
Kleene Algebra with Equations

Dexter Kozen and Konstantinos Mamouras

Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA
{kozen,mamouras}@cs.cornell.edu

Abstract. We identify sufficient conditions for the construction of free
language models for systems of Kleene algebra with additional equa-
tions. The construction applies to a broad class of extensions of KA and
provides a uniform approach to deductive completeness.

1 Introduction

Kleene algebra (KA) is the algebra of regular expressions. Introduced by Stephen
Cole Kleene in 1956, it is fundamental and ubiquitous in computer science.
It has proven useful in countless applications, from program specification and
verification to the design and analysis of algorithms [1–8].

One can augment KA with Booleans in a seamless way to obtain Kleene alge-
bra with tests (KAT). Unlike many other related logics for program verification,
KAT is classically based, requiring no specialized syntax or deductive appara-
tus other than classical equational logic. In practice, statements in the logic are
typically universal Horn formulas

s1 = t1 ∈ s2 = t2 ∈ · · · ∈ sn = tn ∈ s = t,
where the conclusion s = t is the main target task and the premises si = ti are
the verification conditions needed to prove it. The conclusion s = t may encode
a partial correctness assertion, an equivalence between an optimized and an un-
optimized version of a program, or an equivalence between a program annotated
with static analysis information and the unannotated program. The verification
conditions si = ti are typically simple properties of the underlying domain of
computation that describe how atomic actions interact with atomic assertions.
They may require first-order interpreted reasoning, but are proven once and for
all, then abstracted to propositional form. The proof of the conclusion s = t
from the premises takes place at the propositional level in KAT. This methodol-
ogy affords a clean separation of the theory of the domain of computation from
the program restructuring operations. It is advantageous to separate the two
levels of reasoning, because the full first-order theory of the domain of compu-
tation may be highly undecidable, even though we may only need small parts
of it. By isolating those parts, we can often maintain decidability and deductive
completeness.

A typical form of premise that arises frequently in practice is a commutativity
condition pb = bp for an action p and a test b. This captures the idea that the
action p does not affect the truth of b. For example, the action p might be an

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 280–292, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Kleene Algebra with Equations 281

assignment x := 3 and b might be a test y = 4, where x and y are distinct
variables. It is clear that the truth value of b is not affected by the action p, so
it would be the same before as after. But once this is established, we no longer
need to know what p and b are, but only that pb = bp. It follows by purely
equational reasoning in KAT that p1b = bp1 ∈ · · · ∈ pnb = bpn ∈ qb = bq,
where q is any program built from atomic actions p1, . . . , pn.

In some instances, Horn formulas with premises of a certain form can be
reduced to the equational theory without loss of deductive completeness or de-
cision efficiency using a technique known as elimination of hypotheses [3, 9, 10].
One important class of premises for which this is possible are those of the form
s = 0. The universal Horn theory restricted to premises of this form is called
the Hoare theory, because it subsumes Hoare logic: the partial correctness as-
sertion {b}p{c} can be encoded as the equation bpc̄ = 0. Other forms that arise
frequently in practice are bp = b, which says that the action p is not necessary
if b is true, useful in optimizations to eliminate redundant actions; and pq = qp,
which says that the atomic actions p and q can occur in either order with the
same effect, useful in reasoning about concurrency. Unfortunately, KAT with
general commutativity assumptions pq = qp is undecidable [11].

As a case in point, the NetKAT system [8] incorporates a number of such
equational premises as part of the theory, which are taken as additional axioms
besides those of KAT. Proofs of deductive completeness and complexity as given
in [8] required extensive adaptation of the analogous proofs for KA and KAT.
Indeed, this was already the case with KAT, which was an adaptation of KA to
incorporate an embedded Boolean algebra.

Although each of these instances was studied separately, there are some strik-
ing similarities. It turns out that the key to progress in all of them is the iden-
tification of a suitable class of language models that characterize the equational
theory of the system. A language model is a structure in which expressions are
interpreted as sets of elements of some monoid. The language models should
form the free models for the system at hand. For KA, a language model is the
regular sets of strings over a finite alphabet, elements of a free monoid; for KAT,
the regular sets of guarded strings; for NetKAT, the regular sets of strings of
a certain reduced form. Once a suitable class of language models can be deter-
mined, this opens the door to a systematic treatment of deductive completeness.
It is also clear from previous work [8, 12–15] that the existence of coalgebraic
decision algorithms also depends strongly on the existence of language models
(although we do not develop this connection in this paper). The question thus
presents itself: Is there a general set of criteria that admit a uniform construc-
tion of language models and that would apply in a broad range of situations and
subsume previous ad hoc constructions? That is the subject of this paper.

Alas, such a grand unifying framework is unlikely, given the negative results
of [11] and of §2. However, we have identified a framework that goes quite far in
this direction. It applies in the case in which the additional equational axioms
are monoid equations or partial monoid equations (as is the case in all the ex-
amples mentioned above) and is based on a well-studied class of rewrite systems

282 D. Kozen and K. Mamouras

called inverse context-free systems [16]. We give criteria in terms of these rewrite
systems that imply the existence of free language models in a wide range of pre-
viously studied instances, as well as some new ones.

This paper is organized as follows. In §2 we present preliminary definitions and
our negative result limiting the applicability of the method. In §3 we establish a
connection between the classical theory of string rewriting and Kleene algebra.
We recall from [16] the definition of inverse context-free rewrite systems and the
key result that they preserve regularity. The original proof involved an automata-
theoretic construction, but we show that it can be carried out axiomatically in
KA. In §4 we give examples of partial and total monoid equations and give a
general construction that establishes completeness in those cases. The construc-
tion is a special case of the more general results of §5, but we start with it as a
conceptual first step to illustrate the ideas. However, we can already derive some
interesting consequences in this special case. In §5, we establish completeness for
typed monoid equations. This is the most general setting covered in this paper.
We give the completeness proof along with several applications. In §6 we present
conclusions, future work, and open problems.

Proofs are omitted for lack of space. A full version is available online [17].

2 Preliminaries and a Negative Result

A Kleene algebra (KA) is an idempotent semiring (K,+, ·,∗ , 0, 1) with an itera-
tion operator ∗ satisfying

1 + aa∗ ≡ a∗ 1 + a∗a ≡ a∗ ax ≡ x ⊆ a∗x ≡ x xa ≡ x ⊆ xa∗ ≡ x
where ≡ refers to the natural partial order on K: a ≡ b ↔ a + b = b. A Kleene
algebra with tests (KAT) is a two-sorted structure (K,B,+, ·,∗ , ,̄ 0, 1) such that
(K,+, ·,∗ , 0, 1) is a KA, (B,+, ·, ,̄ 0, 1) is a Boolean algebra, and (B,+, ·, 0, 1) is
a subalgebra of (K,+, ·, 0, 1) as an idempotent semiring.

Let Σ be a finite alphabet of symbols. The free monoid (Σ∗, ·, ε) generated
by Σ is the set Σ∗ of words over Σ together with the operation · of string
concatenation and the empty string ε as identity. To generalize this construction,
we consider a finitely presented monoid M = ⇔a, b, . . . | u1 ⊂ u2, v1 ⊂ v2, . . .≥
with a finite set of generators Σ = {a, b, . . .} and a finite set of relations R =
{(u1, u2), (v1, v2), . . .}. We interchangeably write a relation as an equation u ⊂ u≥

or as a pair (u, u≥). Let ⇒∗
R be the smallest congruence on Σ∗ that contains R.

The congruence class of a string u is denoted by [u]. The finitely presented
monoid M = ⇔Σ | R≥ = Σ∗/R has the congruence classes {[u] | u ◦ Σ∗} of ⇒∗

R

as its carrier. Multiplication is given by [u] · [v] ≤∈ [uv], and the identity is [ε].
We define regular expressions over the alphabet Σ to be the terms given by

the grammar e, e1, e2 ::= a ◦ Σ | 1 | 0 | e1 + e2 | e1; e2 | e∗. We can interpret
a regular expression as a subset of a finitely presented monoid M = ⇔Σ | R≥
with multiplication · and identity 1M = [ε]. The function RM , called language
interpretation in M , sends a regular expression to a set of elements of M :

RM (a) = {[a]} RM (e1 + e2) = RM (e1) →RM (e2)
RM (1) = {1M} RM (e1; e2) = RM (e1) · RM (e2)
RM (0) = ∅ RM (e∗) =

⋃
n∈0 RM (e)n

Kleene Algebra with Equations 283

where · on sets is given by A · B = {u · v | u ◦ A, v ◦ B}, and An is defined
inductively as A0 = RM (1) and An+1 = An ·A. The image of the interpretation
RM together with the operations →, ·, ∗, ∅, {1M} is the algebra of regular sets
over M , denoted by RegM . If M is the free monoid Σ∗, then RM is the standard
language interpretation of regular expressions.

It is known that the algebra of regular sets RegΣ∗ is the free Kleene algebra
generated by Σ [18]. This is equivalent to the completeness of the axioms of KA
for the standard language interpretation R of regular expressions. That is, for
any two regular expressions e1, e2 over Σ, if R(e1) = R(e2) then KA ⊇ e1 ⊂ e2.
The question then arises if this result extends to the general case of RegM
for a finitely presented monoid M = ⇔Σ | R≥. We ask the question of whether
RM (e1) = RM (e2) implies provability of e1 ⊂ e2 in a system of KA augmented
with (at least) the equations corresponding to the relations R.

In general, the answer to the question posed in the previous paragraph is
negative. That is, there exists a finitely presented monoid M = ⇔Σ | R≥ such
that the equational theory of RegM is not recursively enumerable, and therefore
not recursively axiomatizable. The equational theory of the Kleene algebra RegM
is the set of equations between regular expressions that are true in RegM under
the interpretation RM , i.e., the set {e1 ⊂ e2 | RM (e1) = RM (e2)}. We show
this negative result using the ideas developed in [11]. The proof specifies a way
to construct effectively the monoid whose existence we claim.

Theorem 1. There exists a finitely presented monoid M such that the equa-
tional theory of RegM is not recursively enumerable.

This negative result says that we can only hope to identify subclasses of finitely
presented monoids M such that the algebra RegM of regular sets over M is ax-
iomatizable. The idea is to first restrict attention to those finite monoid presen-
tations, where the equations can be oriented to give a confluent and terminating
rewrite system. This allows one to consider as canonical representatives the ir-
reducible strings of the congruence classes. Then, we focus on a subclass that
allows two crucial algebraic constructions: a “descendants” automata-theoretic
construction, and an “ancestors” construction, which is a homomorphism.

The proof of Theorem 1 is similar to that of [11, Theorem 4.1(ii)], but strictly
speaking, neither theorem follows from the other. The theorem of [11] gives
a uniform Ω0

2 -lower bound when the monoid is considered part of the input,
whereas Theorem 1 gives a Ω0

1 -lower bound for a fixed monoid.

3 String Rewriting Systems

In this section we establish a connection between the classical theory of string
rewriting systems and Kleene algebra. More specifically, we recall a result re-
garding the preservation of regularity: for every inverse context-free system R
and a regular set L, the set of the R-descendants of L is also regular [16]. This
result involves an automata-theoretic construction, which can be modeled in
KA, because an automaton can be represented as an appropriate KA term [18].

284 D. Kozen and K. Mamouras

The combinatorial arguments of the construction can then be replaced by equa-
tional reasoning in KA. As it turns out, this connection will allow us to obtain
powerful completeness metatheorems in later sections.

A string rewriting system R over a finite alphabet Σ consists of rules δ ∈ r,
where δ and r are finite strings over Σ. This extends to the one-step rewrite
relation ∈R, given by xδy ∈R xry, for strings x, y and rule δ ∈ r of R. If
x ∈R y then we say that y is an R-successor of x, and x is an R-predecessor
of y. We write ∈∗

R for the reflexive-transitive closure of ∈R, which is called the
rewrite relation for R. If u, v are strings for which u ∈∗

R v we say that v is an
R-descendant of u, and that u is an R-ancestor of v. For a set of strings L:

DescR(L) = {v | ∃u ◦ L. u ∈∗
R v} AnceR(L) = {u | ∃v ◦ L. u ∈∗

R v}
So, DescR(L) is the set of all the R-descendants of the strings in L, and similarly
AnceR(L) is the set of all R-ancestors of the strings in L. The inverse system R−1

of R is the system that results by taking a rule r ∈ δ for every rule δ ∈ r of R.
If u is an R-ancestor of a string v, then u is an R−1-descendant of v. Define ⇒∗

R

to be the smallest congruence on Σ∗ that contains {(u, v) | u ∈ v is R-rule}.
The congruence class of a string u is denoted by [u].

Let R be a rewrite system. We say that R is terminating if there is no infinite
rewrite chain x0 ∈R x1 ∈R x2 ∈R · · · . If R has rules of the form δ ∈ r with
|r| < |δ| then it is terminating, because every rule application strictly reduces
the length of the string. A string x is called R-irreducible if no rule of R applies
to it, that is, there is no y with x ∈R y. We say that R is confluent if u ∈∗

R x
and u ∈∗

R y imply that there exists z with x ∈∗
R z and y ∈∗

R z. It is said that
R has the Church-Rosser property (we also say that “R is Church-Rosser”) if for
all strings x, y with x ⇒∗

R y there exists z such that x ∈∗
R z and y ∈∗

R z. It is a
standard result that confluence and the Church-Rosser property are equivalent
[16]. A system R is said to be locally (or weakly) confluent if for all strings u, x, y
with u ∈R x and u ∈R y, there exists a string z such that x ∈∗

R z and y ∈∗
R z.

If R is both locally confluent and terminating, then R is confluent [16, 19].
Suppose that R is confluent and terminating. We map each string u to the

unique R-irreducible string nfR(u) that results from rewriting u as much as
possible. For strings u, v, it holds that u ⇒∗

R v iff nfR(u) = nfR(v). So, two
strings are congruent iff they can be rewritten to the same R-irreducible. For
every congruence class [u] of ⇒∗

R, we choose as canonical representative (normal
form) the R-irreducible string nfR(u).

Definition 1 (Total Coalesced Product). Assume that R is confluent and
terminating, and let IR be the set of R-irreducible strings. Define the binary
operation ∪ on IR, called coalesced product, by u ∪ v = nfR(uv). We lift the
operation to sets of R-irreducible strings as A ∪B = {u ∪ v | u ◦ A, v ◦ B}.

Definition 2. Let R be an arbitrary string rewrite system. For a language L ∩
Σ∗, we define CR(L) =

⋃
u⊆L[u] = {v | ∃u ◦ L. v ⇒∗

R u}. Assume additionally
that R is confluent and terminating, so that the function nfR is well-defined. For
L ∩ Σ∗, we define GR(L) = {nfR(u) | u ◦ L}.

Lemma 1. Let R be a confluent and terminating rewrite system over Σ.

Kleene Algebra with Equations 285

1. CR(L) =
⋃{[u] | u ◦ GR(L)}, for a language L ∩ Σ∗.

2. GR(L1) = GR(L2) iff CR(L1) = CR(L2), for languages L1, L2 ∩ Σ∗.
3. CR(L) = AnceR(DescR(L)), for a language L ∩ Σ∗.

A rewrite system R is said to preserve regularity if for every regular language
L, the R-descendants DescR(L) form a regular set. A system R is called inverse
context-free if it only contains rules of the form δ ∈ r, where |r| ≡ 1. That
is, every right-hand side of a rule is either a single letter or the empty string.
A classical result of the theory of string rewriting is that inverse context-free
systems preserve regularity (see Chapter 4 of [16] for a detailed proof). The
proof of this fact uses a construction on finite automata, which we briefly present
here. We will be referring to it as the descendants construction. Suppose that L
is a regular language, recognized by an automaton A. The automaton is possibly
nondeterministic and it may have epsilon transitions. We will describe a sequence
of transformations on A. When the sequence reaches a fixpoint, we obtain an
automaton (nondeterministic with epsilon transitions) that recognizes DescR(L).

– Suppose that the system R has a rule δ ∈ a, where a is a single letter, and
δ = δ1δ2 · · · δm is a string of length m. We assume that there is an δ-path from
the state q0 to the state qn of the automaton. That is, a sequence

q0
x1−∈ q1

x2−∈ q2
x3−∈ · · · xn−1−−−∈ qn−1

xn−∈ qn,

where each xi is a letter or ε, x1 · x2 · . . . · xn = δ, and each qi−1
xi−∈ qi is a

transition of the automaton. We add the transition q0
a−∈ qn. The idea is that

if the automaton accepts xδy, then it should also accept the R-descendant xay.
– Similarly, suppose that the system R has a rule δ ∈ ε, where ε is the empty

string, and that there is an δ-path from the state q0 to the state qn. Then, we
add the epsilon transition q0

Σ−∈ qn to the transition table of the automaton.
This process is iterated until no new transitions are added. The resulting au-
tomaton accepts exactly the set of R-descendants DescR(L).

Theorem 2. Let R be an inverse context-free rewrite system and e a regular
expression whose interpretation is L = R(e). We can construct effectively a new
regular expression ê such that KAR ⊇ e ⊂ ê and R(ê) = DescR(L). KAR is the
system KA augmented with an equation δ ⊂ r for every rewrite rule δ ∈ r of R.

Theorem 2 says that the descendants construction, which is combinatorial,
can be modeled algebraically in the system of KA with some extra equations.
This is a central technical result that we will use for our later theorems.

4 Completeness: (Partial) Monoid Equations

In this section we present our first completeness metatheorems, from which we
can prove the existence of free language models for systems of KA with extra
monoid and partial monoid equations. Our metatheorems are not only a concep-
tual first step towards the more general typed monoid case, which we investigate
in §5, but they also allow us to obtain previously unknown completeness re-
sults. As a concrete novel application, think of the assignment statement x := c,

286 D. Kozen and K. Mamouras

where c is a constant. The action x := c is idempotent, meaning that the effect
of x := c;x := c is the same as the effect of x := c. We express this fact with the
monoid equation aa ⊂ a, where a is a single letter abstraction of the assignment.
KA can be augmented with any number of such idempotence equations, and our
metatheorem implies the existence of a free language model (see Example 1).

Definition 3 (Language Interpretation). Let R be a confluent and termi-
nating rewrite system. The corresponding coalesced product is ∪. We define the
function GR that sends a regular expression to a set of R-irreducibles:

GR(a) = {nfR(a)} GR(e1 + e2) = GR(e1) → GR(e2)
GR(0) = ∅ GR(e1; e2) = GR(e1) ∪ GR(e2)

GR(1) = {nfR(ε)} GR(e∗) =
⋃

n∈0 GR(e)⊗n∃

where, for a set A of R-irreducibles, A⊗n∃ is defined by A⊗0∃ = GR(1) and A⊗n+1∃ =
A⊗n∃ ∪A. We also define the interpretation CR(e) = CR(R(e)) =

⋃
u⊆R(e)[u].

Let R be a confluent and terminating system over Σ, and M = ⇔Σ | R≥ be
the corresponding monoid. For a regular expression e, we have that RM (e) =
{[u] | u ◦ GR(e)}. The algebra RegM is isomorphic to the algebra that is the
image of GR. This implies that RM (e1) = RM (e2) iff GR(e1) = GR(e2). So, our
investigations of completeness can be w.r.t. the interpretation GR.

Lemma 2. Let R be a confluent and terminating string rewrite system.
1. GR(e) = {nfR(u) | u ◦ R(e)} = GR(R(e)), for an expression e.
2. CR(e) =

⋃{[v] | v ◦ GR(e)}, for an expression e.
3. GR(e1) = GR(e2) iff CR(e1) = CR(e2), for expressions e1, e2.

Definition 4 (Well-Behaved Rewrite System). Let R be a rewrite system
over Σ. We say that R is well-behaved if it consists of finitely many rules δ ∈ r
with |r| = 1 and |δ| > 1, and it additionally satisfies confluence and the following
property: For every letter a of the alphabet, the R-ancestors of a form a regular
set R(ea) for some expression ea, so that KAR ⊇ ea ⊂ a. Recall that KAR is the
system of KA extended with equations corresponding to the rules of R.

Intuitively, we say that R is well-behaved if it allows two important algebraic
constructions. First, the special form of the rules allows the automata-theoretic
descendants construction (described in §3), which can be modeled in KA, because
automata can be encoded as matrices. Then, the regularity requirement for the
sets of R-ancestors of single letters implies that we can apply a homomorphism to
obtain all the ancestors of a regular set. We can thus “close” a regular expression
under the congruence induced by R.

Theorem 3 (Completeness). Let R be a well-behaved rewrite system over Σ.
For any expressions e1 and e2, GR(e1) = GR(e2) implies that KAR ⊇ e1 ⊂ e2.

Example 1 (Idempotence Hypotheses). We will see how the general com-
pleteness metatheorem we have shown (Theorem 3) can be used to obtain a
completeness result for the regular algebra of a simple finitely presented monoid.
Consider the monoid M = ⇔a, b | aa ⊂ a≥. The rewrite system R contains only
the rule aa ∈ a. In order to invoke Theorem 3 we verify that R is well-behaved:

Kleene Algebra with Equations 287

• For the only rule δ = aa ∈ a = r of R, we have that |r| = 1 and |δ| > 1.
• To show confluence of R, it is sufficient to show local confluence, since R

is terminating. This is known as Newman’s Lemma (see [16, 19]). We have
the following critical-pair lemma: Suppose that u ∈ x and u ∈ y. If x =
y, we are done. If x ⊕= y, then u, x, y must be of the following forms: u =
v1a

m+1v2a
n+1v3, x = v1a

mv2a
n+1v3, and y = v1a

m+1v2a
nv3. Notice now

that x, y ∈ v1a
mv2a

nv3, which establishes local confluence.
• For the R-ancestors of the letters a and b, we see that AnceR(b) = {b}, and
AnceR(a) = {ai | i ≥ 1} = R(a+), where a+ = a; a∗. We put eb = b and
ea = a+. Clearly, KAR ⊇ eb ⊂ b. Reasoning in KAR: a ≡ a+ and a+ = a; a∗ ≡
a ⇐= a; a ≡ a ⇐= a; a ⊂ a. We have thus shown that KAR ⊇ ea ⊂ a.

Since the rewrite system R satisfies the conditions of Theorem 3, we get com-
pleteness of KA together with the equation a; a ⊂ a for the interpretation RM .

We would like to generalize our result in a way that allows us to designate
certain strings as being non-well-formed or undefined. Any string with a non-
well-formed substring has to be discarded from the interpretation. For a string
a1 · · · ak over the alphabet, we declare it to be non-well-formed using the equation
a1 · · · ak ⊂ ⊥, where ⊥ is a special “undefined” symbol not in the alphabet.

We define a partial monoid to be an algebraic structure (M, ·, 1M ,⊥M) satis-
fying the monoid axioms, as well as the equations x·⊥M = ⊥M and ⊥M ·x = ⊥M .
The identity is 1M , and ⊥M is called the undefined element of M . In a presen-
tation of a partial monoid M∀ = ⇔Σ | x1 ⊂ y1, x2 ⊂ y2, . . . , z1 ⊂ ⊥, z2 ⊂ ⊥, . . .≥
we allow equations x ⊂ y between strings over Σ (call the collection of these R),
as well as equations of the form z ⊂ ⊥, where z is a string over Σ (⊥ is not in
Σ). In order to give a concrete description of the partial monoid, we consider
the strings over the extended alphabet Σ → {⊥}, and the equations R∀:

xi ⊂ yi zi ⊂ ⊥ a⊥ ⊂ ⊥, ⊥a ⊂ ⊥ (a ◦ Σ) ⊥⊥ ⊂ ⊥
Let ∼ be the smallest congruence on (Σ →{⊥})∗ that contains the relations R∀.
The partial monoid M∀ is the set of strings (Σ → {⊥})∗ quotiented by the con-
gruence ∼, and hence equal to ⇔Σ→{⊥} | R∀≥. The identity is the ∼-congruence
class [ε], and the undefined element is the class of [⊥].

Assumption 1. We collect a list of assumptions for (Σ,R,R∀). First, assume
that R is a confluent and terminating rewrite system over the alphabet Σ. The
rewrite system R∀ extends R with rules of the form z ∈ ⊥, where z ◦ Σ∗ and
|z| ≥ 2. Moreover, R∀ contains the rule ⊥⊥ ∈ ⊥, as well as all the rules a⊥ ∈ ⊥
and ⊥a ∈ ⊥ for every letter a ◦ Σ. We further assume that R∀ is terminating,
and that the seamlessness property is satisfied: If xzy is a string with z ∈ ⊥
in R∀, then any R-successor of xzy is of the form x≥z≥y≥, where z≥ ∈ ⊥ is in
R∀. Intuitively, seamlessness says that if a string contains a non-well-formed
substring, then no R-rewriting can make it well-formed.

Definition 5 (Partial Coalesced Product). Let (Σ,R,R∀) satisfy Assump-
tion 1. Define the partial coalesced product ∪ on R∀-irreducibles in Σ∗:

u ∪ v = nfR(uv), if uv ⊕∼ ⊥; u ∪ v = undefined, if uv ∼ ⊥.

288 D. Kozen and K. Mamouras

The condition uv ⊕∼ ⊥ is equivalent to nfR(uv) not having a substring z with
z ∈ ⊥. We lift the coalesced product into a total operation on sets of R∀-
irreducibles: A ∪B = {u ∪ v | u ∪ v exists, u ◦ A, v ◦ B}.

Definition 6 (Language Interpretation). Let (Σ,R,R∀) satisfy Assump-
tion 1. For a string u, define [u]ψ = Σ∗ ∩ [u]. For a language L ∩ Σ∗, put:

GR⊥(L) = {nfR(u) | u ◦ L} \ [⊥]ψ CR⊥(L) = [⊥]ψ →⋃
u⊆L[u]ψ

Now, GR⊥ sends a regular expression to a set of R∀-irreducibles of Σ∗:
GR⊥(a) = {nfR(a)} \ [⊥]ψ GR⊥(e1 + e2) = GR⊥(e1) → GR⊥(e2)
GR⊥(0) = ∅ GR⊥(e1; e2) = GR⊥(e1) ∪ GR⊥(e2)

GR⊥(1) = {nfR(ε)} \ [⊥]ψ GR⊥(e∗) =
⋃

n∈0 GR⊥(e)⊗n∃

where A⊗0∃ = GR⊥(1) and A⊗n+1∃ = A⊗n∃ ∪A. Define CR⊥(e) = CR⊥(R(e)). The
interpretation GR⊥ discards the undefined strings, but CR⊥ adds them all in.

Definition 7 (Well-Behaved). We suppose that (Σ,R,R∀) satisfies Assump-
tion 1. We say that it is well-behaved if R∀ consists of finitely many rules, every
rule δ ∈ r of R satisfies |r| = 1 and |δ| > 1, and it satisfies the property: For
every letter a of the alphabet, the R-ancestors of a form a regular set R(ea)
for some regular expression ea, so that KAR ⊇ ea ⊂ a. The empty string and
the single-letter strings are R∀-irreducible. We write KAR⊥ for the system KAR

extended with an equation a1; · · · ; ak ⊂ 0 for every rule a1 · · · ak ∈ ⊥ of R∀.

Theorem 4 (Completeness). Suppose that (Σ,R,R∀) is well-behaved. Then,
GR⊥(e1) = GR⊥(e2) implies that KAR⊥ ⊇ e1 ⊂ e2.

5 Completeness: Typed Monoid Equations

We further generalize the partial monoid setting by assuming more structure on
the strings and the rewrite system. One major difference from the partial monoid
case is the introduction of a new category of primitive symbols, the subidentities,
which allow the encoding of Booleans. We show how to cover several examples:
plain KAT, KAT with simple Hoare hypotheses b; p; c ⊂ 0, KAT with hypotheses
c; p ⊂ c, and NetKAT. There are even more applications which for lack of space
we do not present here: commutativity equations b; p ⊂ p; b (test b, atomic action
p), Boolean equations b ⊂ c (tests b, c), and so on. These examples attest to the
generality and wide applicability of our technique.

Assumption 2. We collect a list of assumptions for (P, Id , R,R∀). Let Σ =
P → Id be a finite alphabet, whose symbols are partitioned into a set P of
action symbols and a set Id of subidentities. We write p, q, r, . . . to vary over
actions symbols, π, ψ, φ, . . . to vary over subidentities, and a, b, c, . . . to vary over
arbitrary symbols of Σ. Let S be the subset of Σ∗ consisting of all strings in
which an action symbol p always appears surrounded by subidentities, as in
πpψ. The set S is regular, and the corresponding regular expression is eS =
Id · (Id∗ · P · Id)∗ · Id∗. Let R be a rewrite system over Σ that includes at least
the rules ππ ∈ π for every subidentity π ◦ Id , and additionally it satisfies:

Kleene Algebra with Equations 289

(1) S is closed under ∈R: if x ◦ S and x ∈R y then y ◦ S. Moreover, S is
closed under the inverse of ∈R: if y ◦ S and x ∈R y then x ◦ S. (2) For every
rule δ ∈ r of R we have that |δ| > |r|. (3) R is confluent on S: For u, x, y ◦ S,
u ∈∗

R x and u ∈∗
R y imply that x ∈∗

R z and y ∈∗
R z for some z ◦ S. Now,

suppose that R∀ extends R with the rules πψ ∈ ⊥ for all subidentities π ⊕= ψ,
and possibly more rules of the form z ∈ ⊥, where z ◦ S and |z| ≥ 2. Moreover,
R∀ contains all the rules a⊥ ∈ ⊥, ⊥a ∈ ⊥ (for each a ◦ Σ), as well as the rule
⊥⊥ ∈ ⊥. We assume that R∀ satisfies additionally the seamlessness property:
For xzy ◦ S with z ∈ ⊥ in R∀, any R-successor of xzy is of the form x≥z≥y≥ for
some rule z≥ ∈ ⊥ of R∀. We will use the term irreducible (unqualified) to mean
R∀-irreducible of S. Finally, define the function cp to send every letter a of Σ to a
finite subset cp(a) of S, called the components of a. For a subidentity π ◦ Id , we
put cp(π) = {π}. For an action symbol p ◦ P , we put cp(p) = {πpψ | π, ψ ◦ Id}.

Definition 8 (Language Interpretation). Let (P, Id , R,R∀) satisfy Assump-
tion 2. For a string u, we put [u]S = S ∩ [u]. For a language L ∩ S, we define:

GR⊥(L) = {nfR(u) | u ◦ L} \ [⊥]S CR⊥(L) = [⊥]S →⋃
u⊆L[u]S

The coalesced product of irreducibles, written ∪, is defined as in Definition 5. The
interpretation GR⊥ sends a regular expression to a set of irreducibles:

GR⊥(a) = nfR(cp(a)) \ [⊥]S GR⊥(e1 + e2) = GR⊥(e1) → GR⊥(e2)
GR⊥(0) = ∅ GR⊥(e1; e2) = GR⊥(e1) ∪ GR⊥(e2)

GR⊥(1) = Id GR⊥(e∗) =
⋃

n∈0 GR⊥(e)⊗n∃

Define CR⊥(e) = CR⊥(R(e)), for expressions e with R(e) ∩ S.

Definition 9 (Well-Behaved). Let (P, Id , R,R∀) be a tuple satisfying As-
sumption 2. We say that the tuple is well-behaved if R∀ consists of finitely many
rules, every rule δ ∈ r of R satisfies |r| = 1 and |δ| > 1, and it satisfies the
following property: For every letter a of the alphabet, the R-ancestors of a form
a regular set R(ea) for some regular expression ea, so that KAR ⊇ ea ⊂ a.

We define the finite collection E of equations associated with the well-behaved
tuple (P, Id , R,R∀) to contain: (1) an equation x ⊂ y for every rule x ∈ y of R,
(2) an equation z ⊂ 0 for every rule z ∈ ⊥ of R∀, as well as (3) the equation∑

θ⊆Id π ⊂ 1. We write KAE for the system of KA augmented with the equations
E. It is easy to prove in KAE the equation

∑
x⊆cp(a) x ⊂ a for every letter a.

Theorem 5 (Completeness). Let (P, Id , R,R∀) be well-behaved, and E be the
associated equations. Then, GR⊥(e1) = GR⊥(e2) implies that KAE ⊇ e1 ⊂ e2.

Applications. Theorem 5 gives us four completeness results as corollaries. First,
we show that KAT is complete for the standard interpretation of KAT terms as
sets of guarded strings. We then consider the case of KAT extended with simple
Hoare hypotheses b; p; c ⊂ 0 (tests b, c, atomic action p), and with hypotheses
c; p ⊂ c. We conclude with a completeness proof for NetKAT.

Theorem 6. Let GKAT be the standard interpretation of KAT expressions. For
any e1 and e2, it holds that GKAT(e1) = GKAT(e2) implies KAT ⊇ e1 ⊂ e2.

290 D. Kozen and K. Mamouras

A simple Hoare assertion is an expression {b}p{c}, where b, c are tests and p is
an atomic action. It can be encoded in KAT with the equation b; p;¬c ⊂ 0. This
equation is equivalent to the conjunction of the equations ψ; p; φ ⊂ 0, where ψ, φ
are atoms with ψ ≡ b and φ ≡ ¬c. So, w.l.o.g. we restrict attention to assertions
of the form ψ; p; φ ⊂ 0, where ψ, φ are atoms and p is an atomic action.

Theorem 7. Let Zh be a finite collection of strings of the form φpα, where
φ, α are atoms and p is an atomic action symbol. Let W be the set of strings
containing some φpα in Zh, and H be the collection of equations φ; p; α ⊂ 0 for
every φpα in Zh. Define the interpretation Gh by Gh(e) = GKAT(e) \ W . Then,
Gh(e1) = Gh(e2) implies KAT + H ⊇ e1 ⊂ e2.

We consider now another class of equations of the form c; p ⊂ c, where c
is a test and p is an atomic action. We see that c; p ⊂ c is equivalent to the
conjunction of φ; p ⊂ φ for φ ≡ c. So, we can restrict our attention to equations
of the form φ; p ⊂ φ, where φ is an atom, and p is an atomic action.

Theorem 8. Let X be a finite set of strings of the form φp, where φ is an atom
and p is an atomic action symbol, and H be the set of equations φ; p ⊂ φ for
every φp in X . For an atomic action symbol p, define the set of atoms A(p) =
{φ | φp ◦ X}. Let Gh be the interpretation that differs from GKAT only for the
base case of atomic action symbols: Gh(p) = A(p) → {φpα | φ /◦ A(p)}. Then,
Gh(e1) = Gh(e2) implies KAT+H ⊇ e1 ⊂ e2, for any KAT expressions e1, e2.

We turn to the case of NetKAT. Fix an alphabet At of atoms. For π ◦ At
we introduce an action symbol pθ, and we put P = {pθ | π ◦ At}. Let dup be a
new action symbol, and set Σ = P → {dup} → At . NetKAT extends KA with:∑

θ⊆At π ⊂ 1 π; dup ⊂ dup;π pθ ⊂ pθ;π
π;ψ ⊂ 0 (π ⊕= ψ) pθ; pν ⊂ pν π ⊂ π; pθ

The axioms imply π;π ⊂ π; pθ;π ⊂ π; pθ ⊂ π, for every atom π. So, NetKAT
can also be defined as an extension of KAT. The following axioms∑

θ⊆At π ⊂ 1 π;π ⊂ π a; pθ;π ⊂ π π; dup;ψ ⊂ 0 (π ⊕= ψ)
π;ψ ⊂ 0 (π ⊕= ψ) pθ;π; pν ⊂ pν π; pν ; φ ⊂ 0 (ψ ⊕= φ)

give an equivalent axiomatization of NetKAT.

Theorem 9. Let At be the subidentities (atoms), and P ≥ = P → {dup} be the
alphabet of action symbols, where P = {pθ | π ◦ At}. Define R and R∀ as:

ππ ∈ π (π ◦ At) πpθπ ∈ π (π ◦ At) pθπpν ∈ pν (π, ψ ◦ At)
πψ ∈ ⊥ (π ⊕= ψ) πdupψ ∈ ⊥ (π ⊕= ψ) πpνφ ∈ ⊥ (ψ ⊕= φ)

(P ≥,At , R,R∀) is well-behaved, and NetKAT is complete for GR⊥ .

6 Conclusion

We have identified sufficient conditions for the construction of free language
models for systems of Kleene algebra with additional equations. The construc-
tion provides a uniform approach to deductive completeness and coalgebraic de-
cision procedures. The criteria are given in terms of inverse context-free rewrite

Kleene Algebra with Equations 291

systems [16]. They imply the existence of free language models in a wide range
of previously studied instances, including KAT [6] and NetKAT [8], as well as
some new ones. We have also given a negative result that establishes a limit to
the applicability of the technique.

For the future, we would like to investigate the possibility of developing a uni-
form approach to coalgebraic bisimulation-based decision procedures [8, 12–15].
Such decision procedures typically involve some variant of Brzozowski derivatives
and are highly dependent on the existence of language models.

Acknowledgments. We thank Bjørn Grathwohl, Stathis Zachos, and the anony-
mous reviewers for helpful suggestions. This work was supported by the National
Security Agency under award #H98230-14-C-0140.

References

1. Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Tech-
nical Report TR2001-1844, CS Department, Cornell University (July 2001)

2. Barth, A., Kozen, D.: Equational verification of cache blocking in LU decompo-
sition using Kleene algebra with tests. Technical Report TR2002-1865, Computer
Science Department, Cornell University (June 2002)

3. Cohen, E.: Hypotheses in Kleene algebra. Technical report, Bellcore (1993)
4. Cohen, E.: Lazy caching in Kleene algebra (1994)
5. Cohen, E.: Using Kleene algebra to reason about concurrency control. Technical

report, Telcordia, Morristown, N.J (1994)
6. Kozen, D.: Kleene algebra with tests. Transactions on Programming Languages

and Systems 19(3), 427–443 (1997)
7. Kozen, D., Patron, M.C.: Certification of compiler optimizations using Kleene al-

gebra with tests. In: Proc. 1st Int. Conf. Comput. Logic (CL 2000), pp. 568–582
(2000)

8. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: Semantic foundations for networks. In: Proceedings of POPL
2014, San Diego, California, USA, pp. 113–126. ACM (January 2014)

9. Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decidability.
In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259.
Springer, Heidelberg (1997)

10. Hardin, C., Kozen, D.: On the elimination of hypotheses in Kleene algebra with
tests. Technical Report TR2002-1879, CS Department, Cornell University (2002)

11. Kozen, D.: On the complexity of reasoning in Kleene algebra. Information and
Computation 179, 152–162 (2002)

12. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision
procedure for NetKAT. Technical Report, Computing and Information Science,
Cornell University (2014), http://hdl.handle.net/1813/36255

13. Grathwohl, N.B.B., Kozen, D., Mamouras, K.: KAT + B! Technical Report, CIS,
Cornell University (January 2014), http://hdl.handle.net/1813/34898

14. Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: van Emde
Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM
2013. LNCS, vol. 7741, pp. 369–381. Springer, Heidelberg (2013)

http://hdl.handle.net/1813/36255
http://hdl.handle.net/1813/34898

292 D. Kozen and K. Mamouras

15. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: Proceedings of POPL 2013, pp. 457–468. ACM (2013)

16. Book, R.V., Otto, F.: String-Rewriting Systems. Springer (1993)
17. Kozen, D., Mamouras, K.: Kleene algebra with equations. Technical Report CIS,

Cornell University (February 2014), http://hdl.handle.net/1813/36202
18. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular

events. Infor. and Comput. 110(2), 366–390 (1994)
19. Baader, F., Nipkow, T.: Term Rewriting and All That. CUP (1998)

http://hdl.handle.net/1813/36202

