s, t ∈ S,
define

s ≡n t⇔ ∀A ∈ Fn (s ∈ A⇔ t ∈ A)

[s]n = {t ∈ S | s ≡n t}
A/≡n = {[s]n | s ∈ A}, A ∈ Fn

Sn = S/≡n
Bn = {A/≡n | A ∈ Fn}.

The Boolean operations onFn respect the equivalence relation≡n,
therefore (Sn,Bn) is a measurable space.

For A/≡n ∈ Bn and m ≤ n, we define

Pmn([s]m, A/≡n) = Em(s,A) fnm([s]n) = [s]m.

The standard definition of conditional expectation as a Radon–
Nikodým derivative ensures that E(An | Fm) is Fm-measurable,
so if s ≡n t, then E(An | Fm) takes the same value on s and
t, thus Pmn is well defined up to a µ-nullset. Also, fnm is well
defined, since Fm ⊆ Fn, therefore ≡n refines ≡m.

One can define T , g, BT , Gn, Qn, gn, and Q as in §3.3. The
collection of maps [ · ]α : (S,Fα) → (Sα,Bα) for α ∈ ω ∪ {ω}
constitute a natural isomorphism between the two cocones (S,Fα)
and (Sα,Bα). As such, they preserve all relevant measure-theoretic
structure.

4. An Application
In [12], operational and denotational semantics are given for prob-
abilistic NetKAT, a probabilistic language for reasoning about
packet switching networks. In this language, programs are inter-
preted as packet filters that consume an input set of packet histo-
ries (nonnull sequences of packets) and produce an output set of
packet histories according to some probability distribution. There
are atomic actions for querying fields of the packet header, modi-
fying these fields, and duplicating the head packet.

Denotationally, programs p are interpreted as Markov kernels
JpK : 2H → 2H , where H is the set of packet histories. The
relevant measurable space is (2H ,B) whose points a ∈ 2H are
sets of packet histories and whose events A ∈ B are the Borel sets
of the Cantor space 2H .

Programs can be composed using parallel composition (&), se-
quential composition (;, typically elided in expressions), probabilis-
tic choice (⊕r), and iteration (∗). The parallel composition operator
& supplants the choice operator + of Kleene algebra. Operationally,
to determine Jp & qK(a,A), we sample JpK(a,−) and JqK(a,−)
independently, then take the union of the two outcomes and ask
whether it is in A. Denotationally,

Jp & qK = (JpK× JqK) ;
⋃
,

Where JpK × JqK : 2H → (2H)2 is the product kernel defined
in §2 and

⋃
: (2H)2 → 2H is the deterministic union kernel⋃

(a, b) = a ∪ b.
Of course, the most interesting part of the language is iteration.

Intuitively, p∗ says “do p zero or more times.” The while loop is
defined in terms of star as in propositional dynamic logic or Kleene
algebra with tests:

while b do p = (bp)∗b̄,

where the test b is the deterministic kernel JbK(a,−) = δa∩b. As
noted in [12], the usual definition of star as a sum of powers does
not work in the probabilistic case. Instead, we define an operational
semantics in terms of an infinite stochastic process. To determine
Jp∗K(c0, A), we start with the input set c0 ∈ 2H and create a
sequence c0, c1, c2, . . . inductively. After constructing c0, . . . , cn,
let cn+1 be the outcome obtained by sampling 2H according to
the distribution JpK(cn,−). We continue this process forever to get
an infinite sequence c0, c1, c2, . . . ∈ (2H)ω . We take the union
of the resulting sequence

⋃
n cn and ask whether it is in A. The

probability of this event is defined to be Jp∗K(c0, A).
Unlike KAT and NetKAT, Jp∗K is not the same as the infinite

sum of powers J&n p
nK. The latter fails to capture the sequential

nature of iteration in the presence of probabilistic choice.
This process is shown to satisfy the crucial fixpoint equation

p∗ = skip & pp∗, (4.8)

where skip is the identity kernel, although it is by no means the
only solution.

The operational definition of the star operator can be justified
denotationally, but the formal development as given [12] is quite



involved. Now with Theorem 1, we can give a more streamlined
account.

Let hd : (2H)ω → 2H and tl : (2H)ω → (2H)ω be the
deterministic kernels

hd(c0, c1, c2, . . .) = c0 tl(c0, c1, c2, . . .) = c1, c2, . . .

The kernel JpK : 2H → 2H gives rise to reversible kernels

JpmnK : (2H)m+1 → (2H)n+1, m ≤ n
defined inductively as follows:

Jp0,n+1K = 1× (JpK ; Jp0nK) Jpm+1,n+1K = hd× (tl ; JpmnK)

and Jp00K = 1. One can show that the composition property (3.1)
is satisfied. By Theorem 1, we have kernels JpmωK : (2H)m+1 →
(2H)ω . Moreover,

Jp0ωK = Jp01K ; Jp1ωK
= (1× JpK) ; (hd× (tl ; Jp0ωK))
= 1× (JpK ; Jp0ωK).

Composing on the right with the (continuous) union operator
⋃

:
(2H)ω → 2H gives Jp∗K by definition:

Jp∗K = Jp1ωK ;
⋃

: 2H → 2H .

The fixpoint equation (4.8) is satisfied:

Jp∗K = Jp0ωK ;
⋃

= (1× (JpK ; Jp0ωK)) ;
⋃

= (1× (JpK ; Jp0ωK ;
⋃

)) ;
⋃

= (1 & (JpK ; Jp0ωK ;
⋃

))

= Jskip & pp∗K.

5. Conclusion
We have characterized the Kolmogorov extension theorem as a
colimit-like construction in a category of Radon spaces and re-
versible Markov kernels. The Doob martingale convergence the-
orem is used to establish universality. These results provide a com-
positional denotational semantics for standard iteration operators in
programming languages as a limit of finite approximants, even in
the lossless case in which there is no natural approximation order.
This is the case, for example, with the system reported in [12].

In Theorem 2(ii), the function g would already be surjective and
one would not need to take the completion T̂ if T were already
complete with respect to the pseudometric (3.4). It would be inter-
esting to identify the weakest possible completeness assumptions
on T that guarantee this. Another intriguing question is whether a
point-free approach as in [15] might yield a true colimit.

We have forgone several possible generalizations: continuous
time, signed measures, and more general colimits. Such matters
present themselves as interesting topics for future investigation.
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