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Abstract

We investigate the completeness of Hoare logic on the propositional level. In par-
ticular, the expressiveness requirements of Cook’s proof are characterized proposi-
tionally. We give a completeness result for propositional Hoare logic (PHL): all

relationally valid rules

{bl}pl{cl}a ) {bn}pn{cn}
{b}p{c}

are derivable in PHL, provided the propositional expressiveness conditions are met.
Moreover, if the programs p; in the premises are atomic, no expressiveness assumptions

are needed. © 2001 Published by Elsevier Science Inc

1. Introduction

As shown by Cook [7], Hoare logic is relatively complete for partial cor-

rectness assertions (PCAs) over while programs
sertion language is sufficiently expressive. The

whenever the underlying as-
expressiveness conditions in

Cook’s formulation provide for the expression of weakest preconditions. These
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conditions hold for first-order logic over N, for example, because of the coding
power of first-order number theory. Cook’s proof essentially shows that in any
sufficiently expressive context, the Hoare rules suffice to eliminate partial
correctness assertions by reducing them to the first-order theory of the un-
derlying domain.

Several authors have undertaken to explicate the role of the expressiveness
conditions in Cook’s proof. Apt and Olderog [2] regard them as properties of
weakest preconditions. Gurevich and Blass [3] separate Cook’s construction
into two steps: existential fixpoint logic gives sufficient expressibility for
weakest preconditions; and if the domain is expressive, then first-order logic
reduces to existential fixpoint logic. Bloom and Esik [4,5] give necessary and
sufficient expressiveness conditions for the completeness of Hoare logic in the
context of iteration theories.

Most investigations in Hoare logic are carried out in a context in which the
symbols are interpreted over a fixed domain, usually a first-order (Tarskian)
structure [1,2,8]. However, one can formulate a more abstract propositional
version, appropriately named propositional Hoare logic (PHL) [12,13], and ask
about the derivation of relationally valid rules of the form

{bl}pl{cl}""7{bn}pn{cn} (1)
{b}p{c} '

PHL is subsumed by other propositional program logics such as propositional
dynamic logic (PDL) [9] and Kleene algebra with tests (KAT) [11], whose se-
mantics is derived from relational algebra. In PDL, expressiveness is not an
issue because weakest preconditions are explicit in the language: the weakest
precondition for program p with respect to postcondition ¢ is expressed as [p]c.
The Hoare partial correctness assertion {b}p{c} becomes b — [p]c in PDL and
bpc =0 in KAT. As shown in [12], KAT subsumes PHL, is of no greater
complexity, and is complete for all relationally valid Horn formulas of the form
(A, pi = 0) — p = ¢ (which include all rules of the form (1)), so for practical
purposes the completeness of PHL is moot.

Nevertheless, there is interest in determining the deductive strength of the
original Hoare rules in a propositional context in order to delineate the
boundary between Hoare logic proper and the expressiveness assumptions on
the underlying domain. We attempt here to characterize in a purely proposi-
tional way the necessary expressiveness properties used in Cook’s proof. Al-
though motivated by the properties of weakest preconditions, we find that it is
not necessary to characterize them completely. In this paper we show the
following results concerning the derivation of relationally valid rules of the
form (1):

(1) Under the assumption that the programs p; in the premises of (1) are

atomic, no expressiveness assumptions are necessary. Note that in the tradi-

tional formulation of Cook’s theorem [7], this assumption is in force. The
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usual formulation of Hoare logic, as given for example in [2], is trivially in-
complete, but a simple extension is complete for all relationally valid rules
(D).
(i1)) Without the atomicity assumption of (i), and even with the extensions of
(1), Hoare logic is incomplete. We give a finite propositional characterization
of weakest preconditions that captures on a propositional level the expres-
siveness requirements of Cook’s proof. Under these assumptions, PHL is
complete.
To our knowledge, neither of these results follows from any previous result in
propositional logics of programs. PDL is more expressive than KAT or PHL,
and is apparently more complex (it is EXPTIME-complete as opposed to
PSPACE-complete). However, the completeness results for PDL (see [14]) do
not allow premises; in fact, the entailment problem for PDL is known to be I7;-
complete [17]. The Horn theory of KAT for equational implications involving
premises of the form p = 0 is PSPACE-complete, but the relationship between
PHL with the extra expressiveness assumptions and KAT is not known.

2. Propositional Hoare logic

We denote programs by p, q,r, ..., atomic programs by a, and propositions
by b,c,d, . ... Asin KAT, we overload the symbols + and - to denote choice and
sequential composition, respectively, when applied to programs and disjunc-
tion and conjunction, respectively, when applied to propositions. We take —
and 0 as a basis for the Boolean connectives. We denote the negation » — 0 by
b or —b. A test is just a proposition, but we call it a test when we use it as a
program. A PCA {b}p{c} is called simple if p is either an atomic program or a
test.

The traditional Hoare rules for while programs are

{bc} p {d}, {bc} q {d}
{c} if b then p else g {d}
{} p{c}, {c}q{d}

{b} pq {d}

{be} p{c}

{c} while b do {bc}
b'—b, {bjp{c}, c—¢
{o'} p {c'}

For simplicity, we formulate PHL over regular programs instead. We take the

composition and weakening rules as in the traditional formulation, but replace
the conditional and while rules with the simpler rules

(conditional rule),

(composition rule),

(while rule),

(weakening rule).
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{6} p{c}, {b} q{c}
{b} p+q {c}
{v} p {b}
{b} p* {b}
{b} ¢ {bc} (test rule).
Defining if 5 then p else ¢ as bp + bgq and while b do p as (bp)*b as in PDL, the
traditional formulation is subsumed [13].

We will also consider the following rules for incorporating propositional
tautologies into PCAs: for any finite set C of tests,

{c}p{d}, ceC

(choice rule),

(iteration rule),

NCTp [ (or-rule),
{b} p{c}, ceC
0} p (ACT (and-rule).

These rules are not needed in the traditional formulation because they can be
viewed as properties of weakest preconditions.

We interpret PHL in Kripke frames. A Kripke frame & consists of a set of
states K and a map mg associating a subset of K with each atomic proposition
and a binary relation on K with each atomic program. The map mg is extended
inductively to all programs and propositions according to standard rules (see
[14]). We write 8,5 |= b for s € mg(b) and s for (s, ) € mg(p), and omit the
S when it is clear from the context. 8

The PCA {b}p{c} says intuitively that if b holds before executing p, then ¢
must hold after. Formally, the meaning in PHL is the same as the meaning of
b — [p]c in PDL: in a state s of a Kripke frame &, },s E {b}p{c} iff for all
teK,if K5 E band s2st, then K,t | c. For ¢ a PCA and @ a set of PCAs, we
write & = ¢ if forall S€K, K,s £ ¢; & £ ® if forall p € d, ] = ¢; and
& E gifforall K, if & £ &, then ]& E ¢. A rule of the form (1) is relationally
valid if {{b;}p{c;} |1 <i<n} E {b}p{c}. All the rules of PHL over while or
regular programs mentioned above are relationally valid.

We tacitly assume a complete propositional deductive system for tests. All
our completeness results hold in the presence of extra propositional assump-
tions of the form b = 0, which we can encode as the PCA {#rue}b{false}.

3. Weakest preconditions
Theorem 4.1 will hold without any expressiveness assumptions concerning

weakest preconditions. To formulate Theorem 4.2, however, we will need to
extend our assertion language with formulas of the form either [p][p,] - - - [p.]c
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or b — [pi][p2] - - - [paJe. Here b and c are tests and the p; are regular programs.
We call such formulas extended PCAs. Ordinary PCAs correspond to the case
n = 1. We will assume that there exists an interpretation of these formulas in
the underlying domain such that the following properties are satisfied:

[p+ 4l < [plY A lgly (2)
[palyr < Ipllaly (3)
Pl = v Alpllp W (4)
(bl — (b — ) ()
b — [p|c for each {b}p{c} in @ (6)

where @ is the set of premises. Properties (2)—(5) are axioms of PDL (see [14])
and are related to properties of weakest preconditions for while programs [2].
Additionally, when reasoning in the presence of assumptions @, we will also
postulate (6), as well as certain simple PCAs of the form {[a]ys}a{y}. We use
@, ¥, ... to denote PCAs or extended PCAs.

4. Main results

The standard Hoare system consisting of the choice, composition, iteration,
test, and weakening rules is trivially incomplete, even for relationally valid
rules with simple premises. For example, the and- and or-rules are not deriv-
able, since it follows by induction on the length of proofs that without the or-
rule, only simple PCAs with stronger preconditions than those of the premises
can be derived; similarly, without the and-rule, only simple PCAs with weaker
postconditions than those of the premises can be derived. However, if we add
the and- and or-rules, we obtain completeness:

Theorem 4.1. The Hoare system consisting of the choice, composition, iteration,
test, weakening, and-, and or-rules is complete for relationally valid rules of the
Sform (1) with simple premises.

Proof. For this proof only, we write @ - ¢ if the conclusion ¢ is derivable from
the premises @ in the deductive system specified in the statement of the theo-
rem. Suppose @ is a set of simple PCAs and ¢ a PCA such that @ ¥ ¢. We will
construct a Kripke frame & such that & = @ but K ¥ ¢.

A literal is an atomic proposition occurring in @ or ¢ or its negation. Let ¥
be the set of propositional assumptions bc — d appearing in @ in the form
{b}c{d}. For this proof only, an afom is a maximal conjunction of literals
propositionally consistent with ¥. Atoms are denoted «, f5, 7, ... Note that f3 is
propositionally equivalent to the disjunction of all atoms different from f. Let
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K be the set of all atoms. For propositions b and ¢, write b<cif b —cis a
propositional consequence of V.

The states of & are the atoms. For atomic programs a and atomic propo-
sitions b, define mg(a) & {(2, B) | @ ¥ {a}a{B}} and mg(b) & {a| « < b}. Thus
aSp iff @ ¥ {a}a{B}, and « = b iff x<bh. Extend mg to all programs and
propositions according to the usual inductive rules.

First we show that & = @. Let {b}a{c} be a PCA in ®. If a is a test, then
ba<c,and & £ ba — ¢ by purely propositional considerations. Otherwise, by
assumption, @ is an atomic program. If « = band f | ¢, then a < b, f < ¢, and
@ - {b}a{c}, so by weakening, ® I- {a}a{B}. By definition of mg(a), it is not
the case that o p.

Now suppose @ ¥ {b}p{c}. We show that there must exist states « and f of
R such that ap, o |= b, and | ¢, thus ] ¥ {b}p{c}. By the and- and or-
rules, there exist « < b and < ¢ such that @ ¥ {a}p{B}, so it suffices to show
that if @ ¥ {a}p{B}, then o>p. We show the contrapositive by induction on
the structure of p.

Suppose it is not the case that ocLﬁ. The case for atomic programs « is just
the definition of mg(a). For p a test b, we have by definition of R that either
a# B or « = f<b. For the former, since @ - {B}b{bB} by the test rule, if
a # B, then o< B and bB < f, therefore @ - {a}b{f} by weakening. For the
latter, since @ {a}b{ba} by the test rule, if « = and f<b, then bo =0,
therefore @ F {«}5{0} and @ + {a}b{f}.

For the case of a choice p + ¢, if not oc'i?/)’, then by the semantics of &
neither o->f nor u—f. By the induction hypothesis, @+ {a}p{f} and
@ - {a}q{B}. By the choice rule, @ + {a}p + ¢{B}.

For the case of a composition p + ¢, if not ocligﬁ, then by the semantics of K,
no 7y exists such that ociyiﬂ. By the induction hypothesis, for all y, either
o {a}p{7} or @ {y}q{B}. Defining A={y|®F {a}p{7}} and
B={y| ®tF {y}q{B}}, we have that 4UB contains all atoms, therefore
(mVA) — VB is a consequence of ¥. Then @ - {a}p{/\ ., 7} by the and-rule,
&+ {a}p{—Vv A} by propositional logic, @+ {a}p{VB} by weakening,
@ - {VB}q{B} by the or-rule, and @ I {a}p + ¢{B} by the composition rule.

Finally, for the case of iteration p*, suppose f§ ¢ C, where C = {y | ocp—>y}.
For y € C and § € C, it is not the case that y->9, therefore by the induction
hypothesis, @ F {y}p{6}. It follows from the and- and or-rules that
@+ {VC}p{\;uc 0} Since w € C and f ¢ C, we have «< vV C and VC< B,
therefore @ - {VC}p{VC} by propositional logic, ® - {VC}p*{VC} by the it-
eration rule, and @ - {a}p*{f} by weakening. [

For rules of the form (1) whose premises are not necessarily simple, the
system of Theorem 4.1 is trivially incomplete. For example, the relationally
valid rule that infers {b}p{c} from {b}p*{c} is not derivable, since it follows by
induction on the length of proofs that no simple PCA can be deduced from
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non-simple premises unless its program is a test. However, we will be able to
obtain completeness under certain assumptions on the expressiveness of the
underlying assertion language.

To formulate this result, we define the Fischer—Ladner closure for extended
PCAs as in PDL (see [14]). A set X of extended PCAs is (Fischer—Ladner) closed
if it satisfies the following closure rules:
b—yYyeX=becXand Yy cX;
0eXx;

P+qly €X = [ply € X and [q]y € X;

lpaly € X = [pllglyy € X and [q]y € X;

[Ply €X =y eX and [p||p'|Y € X;

Py eX=b—yeX;

[ay e X = ¢y € X.

The smallest closed set containing a set @ of extended PCAs is called the Fi-
scher—Ladner closure of @ and is denoted FL®. Note that every element of FL&
is an extended PCA.

The following theorem establishes completeness for all relationally valid
rules of the form (1).

Theorem 4.2. For a given relationally valid rule of the form (1) with premises &
and conclusion ¢, suppose that the underlying assertion language has formulas
corresponding to all elements of FL® such that (2)—(5) hold for those formulas, as
well as (6) for all elements of ®. Then ® = ¢ in the Hoare system consisting of the
choice, composition, iteration, test, weakening, and-, and or-rules, and all simple

PCAs {[aly}afy} for [al € FLo.

Proof. For this proof, we write @ - ¢ if ¢ is deducible from the premises @ in
the system specified in the statement of the theorem.

Suppose @ ¥ ¢. As in Theorem 4.1, we build a Kripke frame & such that
K E @ but K ¥ ¢. The states of & will be the maximal consistent conjunctions
of elements of FL® and their negations; but in this case, consistent takes into
account not only the propositional consequences of @, but also the properties
(2)-(6).

Formally, define an atom to be a set « of formulas of FL® and their nega-
tions satisfying the following properties:

(i) for each Y € FL®, exactly one of y, € a;

(i) forb— Y eFLP, b -y ca<= (bea=y € a),

(iii) 0 & o

(iv) for [p+qly € FL®, [p+qly € o <= [p]y € o and [g|} € «;

(v) for [pglyy € FL®, [pqly € o <= [p][gl} € «;

(vi) for [p*|y € FL®, [p*ly € o < € « and [p|[p*]Y € o;

(vii) for [y € FLO, by €<= b — Y € &

(viii) if {b}p{c} € @, then b — [plc € .
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We regard such an « variously as a set or as a formula corresponding to the
conjunction of its elements. Properties (iv)—(viii) ensure consistency with re-
spect to (2)—(6), respectively. Properties (i)—(iii) ensure propositional consis-
tency. Our expressiveness assumption amounts to the assertion that if K is the
set of all atoms, then VK is true in the underlying model.

As in the proof of Theorem 4.1, we construct a model & with states K. We
define mg(a 3§§°‘ [aly € FLD ([aly € o=y € f)} for atomic prs);
grams da, mg = {a| b € a} for atomic propositions b, and mg([ply) =
{a| [plY € a} for extended PCAs [p]y. The meaning function my, is extended to
all programs and propositions according to the usual inductive rules.

For the purposes of this definition, formulas [p]y occurring in FL® are
treated as atomic propositions, since Hoare logic has no mechanism for
breaking them down further. However, our subsequent arguments will estab-
lish a relationship between the meaning of such formulas as defined here and
their meanlng in PDL. Let us write | pp, for the latter. Thus o =pp. [p]y iff for
all ﬁ if OC—>B then ﬁ ):PDL lﬁ and o ':PDL b iff o 'Z b.

First we show by induction on the structure of p that for an extended PCA
[ply € FL® and atoms o, B, if [p]y € o and a->p, then y € .

For an atomic program «, the conclusion is immediate from the definition of
mg(a).

For a test b, if [b]}y € o and ociﬂ, then o =  and b € a. By clauses (vii) and
(i1) in the definition of atom, y € o.

If [pq]yy € o, then by clause (v) in the definition of atom, [p][g]¥ € «. Suppose
o2 B. Then there exists y such that a->y-5p. By the induction hypothesis on p,
[q]¥ € y, and by the induction hypothesis on ¢, { € f5.

The case of a choice p + ¢ is similar, using clause (iv) in the definition of
atom. X

Finally, suppose [p*]y € « and «2-f. There exist atoms 7, ... ,7, such that

o="7 f=7v, and yiiy,ﬂ, 0<i < n. We have [p*|y € « = y,. Now suppose

[Pl € y;, i < n. By clause (vi) in the definition of atom, [p][p*]y € y;. By the
induction hypothesis on p, [p*]¥ € y,.,. Continuing in this fashion, we even-
tually have [p*|yy € 7, = f. Again by clause (vi) in the definition of atom, € f.

Now we show inductively that for € FL®, if € o, then a Epp. . For
tests b, we have b € o iff o Epp. b by a simple induction on the structure of b.

For extended PCAs of the form [p]y in FL®, if [p]ys € o, then for all f, if
a2, then y € B by the argument above. By the induction hypothesis, for all f5,
if a2>p, then f |=ppL Y, therefore o =ppy [P

Finally, for extended PCAs of the form » — [p| in FL®, if b — [p] € o and
b € o, then [p]y € « by the definition of atom. By the induction hypothesis, if
o ':PDL b, then o ':PDL LD]!//, therefore o ': poL b — [p]lﬁ

Now we can conclude that & | @. For any PCA {b}p{c} in @, all atoms
contain b — [plc by clause (viii) in the definition of atom. By the argument
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above, o EppL b — [p]c for all «. But this is just the semantics of the PCA
{bhp{c}; thus & F {b}pic}.

To finish the completeness proof, we show that if @} {b}p{c}, then there
exist o and f such that «5f, o | b, and § | ¢, therefore R ¥ {b}p{c}. As in
the proof of Theorem 4.1, it suffices to show that if ® ¥ {a}p{B}, then a-p.
We show the contrapositive by induction on the structure of p. All cases are
identical to the corresponding cases in the proof of Theorem 4.1 except for the
case of atomic programs.

For an atomic program a, if not a— f, then there must exist [a]y € o such
that y € f. Then oa<[a]y and Y <pB. Since [ay € FLO, we have
@ - {[a]y}a{y}, therefore by weakening, @ - {a}a{f}. O

5. Uncited references

[6,10,15,16,18].
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