
INFORMATION AND CONTROL 63, 118-139 (1984)

A Programming Language for the Inductive
and Applications*

DAVID HAREL L++

The Weizmann Institute, Rehovot, Israel

AND

DEXTER KOZEN L~

Aarhus University, Aarhus, Denmark

Sets,

We describe a programming language [ND that generalizes alternating Turing
machines to arbitrary first-order structures. We show that IND programs (resp.
everywhere-halting IND programs, loop-free IND programs) accept precisely the
inductively definable (resp. hyperelementary, elementary) relations. We give several
examples showing how the language provides a robust and computational
approach to the theory of first-order inductive definability. We then show: (1) on
all acceptable structures (in the sense of Moschovakis ("Elementary Induction on
Abstract Structures," North-Holland, Amsterdam, 1974), r.e. dynamic logic is more
expressive than finite-test dynamic logic. This refines a separation result of Meyer
and Parikh ("Proc. 12th ACM Sympos. on Theory of Computing," 1979, pp.
167-175); (2) IND provides a natural query language for the set of fixpoint queries
over a relational database, answering a question of Chandra and Harel (J. Comput.
System Sci. 25, No. 1 (1982), 99 128). © I984 Academic Press. lnc.

1. INTRODUCTION

I n th i s p a p e r we d e s c r i b e a p r o g r a m m i n g l a n g u a g e I N D w h i c h is ve ry

s i m i l a r to t he n o n d e t e r m i n i s t i c l a n g u a g e i n t r o d u c e d in M a n n a (1970) . I n

* This paper is a significantly revised version of an unrefereed preliminary report which
appeared under the same title in the "Proceedings of the 9th Colloquium on Automata,
Languages, and Programming," Aarhus, Denmark, July 1982, pp. 313-329.

t Research supported in part by a Bath-Sheva fellowship.
* Work done in part at IBM Thomas J. Watson Research Center, Yorktown Heights, New

York 10598.
On leave from IBM Thomas J. Watson Research Center, Yorktown Heights, New York

10598.

118
0019-9958/84 $3.00
Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

A PROGRAMMING LANGUAGE 1 19

its most basic form, the language consists of only 3 types of statements:

11: y ~ 3 (or y ~ V)

12: accept (or reject)

/3: tf R()c) then goto l 4

where R(i) is an atomic first-order formula.
An IND program P can run in any first-order structure of the same

similarity type. The input is an initial assignment to variables 2 = xl xn,
where 2 contains (at least) all the free variables of the program, and
execution starts at the first statement. Statements of the form ll assign an
arbitrary element of the domain existentially (universally) to variable y,
just as in alternating Turing machines (Chandra, Kozen, and Stockmeyer,
1981). A statement of the form l 2 c a u s e s immediate acceptance or rejection,
and 13 is an ordinary conditional branch. The definition of acceptance of
the input 2 is the same as in alternating Turing machines (Chandra et al.,
1981) involving an inductively-defined labeling of the computation tree
with either 0 (reject), 1 (accept), or _1_ (undefined); see Section 3.

In Section 5 we show:

(1) IND programs accept precisely the relations definable by elemen-
tary (first-order) induction.

(2) IND programs which halt on all inputs (i.e., either accept or
reject) accept precisely the hyperelementary (or inductive, co-inductive)
relations.

(3) Loop-free IND programs accept precisely the elementary (first-
order definable) relations.

In countable acceptable structures (see Moschovakis, 1974) such as the
natural numbers N, (1) and (2) become

(1) IND programs accept precisely the H] relations.

(2) IND programs which halt on all inputs accept precisely the 3~
relations.

IND provides a simple and highly intuitive computational framework for
the theory of inductive definability. For example, our proof of (2) involves
showing that if both a relation and its complement are accepted by IND
programs P1 and P2, then the two programs can be simulated by a third
program that always halts, P3. P3 simulates steps of P1 and P2 alter-
natively, halting whenever one or the other halts, just as in the usual Tur-
ing machine proof that an r.e., co-r.e, set is recursive. Many other elemen-
tary results, such as the stage comparison theorem, closure theorem, and

120 HAREL AND KOZEN

separation theorem (Moschovakis, 1974), have machine-based proofs using
IND that recall analogous proofs in recursion theory tha t use Turing
machines. The availability of such a tool is especially important now that
concepts central to inductive definability theory have resurfaced in com-
puter science in recent work on program logics (Meyer and Parikh, 1980),
and program verification in the presence of fairness or unbounded non-
determinism (Apt and Plotkin, 1981; Lehmann, Pnueli, and Stavi, 1981;
Grumberg, Francez, Makowsky, and de Roever, 1981).

In Section 6 we use IND to characterize the expressive power of dynamic
logic. Meyer and Parikh (1980) have shown that dynamic logic with
unrestricted recursively enumerable programs (DLr~) is strictly more
expressive than many limited versions, such as DL with finite tests (DLft).
The result is proved by transferring the problem to the problem of dis-
tinguishing co ~' and co ~'' 2 in fragments of infinitary logic, and does not
provide any insight into the inherent computational power of DL. In Sec-
tion6 we show that on any acceptable structure, DLre is more expressive
than DLrt. Specifically, we show that in any acceptable structure, DLr~ and
DLrt define exactly the IND complexity classes r(~Ol ce) and ~(co), respec-
tively, where o0 cK is the first non-recursive ordinal. In any acceptable struc-
ture, r(~o) is the set of first-order definable relations, and on recursive
acceptable structures (such as N), r(cocK)=A{. The classes r(co) and
r(co cx) can be separated on any acceptable structure by a simple
diagonalization argument.

It should be emphasized that the expressiveness results of (Meyer and
Parikh, 1980) are schematic, in the sense that they consider L 1 ~< L 2 if there
is an interpretation of L1 in L2 which holds uniformly over all structures,
whereas we will write L 1 <~ L2 if for each structure there is an interpretation
of L1 in L2. The former gives stronger positive expressibility results, and
the latter gives stronger negative expressibility results (such as
DLft g:DLre). Our positive expressibility results (such as DLre =7;(~oCK))

are not to be interpreted schematically.
In Section 7 we show the connection between inductive definability and

the fixpoint queries of (Aho and Ullman,1979; Chandra and Hard, 1980)
for relational data bases. Coupled with a recent result of Immcrman (1982),
this observation shows that IND defines exactly the class of fixpoints
queries FP, thus answering a question of Chandra and Harel (1980).

2. PROGRAMMING EXAMPLES

The definition of acceptance for IND programs involves labelings of an
and/or computation tree generated downwards from the root or start con-
figuration, much as in alternating Turing machines (Chandra et al., 1981).

A PROGRAMMING LANGUAGE 121

We defer the formal definition of acceptance until Section 3; in this section
we whet the reader's intuition with some sample IND programs.

We first add a few more powerful programming constructs. These con-
structs are defined in terms of the primitive constructs given in the last sec-
tion, and do not change the expressive power of the language.

An unconditional jump goto l can be obtained by using the test y = y in
the conditional. Certain more complicated conditional forms, such as

i f R(2) then goto I1 else goto 12

i f R(~) then accept else reject

i f -nR(2) v S(2) then goto l

are obtained by manipulation of control flow. The assignment statement
y ~ t is obtained by

y ~ 3 or x+--3

i f y ¢ t then reject i f x C t then reject

y ~ 3

i f y ~ x then reject

where x is a new variable, if y occurs in t.
There is a loop-free program to compute any first-order formula. For

example, an element x of a Boolean algebra is atomless if it satisfies the for-
mula

V y ~ x (y ¢ O ~ 3z<~y (O ¢ z A z ¢ y)) .

The set of such elements is accepted by the program

y.--V

i f --1 y <<. x .v y = 0 then accept

z,~--3

i f --7 z <~ y v 0 = z v z = y then reject

accept.

However, IND programs can accept sets that are not first-order
definable. For example, ll below accepts all pairs (x, y) in the reflexive
transitive closure of R, and 12 accepts y iff R is well-founded below y:

122 HAREL AND KOZEN

11: i f x = y then accept 12: X +-'7'

z ~ 3 i f -7 R(x, y) then accept

i f --TR(x, z) then reject y ~ x

x ~ z goto l 2

goto ll

The statement I5 v 16 which accepts if either the program starting at 15 or
that starting at l 6 accepts is encoded by

y ~ 3

i f y = z then goto l 5 else goto l 6

where y is a new variable and z is any other variable (provided the domain
contains at least two elements). The statement l 5/x l 6 is defined similarly,
using ~/instead of 3. One can also encode the statement -715 which accepts
(rejects) iff the computation starting at 15 rejects (accepts). This is done by
taking the whole program P and constructing its dual P by interchanging
~//3 and accept~reject statements. The program /5 then accepts (rejects)
exactly when program P rejects (accepts), starting at any point.

The statement ~15 is then given by goto {5 where {5 is the statement
corresponding to l 5 in the dual program. Of course, the statement -7{5 in
the dual program is replaced by goto 15.

These constructs allow us to encode the statement

i f ~o(2) then goto ll else goto 12,

where (p(Y) is any first-order formula, or for that matter any relation com-
puted by a program that always halts:

(m I /x l l) v (- l m I A 12)

where m~ is the first statement of a program computing ~0(.~).
One of our main results is that there is an IND program that accepts

any relation definable by first-order induction. For example, the subgroup
H of G generated by a, b is the least subset of G such that

x e H ~ - - * x = a v x = b v ~ y e H 3 z ~ H x = y . z v x = y x.

A P R O G R A M M I N G L A N G U A G E 123

Membership in H is computed by the program

11: i f x = a v x = b then accept

y*--3

i f x = y l then goto l 3

z+-3

i f x ~ y" z then reject

12/x l 3

12: x ~ z

goto l~

/3: x+-- y

goto 11

To give an example involving an unbounded alternation of quantifiers,
consider a two-person game like chess or go. The set of board positions
from which a given player has a forced win is defined inductively from the
legal-move and (immediate) win predicates by

force(x)~win(x) v 3y(legal-move(x, y) A ~win(y)

A Vz(legal-move(y, z) --, force(z)))

and is accepted by the program

11:/fwin(x) then accept

y , - - 3

if ~legal-move(x, y) v win(y) then reject

x ~--- V

if -nlegal-move(y, x) then accept

goto l~

IND programs can run for more than a finite amount of time and still
halt. An example of a program that runs in N for time co + 1 is

y*--V

11 : / fy=0 then accept

y ~ y - 1

goto Ii

124 HAREL AND KOZEN

In N, the running times of IND programs are exactly the recursive
ordinals. In fact, we can take the set of computation trees of IND programs
as a set of notations for recursive ordinals.

3, SEMANTICS OF ACCEPTANCE

The semantics of acceptance is formally almost identical to that of alter-
nating Turing machines (Chandra et aL, 1981). Intuitively, it consists of
two stages: (1) generation of the computation tree downwards from the
root, and (2) evaluation of the acceptance function upwards from the leaves
to the root. Associated with each node of the computation tree is a unique
configuration (l, v), where I is the label of one of the statements in the
program and v is a valuation of program variables over the domain of
computation A. If a node of the computation tree is labeled c, then its
immediate descendants are labeled with all elements of N(c), the next con-
figurations of c, which are defined by cases, depending on the statement
strut(c) labeled by c's first component:

N(l, v)= {(l', v[ye--a])] a e A }

= {(m, v)}

= { (l ' , v) }

if stmt(/, v) is y ~ q or ~v *-- V

if stmt(l, v) is accept or reject

if stmt(/, v) i s / f R(2) then goto m

and A, v ~ R()~)

if strut(l, v) is if R(2) then goto m

and A, v ~ ~ R()~)

where l' denotes the next statement after l in the program (or the first
statement, if l was the last). The root of the tree is the start configuration.
The acceptance function e* can be regarded as a labelling of nodes of the
computation tree with either 0 (reject), 1 (accept), or L (undefined), but
formally its domain is the set C of configurations. It is defined as the
supremum of a chain of approximating labelings e ~. Intuitively, e~(c)-= 1
(resp. 0) if c has been determined to be an accept (resp. reject) con-
figuration by time c~; e~(c) = l if neither has been determined by time c~. At
time 0, nothing is determined, thus e°(c)= ± for all c. At time 1, the leaves
of the tree, corresponding to accept and reject statements, are labeled 1 and
0, respectively, and everything else is labeled L. If s t m t (c) = y ~ 3 and
e~(d)=l for some deN(c), then e~+l (c)= l . If s t m t (c) = y ~ V and all
deN(c) are eventually labeled 1, then c becomes labeled 1 upon com-
pletion of the labeling of N(c). Note that because of unbounded nondeter-

A PROGRAMMING LANGUAGE 125

minism, it may take more than a finite amount of time for a configuration
to become labeled 0 or 1.

Formally, let C be the set of configurations, let Ord be the class of
ordinals, and let * 6 0 r d with ~ < * for all e ~ Ord. Define the sequence
e~: C--*(0, 1, ±) inductively by e ~=ll~<~z(eB), where z is the
G-monotone map defined by

~ (e) (c) = 1

= 0

= V
d~ N(c)

= A
d~ N(c)

= e(d)

e(d)

e(d)

if stmt(c) = accept

if strut(c) = reject

if stmt(c) = y ,--

if strut(c) = y ~ V

if stmt(c) = if R then goto m and N(c) = (d).

The meet /~ and join V are with respect to the ordering 0 < ± < 1, and
should not be confused with the approximation ordering G with join LJ,
defined ± G 0, ± G 1 and extended pointwise to labellings, e* is the
G-least fixpoint of z.

We say c becomes properly labeled at time a if a is the least ordinal such
that e~(c)¢ L, and write o(c)= ~. If no such ~ exists, we write o(c)= *
Thus e*(c) = e°¢C)(c). The running time of P on input 2 is defined to be o(c),
where c is the start configuration (ll, 2). We denote this by TIME(P, 2).
The program P is said to accept 2 if e*(c)= l and reject 2 if e*(c)= O,
where c is the start configuration of P on 2; in either case TIME(P, :?) < *
and P is said to halt on 2. The relation accepted by P is the set

{ 2 1 P accepts 2}.

If TIME(P, 2) = * , then e*(c)= ± and P does not halt on 2. Call a
program P fl-time bounded if TIME(P, 2) ~< fl for all inputs 2 accepted by P
(P need not halt on Other inputs). Define the complexity class

r(c~) = U (relations accepted by fl-time bounded IND programs).
fl<a

4. THE SHUFFLE CONSTRUCTION

If A a n d A are both r.e., then A can be proved recursive by constructing
a Turing machine T3 which simulates steps of T~ and T2 alternately, where
T 1 accepts A and T2 accepts _d. In this section we give a similar construc-
tion for IND programs. This construction will be applied in the proofs of

126 HAREL AND KOZEN

Theorems 2 and 3. Theorem 1 corresponds to the stage comparison
theorem of inductive definability (Manna, 1970).

Suppose P and Q are programs with disjoint sets of variables £ and)7,
respectively, and statement labels ll lp and ml mq, respectively. By
adding dummy statements, we can assume without loss of generality that p
and q are relatively prime. Now we shuffle the statements of P and Q to get
the program PQ with 2pq statements labeled by all pairs of the form
(_li, mi) and (li,_mj), l <<.i<~p, l <<.j~q, arranged in the order (]1,ml),
(/2, _ml), (_12, m2), (13, _rn2),..., (]p, rni), (ll, _m~),..., (_lp, mq), (/1, _mq). The
underline tells which statement of P or Q is the next to be simulated. The
statement of PQ labeled by (]i, mj) is the same as the statement of P
labeled by li, unless it is a conditional jump

li: if R(£) then goto lk

in which case we take

(-/i, rnj): if R(£) then goto (lk, _m/).

A symmetric remark holds for statements labeled (l i, _m j). Thus PQ
simulates steps of P and Q alternately. Since the variables of P and Q are
disjoint, these simulations do not interfere with each other. The formal
statement of this property involves the relationship between the successor
configuration maps NpQ and Np, NQ. Observe that there is a natural one-
to-one correspondence between the configurations Cpo of PQ and pairs
(c, d) ~ Cp x CQ w CQ x Cp:

((]i, m/), ~, 6) ~ ((l,, ~), (mj, 6))

((l,, _mj), ~, 6) ~ ((mj, 6), (l,, ~)).

The order of the components in (c, d) ~ C p X C Q k-) C Q X C p tells which of
P, Q is next to be simulated. Hence we will identify elements of CeQ with
the corresponding elements of Cp x CQ w C o x Ce. Then by construction of
PQ,

NpQ(c, d)= {(d, c')[c '~N(c)}

where N(c) = Ne(c) if c ~ Ce, NQ(c) if c ~ CQ.
The following lemma and theorem state that the label assigned by e* to

a particular configuration (c, d) e Cp x CQ of PQ is either the one assigned
to c by P or the one assigned to d by Q, depending on which is labeled
sooner. Moreover (c, d) is labeled in PQ within at most double the time it
takes to label either c or d in P or Q, respectively.

A PROGRAMMING LANGUAGE 127

LEMMA.

e~(c, d) = er~/2](c) if o(c) <~ o(d),

= eL~/2J(d) if o(c) > o(d).

Remark on notation, r:¢/2] denotes the least ordinal fl such that 2fl >~ :~,
and L:(21 denotes the greatest ordinal fl such that 2fl ~< ~. These ordinals
exist and are unique; if :¢ is of the form 2 + n where 2 is a limit ordinal and
n is finite, then [a / 2] = 2 + [n / 2] and La/2l = 2 + Ln/2J, where Fn/2] and
Ln/2_J denote the usual ceiling and floor functions on the integers. A simple
consequence of this definition is

[2 / 2] = L2/2A = 2 if 2 is a limit ordinal,

[a / 2] = L(e + 1)/2],

Lo(Z_j + 1 = r-(~ + 1) /2] .

Proof o f Lemma. At 0 or limit ordinals,

e;(c, d)= U e~(c, d)

er~/2](c) if o(c)<~o(d),

U eL~/2J(d) if o(c)>o(d),
c~<).

= e;~(c) if o(c) ~o(d),

= e;~(d) if o(c) > o(d).

For successor ordinals a + 1, we proceed by cases, depending on the form
of strut(c, d) = stmt(c). If stmt(c, d) =accept ; then o(c) = 1 <<, o(d), and

e ~+ 1(c, d) = 1 = e r(~+ 1)/2](e).

The case stmt(c, d) = reject is similar. Fo r stmt(c, d) =/f . . . then let c' be
the unique successor of c. Then (d, c') is the unique successor of (c, d).
Moreover , o(c) = o(c') + 1 and e ~+ l(e) = e~(e'). Then

e ~+ ~(c, d)= e~(d, c')

= er~/2](d) if o(d) ~ o(c'),

= eL~/2](c') if o(d) >o(c')

128 HAREL A N D KOZEN

by induct ion hypothesis,

e~+l(c,d)=ek(a+l)/ZJ(d) if o(d)<o(c),

= e La/2j + l (c) if o(d)) o(c),

-=eL(a+l)/2l(d) if o(d)<o(c),

=er(a+l)/Z](c) if o(d)>~o(c).

The last and most involved case is s t m t (c , d) = y ~ - 3 o r

stmt(c, d) = y ~-V. We prove the case y ~ 3, since the two cases are sym-
metric.

ea+l(c,d) = V ea(d,e')
c' ~ N(c)

= V er~/2](d) v V eL~/2J(c')
e' e N(c) c' e N(c)

o(d) <~ o(c') o(d) > o(c')

= G V "C, (*)

where ~ (resp. v) is the left-hand (resp. r ight-hand) disjunct. Either

to

to

(a) Vc'~ N(c) o(d)> o(c'), in which case a vanishes and (*) evaluates

ek~/Zj + 1(c) = er(~ + 1)/2](c);

(b) Vc'e N(c) o(d)<<, o(c'), in which case ~ vanishes and (*) evaluates

e r ~ / 2 7 (d) = eL(a + 1)/2J(d);

(c) neither (a) nor (b), in which ease (*) becomes

e L(a+ 1) /2J(d) V l:.

Moreover ,
~<~ V e L ~ / 2 J (c ') = e r (~ ' + l) / 2 q (e) •

c' e N(c)

Suppose first that o(c) <~ o(d). If e r(~+ D/27(c) = 0, then (a) above holds. If
e r(~+ 1)/21(c)= 1, then Bc 'e N(c) o(c)= o(c')+ 1 and eLa/2J(c)= 1, thus v = 1
and (*) evaluates to 1. If er(~+l)/2](c)=±, then eL(~+l)/2J(d)=± since
o(c) <<. o(d), and r ~< ±. If (a) holds, there is nothing to prove. (b) can only
hold when o(c)=o(d)= *, in which case (*) evaluates to eL(a+n/ZJ(d)=
er(a+l)/21(c)= ±. If (c) holds, then (*) evaluates to _L v z = ±. Thus

e ~+ 1(c, d) = e r(~+ 1)/21(c)

whenever o(c) <~ o(d).

A PROGRAMMING LANGUAGE 129

Now suppose o(c)> o(d). Under no circumstances can (a) occur; if (b)
occurs, we are done; therefore assume (c). Then ~ # 1 , otherwise
o(c) <<, o(d). Thus r ~< J_ and (*) evaluates to

eL (~' + D/2 J(d) v ~.

If this is not equal to eL (~ + l)/2 J(d), then eL(~'+l)/2A(d)=O and z = A_. But
t h i s is impossible, because if er~/2](d)#_l_ and o (c ') < o (d) then

eL~/Z J(c') # _L. Thus

whenever o(c)>o(d) . |

THEOREM 1.

(i) e*(c, d) = e * (c)
= e*(d),

e ~+ 1(c, d) = e L(~+ 1)/2J(d)

if o(c) ~ o(d),
if o(c) > o(d).

(ii) o(c, d) = min(2 , o(c) - 1, 2" o(d)).

Remark. The expression 2. o (c) - 1 in (ii) makes sense, because e can
only become first properly labeled at a successor ordinal.

Proo f

(i) e*(c, d) =]] e~(c, d)
O~

= U er~/2](c) if o(c) ~ o(d) ,

= H eL'/2J(d) if o(c) > o(d),

= e*(c) if o(c) <~ o(d),

= e*(d) if o(c) > o(d).

(ii) Let # e ' R (e) denote the least ~ such that R(~).

o(e, d) = pa. e~(c, d) :~ ±

= IlCZ • er~/2](c) ~ _1_ if o(e) <<. o(d),

= #~" eL~/ZJ(d) :~ ± if o(c) > o(d),

= 2" o (c) - 1 if o(e) <~ o(d),

= 2" o(d) if o (e) > o(d),

= min(2 , o (e) - 1, 2. o(d)). |

130 HAREL AND KOZEN

If the variables of P and Q are not disjoint, define the shuffle PQ as
follows: rename the variables ..of P to get a program P' having no variables
in common with Q. Let xl xk be the variables common to P and Q and
let Yl,..., Yk be their replacements in P'. Define PQ to be the program
which assigns Yi ~ xi, 1 <~ i <~ k, then runs P'Q.

COROLLARY 1. Let P, Q be two programs with a common set 2 of input
variables. Then PQ accepts (rejects) ~ iff either

(i) TIME(P, ~) ~< TIME(Q, g) and P accepts (rejects) Yc; or

(ii) TIME(P, ~) > TIME(Q, if) and Q accepts (rejects) ~.

5. MAIN RESULTS

THEOREM 2. (i) IND programs accept precisely the relations definable by
first-order induction;

(ii) IND programs which halt on all inputs accept precisely the hyper-
elementary (or inductive, coinductive) relations;

(iii) loop-free IND programs accept precisely the first-order definable
relations.

Proof. (i) Every inductively definable relation is given by a first-order
formula q)(S, ~) with free variables 2 = xl ,..., xn, an n-ary predicate symbol
S occurring only positively (i.e., under an even number of negations) in q),
and some constants 8 = al,..., am, m-%< n. The fixpoint defined by q~ is the
least S* such that

s* = {dl ~cp(S*, d)}

where ~ denotes truth in the structure under consideration. The inductive
relation defined by qg,~ is the (n - m) - a r y relation S*(al am, Xm+l Xn).

Given such an inductive definition (p, & a program to accept all
(Xm+ 1,"., Xn) satisfying S*(al am, Xm+ 1,'", Xn) works as follows: First it
assigns ai to xi, 1 ~< i~< m, and then enters a loop labeled ll which deter-
mines whether S*(ff). Within the loop it decomposes ~0(S, if), using y ~- V
and y ~ 3 to eliminate quantifiers, lj /x 12, l l V 12, - ' l l 1 to eliminate logical
connectives, and conditionals for atomic formulas; this leaves only
occurrences of S(37), which are handled by assigning 37 to 2 followed by an
unconditional jump back to 11.

Conversely, if P is any IND program with n statements ll In and
program variables 2, let a, b be distinct elements of the domain (which we

A PROGRAMMING LANGUAGE 131

assume is nontrivial), and let Yl,..., Yn be new variables not occurring in P.
We will use y~,..., Yn, a, b to simulate a "program counter." Let ~i denote
the sequence of as and bs of length n such that there is an a in the ith
position, and the rest are bs, and let)5 = ~ abbreviate the relation

y i = a A /~ y i=b .
j¢i

The relation)5 = ~ will simulate that P is about to execute l~.
We now construct a first-order formula g0(S, 2,)5) with S=S(2 ,)5)

occurring only positively in go, such that S* describes exactly the nodes of
the computation tree that are labeled 1. Let

goi ~ t r u e

=false

= ~xiS(2, ai+ 1)

=VxjS(2, a i + l)

= (R(X)/x 8(X, ak)) V (--qR(2) /x 3(2, ai+l))

if li is a statement of the form

li: accept

l~ reject

li: xj ",- 3

li: XJ *-- V

li: i f R(2) then l k,

respectively. Let

go(s, 2,)5) = V)5 = a, A go,.
i

The relation accepted by P is then S*(2, ~1), where l 1 is the first statement
of P.

(ii) Any program P accepting S which halts on all inputs has a dual
/5 which also halts on all inputs, and accepts the complement of S. Thus by
(i), S is both inductive and coinductive. Conversely, suppose the set S is
both inductive and coinductive. By (i), there are programs P and Q
accepting S and S, respectively. Modify P and Q so that they never reject,
by replacing all statements l: reject with l: goto I. By Corollary 1, the shuffle
PQ accepts S and rejects S.

643/63/1/2-9

132 HAREL AND KOZEN

(iii) It has already been argued in Section 2 that every first-order
definable relation is computed by a loop-free program. The converse is
obtained by observing that every loop-free program is equivalent to one
with only forward jumps; a formula is now easy to construct. |

Observe from the proof of Theorem 2(i) that there is a strong connection
between the running times of IND programs and the ordinals at which
inductive definitions close (see Moschovakis, 1974). The closure ordinal ~c A
of a structure A is defined in ibid. as the supremum of closure ordinals of
all possible inductive definitions. By the proof of Theorem 2(i) we see that
(for infinite structures) this is just the supremum of running times of IND
programs in A. The following theorem relates these concepts to the com-
plexity classes ~(~) defined in Section 3.

THEOREM 3. (i) r(CO)= {first-order definable relations}.

(ii) z(~c A) = {hyperelementary relations}.

Remark. Part (ii) is related to the closure theorem of inductive
definability theory (Moschovakis, 1974, p. 33).

Proof. (i) Clearly, any loop-free program can run for only finitely
many steps, independent of the input. Conversely, any c-time bounded
program, c < co, can be made to halt on all inputs by shuffling it with a
"clock," i.e., a program that on all inputs runs for c + 1 steps, then rejects.
The resulting program now has a finite, uniform time bound d, indepen-
dent of the input. But any such program is equivalent to a loop-free
program obtained by unwinding the loops d + 1 times. The result follows
from Theorem 2(iii).

(ii) (2) Let P be a program that halts on all inputs. Let P1 be P
modified so as never to reject, as in the proof of Theorem 2(ii), and let P2
be P modified so as never to reject, where/5 is the dual of P. Then PI P2
accepts all inputs and V2, TIME(P, 2)<~TIME(P1P2, 2). Let P3 be the
program which chooses the input universally by executing y ~-V for all
input variables, then executes PIP2. Then TIME(P3, 2) is a constant /3
independent of the input, and V£TIME(P, 2) ~< fl < ~c A.

(g) Let P be /3-time bounded, /3<•A. If we can construct an
s-clock, /3 < ~, then it can be shuffled with P to give a program accepting
the same set as P, but always halting. The result then follows from
Theorem 2(ii). Since/3 < ~c A, there exists a program Q which runs for time
c~ >/3 on some input 2. Let Q I assign 2 to all input variables, then run Q.
Q1 halts on all inputs in time exactly c~ + c and either accepts all inputs or
rejects all inputs, so either Q1 or Ol gives an appropriate clock. |

A PROGRAMMING LANGUAGE 133

6. AN APPLICATION TO DYNAMIC LOGIC

The programming language IND originally arose in our attempt to
clarify a result of Meyer and Parikh (1980) on the relative expressibility of
four variants of first-order dynamic logic (DL), namely DLreg , DLcf , DLft,
and DLre. Programs of DLre are all r.e. sets of sequences of assignments
x := t and tests q)(£)?, called seqs, where t is a term and ~0 a formula of
DLr~. One obtains DLreg, DLcf, and DLf, by allowing, respectively, only
regular expressions or flowchart programs (so that the set of seqs is
regular), recursion schemes (so that the set of seqs is context free), or r.e.
sets of seqs, but each with at most finitely many distinct tests.

Meyer and Parikh prove that DLreg is strictly less expressive than DLre
(in symbols, DLreg < DLre) by the following sequence:

L cK DLre (**) DLreg ~ Q DLcf ~< ® DLft ~< Q Lb~ < ® ,o1,~ - (9

where L cK is infinitary first-order logic with r.e. disjunctions, and Lb, is the 6OIO)

same language restricted to bounded quantifier alternation. The bulk of the
proof is devoted to @, which uses an Ehrenfeucht-Frass6 argument to
show that Lb, cannot distinguish between the ordinals co °~ and co ° . 2, while
L c1~ can define any recursive ordinal up to isomorphism. ¢o1~o

In this part of their paper, all resemblance to dynamic logic has been
lost. This was taken as evidence in support of the stand that dynamic logic
should enjoy less autonomy, and one should do all one's work in infinitary
logic (Meyer and Tiuryn, 1981). We disagree, for the simple reason that
L cK - L b a in virtually every structure arising in computer science (e.g., the ¢o1¢o

natural numbers N, any recursively defined data type, or any structure
whose elements are all named by closed terms). This is because every L cK CO169

formula is equivalent to a quantifier-free formula, by replacing 3xq)(x) with
~/~ (p(t), where the join is over the set of closed terms. One's intuition is still
that DLreg < DLre, even restricted to such structures. Our results of this
section show that DLft < DLre on any acceptable structure (Moschovakis,
1974) (or arithmetic universe (Harel, 1979)). These structures contain a
first-order definable copy of the natural numbers and first-order predicates
for coding and decoding sequences of elements into single elements. This
allows assigning codes or G6del numbers to programs and formulas so
that they can be decoded and manipulated by other programs and for-
mulas. The proof reveals the computational power of the various versions
of DL in terms of the complexity classes r(c0.

THEOREM 4. On any acceptable structure,

(i) DLrCg -= DLcf = DEft ~ z(co)

134 HAREL AND KOZEN

(ii) DLre--- z(o) cK)

(iii) z(~o cK) - ~(~o) :~

where ~o c~ is the first nonrecursive ordinal.

For example, on N, whose closure ordinal is co c~c, DLr~ --- z/~ and DLft =
(first-order definable relations). This follows from Theorems 3, 4, and
Kleene's Theorem (A l= hyperelementary on N).

Proof (i), (ii), (D) This direction does not need the assumption of
acceptability. The case (i) follows from Theorem 3(i) and the fact that DL
contains first-order logic. Similarly, on any structure ~¢, v(~o cK) ~< DLr¢,
since if P is any IND program and ~ any recursive ordinal, there is a
DL~¢-formula (p~ such that

sC~(p~(c) iff e~'(c)= 1

for any configuration c, defined recursively by

(po ~-~ false

~o~+ l (c) ~ strut(c) = accept

v strut(c) = y ~ 3 A 3deN(c) ~o~(d)

v strut(c) = y ~ V A Vde N(c) q~(d)

v stmt(c)= if...then... A 3d~N(c) qo~(d)

~ 0 ~ ({~o~? [c~<2}) true,)~ a limit ordinal.

The crucial point of this definition is that it is effective, in the sense that
there is a recursive function r such that r("cd')= "q~", where "~" and "q~"
denote codes (fixed in advance) for recursive ordinals and DLre formulas.
This fact is needed in the definition of ~o to insure that the set {(p~? I ~ < 2}
is r.e., so that (p), will be a DLr~ formula. Now, if A ~ r(COlCX), then A is
accepted by an IND program P which fs a-time bounded for some recur-
sive ordinal c~; thus for any input ~ ~ s¢ k,

P accepts f i~e~(ll , 8)= 1 ~--~d~q)~(ll, ~).

Then ~o~(ll, 2) is a DLre formula defining A.

(i), (ii), (_) We describe first an IND program to decide the
satisfiability of DLre formulas in d , consisting of a main program
SATIS(p, x) and subroutine COMPUTE(q,x , y). SATIS("qo,""fi") will
determine if d , f i ~ o and COMPUTE ("~," "~i," "6") will determine if
state fi goes to state 6 under program 7r, where "&" "6" are codes of

A PROGRAMMING LANGUAGE 135

sequences 6, 6 of elements of sO, and "q~" and "n" are codes of a DLre for-
mula q~ and a DLre program n.

Initially, SATIS ("q~," "E') assigns a code for the list of free variables of
q) (available from "q)") to a variable v, and assigns "6" to w. This models
the assignment of the values 6 to the list of variables in v, in the same
order. It now proceeds by cases, depending on the form of q~. If ~0 = ~/x o,
it uses the program construct A defined in Section 2 to check both ~ and
0, and similarly for v , 7 . If q) = 3y~,, it executes z +-- 3; then, if the DLre
variable y is in the list v, it modifies the corresponding value in the list w to
the value of z; otherwise, it appends the name of y to the list v and the
value of z to the list w. If ~0 = ~/yO it does the same, using z +-- V instead of
z ~ 3. If ~o = (re) ~,, since

d , 6 ~ (r c) ~ iff 36 ~ g o e s t o 6 u n d e r r c a n d ~ ¢ , / 5 ~ 0 ,

SATIS executes z *--3 and interprets the result as a code "/5." It then calls
SATIS("~b," "/5") and COMPUTE("~z," "6," "6") in parallel, using A.

Finally, if q~ = R()?) where R(2) is atomic, it picks out the current values
in the list w corresponding to DL~e variables ~2 and assigns them to IND
variables)7, then executes

if R(~) then accept else reject.

COMPUTE("rc," "&" "/5") determines whether state 6 goes to state /5
under DLr~ program re. Recall that a program rc consists of an r.e. set of
seqs; each seq is a finite sequence So;...; sk ~ for some k; and each si is
either an assignment y := t or a test ~o?. The code "re" gives a G6del num-
ber for the set of seqs, and 6 goes to/7 under ~ iff 6 goes to/7 under some
seq of ~. C O M P U T E chooses a seq existentially using i ~ 3, and then tries
to determine if the ith seq of rt, say seq~= So; sk_~, takes £, to/5. It could
do this by starting from 6o = 6, deterministically applying So, s~ sk ~ in
succession to get a sequence 61 ak of intermediate states, and accepting if
6k =/7. However, for a later application, it will be better to keep COM-
PUTE loop-free. Thus, the program instead guesses a code for the entire
sequence ao, a,,..., 6 k with a single z ~ 3, and then determines whether sj
takes 6j to 6j+l, O<~j<k, byexecut ing j + - g ; i f j is not the code for a
natural number < k then accept; check if sj takes ~j to 6j+~. For sj of the
form y : = t, the check is straightforward. For sj of the form ~b?, the
program checks whether 6 j=6j+~, then whether ag, aiD4, by a recursive
call to SATIS.

Holding "~o" fixed, SATIS("q~," "6") accepts (the codes of) the set defined
by q~. The theorem is now proved by analyzing the time complexity of
SATIS and C O M P U T E on fixed rp. All encoding and decoding operations
can be done without loops, since they are first-order definable. The choice

136 HAREL AND KOZEN

of seqi in C O M P U T E can be done without a loop since lr is r.e. and thus
first-order definable. We were careful to avoid loops in the processing of a
seq in COMPUTE. Thus each iteration of SATIS and C O M P U T E takes
constant time before it recurs on a subformula; therefore there is a constant
c such that

f a TIME(SATIS("cp," "~")) ~ c'h(~o)

where h(cp) is the height of (p, defined by

h(~o) = 1, ~o atomic,

h(Vx~o)

h(Tz)

= h (p A 0) = max{h(q~), h(0)} + 1,

= h(~xq~) -- h (~ ~o) = h(q~) + 1

= max{h(~), h(cp)} + 1,

= sup{h(~) I ~ a seq of 7z} + 1,

h(a) = sup{h(cp) I ~o? a test of a} + 1, a a seq.

Thus it remains to show that

h(~o) < cocx, (p in DLro,

h(q)) < co, cp in DLft.

The former follows from the fact that there is a recursive code "~0" for each
in DLre, and h is effective with respect to this code. The latter follows

from the fact that the suprema in the definition of h(rc) and h(~) are finite,
since there are only finitely many tests.

(iii) This is a straightforward diagonalization. Construct an IND
program P which, on input "cp(x)," q~(x) a first-order formula with one free
variable x, accepts iff ~(p("~o"), P runs for time c.h(cp)<co, so the set it
accepts is in r(co + 1)_or(cocK), and not~in r(co)= {first-order-definable
sets} for obvious reasons. |

7. I N D AS A DATA BASE QUERY LANGUAGE

There has been much recent work in the theory of relational data bases.
In the relational model, a data base is a collection of finite tables (Codd,
1970) and can be viewed simply as a finite first-order structure
B=(D, R1,..., Rk). Queries are (partial) functions from data bases to
relations, and a query language is a set of formal expressions defining such
functions; (Chandra and Hard , 1980).

A PROGRAMMING LANGUAGE 137

Codd (1972) introduced the languages of the relational algebra and
calculus, which are equivalent in expressive power. The latter is essentially
the first-order language of similarity type (= , R1,..., Rk). In (Aho and
Ullman, 1979) it was pointed out that many useful queries definable
naturally by least fixpoints of first-order formulas, such as the transitive
closure of a binary relation, are not first-order definable, and it was
suggested therein that the first-order language of Codd (1972) be augmen-
ted with an appropriate least fixpoint operator. In such a language the
transitive closure of R would be the least fixpoint S of S = R u R o S, where
o is relational composition. A formal version of such an extension was sub-
sequently supplied in (Chandra and Harel, 1982a), where fixpoint
operators were allowed to alternate with any number of first-order con-
structs. A hierarchy of height co 2 of sets of queries is defined in ibid., in
which those queries at level co. i are obtained by applying a least fixpoint
operator to queries at lower levels. The set of queries constituting the entire
hierarchy is termed FP, for fixpoint queries.

It is shown in Chandra and Harel (1982a) that FP is a very restricted
subset of the set of all computable queries (Chandra and Harel, 1980); in
particular, all queries in FP are polynomial-time computable. There is also
a close correspondence with the queries definable by Kowalski's logic
programs; see Kowalski (1974), Gallaire and Minker (1978), and Chandra
and Harel (1982b). However, it was left as an open problem in Chandra
and Harel (1982a) whether there is a natural computational query
language for defining the fixpoint queries.

At this point, one observes that the least fixpoint operator as defined in
Aho and Ullman (1979) and Chandra and Harel (1982a) corresponds
exactly to an inductive definition as defined in Moschovakis (1974), so that
a single fixpoint operator applied to a first-order formula corresponds to a
first-order inductive definition. Recently, however, Immerman (1982) has
shown that the hierarchy of fixpoint queries in fact collapses down to level
co when finite structures are considered. In other words, all queries in FP
are definable by a single application of a fixed-point operator to a first-
order formula. Hence, we obtain

LEMMA. A relational function on finite structures is in FP i f f it is
uniformly first-order inductively definable (i.e., there is a single first-order
inductive definition which, given the input structure, defines the output
relation).

THEOREM. IND defines precisely the fixed-point queries on relational
data bases.

We might remark that the x*--V statement of IND and the parallel
method of execution implied by its semantics reminds one of the "for all

138 HAREL AND KOZEN

tuples t in relation R" construct used in some real query language with
parallel execution semantics; see (Aho and Ullman, 1979, Sect. 7). It
remains to be seen whether a rigorous definition of the semantics of such a
language, together with the dual "for some tuple t in R," yields a language
equivalent to IND.

RECEIVED: January 17, 1983; ACCEPTED: February 28, 1985

REFERENCES

AHO, A. V., AND ULLMAN J. D., Universality of data retrieval languages. Proc. 6th ACM
Symp. on Principles of Programming Languages, Jan, 1979, 11(~117.

APT, K., AND PLOTKIN G. A Cook's Tour of Countable Nondeterminism, ICALP '81.
BARWISE, J. Admissible Sets & Structures. Springer-Verlag 1975.
CHANDRA, A. K., AND HAREL, D. Computable queries for relational data bases. JCSS 21; 2,

(1980), 156 178.
CI-IANDRA, A. K., AND HAREL, D. Structure and Complexity of Relational Queries, JCSS 25;

1 (1982a), 99-128.
CHANDRA, A. K., AND HAREL, D. Horn clauses and the fixpoint query hierarchy. S1GACT-

SIGMOD Syrup. on Principles of Data Base Systems, March, 1982b.
CIqANDRA, A. K., KOZEN, D., AND STOCKMEYER, L. Alternation, J. ACM, (1981), 114-133.
CODD, E. F. A relational model for large shared data bases. CACM 13; 6, (1970), 377 387.
CODD, E. F. Relational completeneness of data base sublanguages. In Data Base Systems

(Rustin, ed.), Prentice Hall, 1972.
COOK, S. A. Soundness and Completeness of an Axiom System for Program Verification,

SIAM J. on Computing 7; 1, (1978).
GALLAmE, H., AND MINKER J. (eds.), Logic and Data Bases, Plenum, New York (1978).
GRUMBERG, O., FRANCEZ, N., MAKOWSKY, J., AND DE ROEVER, W. A proof Rule for fair Ter-

mination of Guarded Commands. In Algorithmic Languages (de Bakker, van Vliel, eds.)
North Holland (1981), 399-416.

HAREL, D. First-order Dynamic Logic, Lecture Notes in Computer Science 68, Springer-Verlag
1979.

IMMERMAN, N. Relational queries computable in polynomial time. 14th ACM Syrup. on
Theory of Computing, May 1982.

KOWALSKI, R. A. Predicate logic as a programming language. Proc. IFIP74, North-Holland
1974, 556-574.

LEHMANN, D., PNUEL1, A., AND STAVI, J. Impartiality, Justice and Fairness: The Ethics of
Concurrent Termination, ICALP '81.

MANNA, Z. The Correctness of Nondeterministic Programs, Artificial Intelligence 1 (1970),
l 26.

MEYER, A. R., AND TIURYN, J. A Note of Equivalence Among Logics of Programs, Proc.
Workshop on Logics of Programs 1981, Lecture Notes in Computer Science 131, Springer-
Verlag, 282-299.

MEYER, A. R., AND PARIKIt, R. Definability in Dynamic Logic, Proc. 12th ACM Symp. on
Theory of Computing (1980), 1 8.

MEYER, A. R., AND WINKELMANN, K. On the Expressive Power of Dynamic Logic, Proc. 12 th
ACM Syrup. on Theory of Computing (1979), 167 175.

A PROGRAMMING LANGUAGE 139

MIRKOWSKA, G. On Formalized Systems of Algorithmic Logic, Bull. Acad. Pol. Sci., Ser.
Math. Astr. Phys. 22 (1974), 421~428.

MOSCI4OVAKIS, Y. N. Elementary Induction on Abstract Structures, North-Holland, 1974.
PRATT, V. Semantical Considerations on Floyd-Hoare Logic. Proc. 17th IEEE Symp. on

Found. of Comp. Science (1976), 109-121,

