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�� INTRODUCTION

Hoare logic� introduced by C� A� R� Hoare in ���� �Hoare ������ was the �rst for�
mal system for the speci�cation and veri�cation of well�structured programs� This
pioneering work initiated the �eld of program correctness and inspired dozens of
technical articles �Cook ��	
� Clarke et al� ��
�� Cousot ���
�� For this achievement
among others� Hoare received the Turing Award in ��

�
Hoare logic uses a specialized syntax involving partial correctness assertions
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�PCAs� of the form fbg p fcg and a deductive apparatus consisting of a system
of specialized rules of inference� Under certain conditions� these rules are relatively
complete �Cook ��	
�� essentially� the propositional fragment of the logic can be
used to reduce partial correctness assertions to static assertions about the under�
lying domain of computation�
In this paper we show that this propositional fragment� which we call propo�

sitional Hoare logic �PHL�� is subsumed by Kleene algebra with tests �KAT�� an
equational algebraic system introduced in �Kozen ���	�� The reduction transforms
PCAs to ordinary equations and the specialized rules of inference to equational
implications �universal Horn formulas�� The transformed rules are all derivable in
KAT by pure equational reasoning� More generally� we show that all Hoare�style
inference rules of the form

fb�g p� fc�g� � � � � fbng pn fcng

fbg p fcg
���

that are valid over relational models are derivable in KAT� this is trivially false for
PHL� We also show that deciding the relational validity of such rules is PSPACE �
complete�
A Kleene algebra with tests is de�ned simply as a Kleene algebra with an em�

bedded Boolean subalgebra� Possible interpretations include the various standard
relational and trace�based models used in program semantics� and KAT is complete
for the equational theory of these models �Kozen and Smith ������ This work shows
that the reasoning power represented by propositional Hoare logic is captured in a
concise� purely equational system KAT that is complete over various natural classes
of interpretations and whose exact complexity is known� Thus for all practical pur�
poses KAT can be used in place of the Hoare rules in program correctness proofs�

��� Related Work

Equational logic possesses a rich theory and is the subject of numerous papers
and texts �Taylor ��	��� Its power and versatility in program speci�cation and
veri�cation are widely recognized �O�Donnell ��
�� Goguen and Malcolm ������
The equational nature of Hoare logic has been observed previously� Manes and

Arbib �Manes and Arbib ��
�� formulate Hoare logic in partially additive semirings
and categories� The encoding of the PCA fbg p fcg as the equation bpc � 
 is
observed there� They consider only relational models and the treatment of iteration
is in�nitary� Bloom and �Esik �Bloom and �Esik ����� reduce Hoare logic to the
equational logic of iteration theories� They do not restrict their attention to while

programs but capture all �owchart schemes� requiring extra notation for insertion�
tupling� and projection� Their development is done in the framework of category
theory� Semantic models consist of morphisms in algebraic theories� a particular
kind of category� Other related work can be found in �Bloom and �Esik ����� Main
and Black ���
��
The encoding of the while programming constructs using the regular operators

and tests originated with propositional dynamic logic �PDL� �Fischer and Ladner
��	��� Although strictly less expressive than PDL� KAT has a number of advantages�
�i� it isolates the equational part of PDL� allowing program equivalence proofs to be
expressed in their natural form� �ii� it conveniently overloads the operators �� �� 
� ��
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allowing concise and elegant algebraic proofs� �iii� it is PSPACE �complete �Cohen
et al� ������ whereas PDL is EXPTIME �complete �Fischer and Ladner ��	��� �iv�
interpretations are not restricted to relational models� but may be any algebraic
structure satisfying the axioms� and �v� it admits various general and useful alge�
braic constructions such as the formation of algebras of matrices over a KAT� which
among other things allows a natural encoding of automata�
Halpern and Reif �Halpern and Reif ��
�� prove PSPACE �completeness of strict

deterministic PDL� but neither the upper nor the lower bound of our PSPACE �
completeness result follows from theirs� Not only are PDL semantics restricted
to relational models� but the arguments of �Halpern and Reif ��
�� depend on an
additional nonalgebraic restriction� the relations interpreting atomic programsmust
be single�valued� Without this restriction� even if only while programs are allowed�
PDL is exponential time hard� In contrast� KAT imposes no such restrictions�
In Section � we review the de�nitions of Hoare logic and Kleene algebra with

tests� In Section � we reduce PHL to KAT and derive the Hoare rules as theorems
of KAT� In Section � we strengthen this result to show that KAT is complete for
relationally valid rules of the form ���� In Section � we prove that the problem of
deciding the relational validity of such rules is PSPACE �complete�

�� PRELIMINARY DEFINITIONS

��� Hoare Logic

Hoare logic is a system for reasoning inductively about well�structured programs�
A comprehensive introduction can be found in �Cousot ���
��
A common choice of programming language in Hoare logic is the language of

while programs� The �rst�order version of this language contains a simple assign�
ment x �� e� conditional test if b then p else q� sequential composition p � q� and
a looping construct while b do p�
The basic assertion of Hoare logic is the partial correctness assertion �PCA�

fbg p fcg� ���

where b and c are formulas and p is a program� Intuitively� this statement asserts
that whenever b holds before the execution of the program p� then if and when p
halts� c is guaranteed to hold of the output state� It does not assert that p must
halt�
Semantically� programs p in Hoare logic and dynamic logic �DL� are usually in�

terpreted as binary input�output relations pM on a domain of computationM� and
assertions are interpreted as subsets ofM �Cook ��	
� Pratt ��	
�� The de�nition of
the relation pM is inductive on the structure of p� for example� �p � q�M � pM � qM�
the ordinary relational composition of the relations corresponding to p and q� The
meaning of the PCA ��� is the same as the meaning of the DL formula b � �p�c�
where � is ordinary propositional implication and the modal construct �p�c is in�
terpreted in the model M as the set of states s such that for all �s� t� � pM� the
output state t satis�es c�
Hoare logic provides a system of specialized rules for deriving valid PCAs� one

rule for each programming construct� The veri�cation process is inductive on the
structure of programs� The traditional Hoare inference rules are�
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Assignment rule�

fb�x�e�g x �� e fbg ���

Composition rule�

fbg p fcg� fcg q fdg

fbg p � q fdg
���

Conditional rule�

fb � cg p fdg� f�b � cg q fdg

fcg if b then p else q fdg
���

While rule�

fb � cg p fcg

fcgwhile b do p f�b � cg
���

Weakening rule�

b� � b� fbg p fcg� c� c�

fb�g p fc�g
� �	�

Propositional Hoare logic �PHL� consists of atomic proposition and program sym�
bols� the usual propositional connectives� while program constructs� and PCAs
built from these� Atomic programs are interpreted as binary relations on a set M
and atomic propositions are interpreted as subsets of M� The deduction system of
PHL consists of the composition� conditional� while� and weakening rules �����	�
and propositional logic� The assignment rule ��� is omitted� since there is no �rst�
order relational structure over which to interpret program variables� in practice� its
role is played by PCAs over atomic programs that are postulated as assumptions�
In PHL� we are concerned with the problem of determining the validity of rules

of the form
fb�g p� fc�g� � � � � fbng pn fcng

fbg p fcg
�
�

over relational interpretations� The premises fbig pi fcig take the place of the
assignment rule ��� and are an essential part of the formulation�

��� Kleene Algebra

Kleene algebra �KA� is the algebra of regular expressions �Kleene ����� Conway
��	��� The axiomatization used here is from �Kozen ������ A Kleene algebra is an
algebraic structure �K� �� �� �� 
� �� that is an idempotent semiring under �� �� 
� �
satisfying

� � pp� � p� ���

� � p�p � p� ��
�

q � pr � r � p�q � r ����

q � rp � r � qp� � r ����

where � refers to the natural partial order on K�

p � q
def
�	 p� q � q�
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The operation � gives the supremum with respect to the natural order �� Instead
of ���� and ����� we might take the equivalent axioms

pr � r � p�r � r ����

rp � r � rp� � r� ����

These axioms say essentially that � behaves like the Kleene asterate operator of
formal language theory or the re�exive transitive closure operator of relational
algebra�
Kleene algebra is a versatile system with many useful interpretations� Standard

models include the family of regular sets over a �nite alphabet� the family of binary
relations on a set� and the family of n 
 n matrices over another Kleene algebra�
Other more unusual interpretations include the min�� algebra used in shortest
path algorithms and models consisting of convex polyhedra used in computational
geometry �Iwano and Steiglitz ���
��
The following are some typical identities that hold in all Kleene algebras�

�p�q��p� � �p� q�� ����

p�qp�� � �pq��p ����

�pq�� � � � p�qp��q ��	�

p� � �pp���� � p�� ��
�

All the operators are monotone with respect to �� In other words� if p � q� then
pr � qr� rp � rq� p� r � q � r� and p� � q� for any r�
The completeness result of �Kozen ����� says that all true identities between

regular expressions interpreted as regular sets of strings are derivable from the
axioms of Kleene algebra� In other words� the algebra of regular sets of strings over
the �nite alphabet � is the free Kleene algebra on generators �� The axioms are
also complete for the equational theory of relational models�
See �Kozen ����� for a more thorough introduction�

��� Kleene Algebra with Tests

Kleene algebras with tests �KAT� were introduced in �Kozen ���	� and their theory
further developed in �Kozen and Smith ����� Cohen et al� ������ A Kleene algebra
with tests is just a Kleene algebra with an embedded Boolean subalgebra� That is�
it is a two�sorted structure

�K� B� �� �� �� � 
� ��

such that

��K� �� �� �� 
� �� is a Kleene algebra�

��B� �� �� � 
� �� is a Boolean algebra� and

�B � K�

The Boolean complementation operator is de�ned only on B� Elements of B are
called tests� The letters p� q� r� s denote arbitrary elements of K and a� b� c denote
tests�
This deceptively simple de�nition actually carries a lot of information in a concise

package� The operators �� �� 
� � each play two roles� applied to arbitrary elements
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of K� they refer to nondeterministic choice� composition� fail� and skip� respectively�
and applied to tests� they take on the additional meaning of Boolean disjunction�
conjunction� falsity� and truth� respectively� These two usages do not con�ict�for
example� sequential testing of b and c is the same as testing their conjunction�and
their coexistence admits considerable economy of expression�
The encoding of the while program constructs is as in PDL �Fischer and Ladner

��	���

p � q
def
� pq ����

if b then p else q
def
� bp� bq ��
�

while b do p
def
� �bp��b� ����

For applications in program veri�cation� the standard interpretation would be a
Kleene algebra of binary relations on a set and the Boolean algebra of subsets of
the identity relation� One could also consider trace models� in which the Kleene
elements are sets of traces �sequences of states� and the Boolean elements are sets
of states �traces of length 
�� As with KA� one can form the algebra Mat�K�B� n�
of n
n matrices over a KAT �K�B�� the Boolean elements of this structure are the
diagonal matrices over B� There is also a language�theoretic model that plays the
same role in KAT that the regular sets of strings over a �nite alphabet play in KA�
namely the family of regular sets of guarded strings over a �nite alphabet � with
guards from a set B� This is the free KAT on generators ��B� that is� the equational
theory of this structure is exactly the set of all equational consequences of the KAT
axioms� Moreover� KAT is complete for the equational theory of relational models
�Kozen and Smith ������

�� KAT AND HOARE LOGIC

In this section we encode Hoare logic in KAT and derive the Hoare composition�
conditional� while� and weakening rules as theorems of KAT� We will strengthen
this result in Section � by showing that KAT can derive all relationally valid rules
of the form �
��
The PCA fbg p fcg is encoded in KAT by the equation

bpc � 
� ����

Intuitively� this says that the program p with preguard b and postguard c has no
halting execution� An equivalent formulation is

bp � bpc� ����

which says intuitively that testing c after executing bp is always redundant�
The equivalence of ���� and ���� can be argued easily in KAT� This equivalence

was previously observed by Manes and Arbib �Manes and Arbib ��
��� Assuming
�����

bp � bp�c� c� by the axiom a� � a and Boolean algebra

� bpc� bpc by distributivity

� bpc by ���� and the axiom a� 
 � a�
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Conversely� assuming �����

bpc � bpcc by ����

� bp
 by associativity and Boolean algebra

� 
 by the axiom a
 � 
�

The equation ���� is equivalent to the inequality bp � bpc� since the reverse
inequality is a theorem of KAT� it follows immediately from the axiom c � � of
Boolean algebra and monotonicity of multiplication�
Using ��������� and ����� the Hoare rules �����	� take the following form�

Composition rule��

bp � bpc � cq � cqd � bpq � bpqd ����

Conditional rule��

bcp � bcpd � bcq � bcqd � c�bp� bq� � c�bp� bq�d ����

While rule��

bcp � bcpc � c�bp��b � c�bp��b bc ����

Weakening rule��

b� � b � bp � bpc � c � c� � b�p � b�pc�� ��	�

These implications are to be interpreted as universal Horn formulas� that is� the
variables are implicitly universally quanti�ed� To establish the adequacy of the
translation� we show that �������	� encoding the Hoare rules �����	� are theorems
of KAT�

Theorem ���� The universal Horn formulas ��������� are theorems of KAT�

Proof� First we derive ����� Assuming the premises

bp � bpc ��
�

cq � cqd� ����

we have

bpq � bpcq by ��
�

� bpcqd by ����

� bpqd by ��
��

Thus the implication ���� holds�
For ����� assume the premises

bcp � bcpd ��
�

bcq � bcqd� ����

Then

c�bp� bq� � cbp� cbq by distributivity

� bcp� bcq by commutativity of tests
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� bcpd� bcqd by ��
� and ����

� cbpd� cbqd by commutativity of tests

� c�bp� bq�d by distributivity�

For ����� by trivial simpli�cations it su�ces to show

cbp � cbpc � c�bp�� � c�bp��c�

Assume

cbp � cbpc� ����

By ���� we need only show

c� c�bp��cbp � c�bp��c�

But

c� c�bp��cbp � c� c�bp��cbpc by ���� and monotonicity

� c�c� c�bp��cbpc by Boolean algebra

� c�� � �bp��cbp�c by distributivity

� c�� � �bp��bp�c by monotonicity

� c�bp��c by ��
��

Finally� for ��	�� we can rewrite the rule as

b� � b � bpc � 
 � c� � c � b�pc� � 
�

which follows immediately from the monotonicity of multiplication�

�� A COMPLETENESS THEOREM

Theorem ��� says that for any proof rule of PHL� or more generally� for any rule of
the form

fb�g p� fc�g� � � � � fbng pn fcng

fbg p fcg

derivable in PHL� the corresponding equational implication �universal Horn for�
mula�

b�p�c� � 
 � � � � � bnpncn � 
 � bpc � 
 ����

is a theorem of KAT� In this section we strengthen this result to show �Corollary
���� that all universal Horn formulas of the form

r� � 
 � � � � � rn � 
 � p � q ����

that are relationally valid �true in all relational models� are theorems of KAT� in
other words� KAT is complete for universal Horn formulas of the form ���� over
relational interpretations� This result subsumes Theorem ���� since the Hoare rules
are relationally valid� Corollary ��� is trivially false for PHL� for example� the rule

fcg if b then p else p fcg

fcg p fcg
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is not derivable� since the Hoare rules only increase the length of programs�
In �Kozen and Smith ������ based on a technique of Cohen �Cohen ����� for KA�

we showed that a formula of KAT of the form ���� is valid over all models i� it is
valid over ��continuous models� moreover� its validity over either class of models is
equivalent to the validity of a pure equation� We strengthen this result by showing
that this equivalence still holds when models are further restricted to relational
models� The deductive completeness of KAT over relationally valid formulas of the
form ���� follows as a corollary�
Let T��B denote the set of terms of the language of KAT over primitive proposi�

tions � � fa�� � � � � amg and primitive tests B � fb�� � � � � bkg� Let r�� � � � � rn� p� q �
T��B� Let u � �a� � � � �� am�

� and let r �
P

i ri� The formula ���� is equivalent
to r � 
� p � q� Consider the four conditions

KAT � r � 
� p � q� ����

KAT� � r � 
� p � q� ����

REL � r � 
� p � q� ��	�

� p� uru � q � uru� ��
�

It does not matter whether ��
� is preceded by KAT� KAT�� or REL� since the equa�
tional theories of these classes coincide �Kozen and Smith ������ It was shown in
�Kozen and Smith ����� that the metastatements ����� ����� and ��
� are equivalent�
We wish to add ��	� to this list�
The algebra G��B of regular sets of guarded strings over ��B and the standard

interpretation G � T��B � G��B were de�ned in �Kozen and Smith ������ We brie�y
review the de�nitions here� An atom of B is a term of the form c�c� � � � ck� where ci
is either bi or bi� An atom represents an atom of the free Boolean algebra generated
by B� Atoms are denoted �� �� � � � � A guarded string over ��B is a term of the
form

��p���p��� � � ��n��pn���n�

where each pi � � and each �i is an atom� This includes the case n � 
� so atoms
are guarded strings� If x�� �y are guarded strings and � � �� then their product is
x�y� If � �� �� then the product does not exist� We can form the Kleene algebra
of all sets of guarded strings with operations

A�B
def
� A 
 B

AB
def
� fx�y j x� � A� �y � Bg

A�
def
�
�

n

An



def
� �

�
def
� fatoms of Bg�

This becomes a KAT by taking the Boolean algebra of tests to be the powerset
of the set �� The map G is de�ned to be the unique homomorphic map on T��B
extending

G�a�
def
� f�a� j �� � are atoms of Bg� a � �
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G�b�
def
� f� j � � bg� b � B�

where � � b denotes that b occurs positively in �� The algebra G��B is de�ned to be
the image of T��B under the map G� It was shown in �Kozen and Smith ����� that
G��B is the free KAT on generators ��B in the sense that for any terms s� t � T��B�

� s � t �	 G�s� � G�t�� ����

Note that G�u� is the set of all guarded strings over ��B�

Theorem ���� The metastatements �	
���	�� are equivalent�

Proof� Since REL � KAT� � KAT� the implications ���� � ���� � ��	� hold
trivially� Also� it is clear that

KAT � p� uru � q � uru� �r � 
� p � q��

therefore ��
� � ���� as well� It thus remains to show that ��	� � ��
�� Writing
equations as pairs of inequalities� it su�ces to show

REL � r � 
� p � q 	 � p � q � uru� ��
�

To show ��
�� we construct a relational model R on states G�u��G�uru�� Note
that if x� y� z � G�u� such that xyz � G�u� �G�uru�� then y � G�u� �G�uru�� If
G�u� � G�uru�� then we are done� since in that caseG�p� � G�u� � G�uru� and the
right�hand side of ��
� follows immediately from ����� Similarly� if G��� � G�uru��
then G�u� � G�uuru� � G�uru� and the same argument applies� We can therefore
assume without loss of generality that both G�u��G�uru� and G����G�uru� are
nonempty�
The atomic symbols are interpreted in R as follows�

R�a�
def
� f�x� xa�� j xa� � G�u��G�uru�g� a � �

R�b�
def
� f�x� x� j x � x� � G�u��G�uru�� � � bg� b � B�

The interpretations of compound expressions are de�ned inductively in the standard
way for relational models�
We now show that for any t � T��B�

R�t� � f�x� xy� j xy � G�u��G�uru�� y � G�t�g ����

by induction on the structure of t� For primitive programs a and tests b�

R�a� � f�x� xa�� j xa� � G�u��G�uru�g

� f�x� x�a�� j x�a� � G�u��G�uru�g

� f�x� xy� j xy � G�u��G�uru�� y � G�a�g�

R�b� � f�x� x� j x � x� � G�u��G�uru�� � � G�b�g

� f�x� x�� j x� � G�u��G�uru�� � � G�b�g

� f�x� xy� j xy � G�u��G�uru�� y � G�b�g�

For the constants 
 and �� we have

R�
� � �

� f�x� xy� j xy � G�u��G�uru�� y � G�
�g�
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R��� � f�x� x� j x � G�u��G�uru�g

� f�x� xy� j xy � G�u��G�uru�� y � G���g�

For compound expressions�

R�s� t� � R�s� 
 R�t�

� f�x� xy� j xy � G�u��G�uru�� y � G�s�g


 f�x� xy� j xy � G�u��G�uru�� y � G�t�g

� f�x� xy� j xy � G�u��G�uru�� y � G�s� 
G�t�g

� f�x� xy� j xy � G�u��G�uru�� y � G�s� t�g�

R�st� � R�s� �R�t�

� f�x� xz� j xz � G�u��G�uru�� z � G�s�g

� f�y� yw� j yw � G�u��G�uru�� w � G�t�g

� f�x� xzw� j xzw � G�u��G�uru�� z � G�s�� w � G�t�g

� f�x� xy� j xy � G�u��G�uru�� y � G�st�g�

R�t�� �
�

n

R�tn�

�
�

n

f�x� xy� j xy � G�u��G�uru�� y � G�tn�g

� f�x� xy� j xy � G�u��G�uru�� y �
�

n

G�tn�g

� f�x� xy� j xy � G�u��G�uru�� y � G�t��g�

We now show ��
�� Suppose the left�hand side holds� By �����

R�r�
def
� f�x� xy� j xy � G�u��G�uru�� y � G�r�g � ��

By the left�hand side of ��
�� R�p� � R�q�� In particular� for any x � G�p��G�uru��
��� x� � R�p�� therefore ��� x� � R�q� as well� thus x � G�q� � G�uru�� But this
says G�p� � G�uru� � G�q� �G�uru�� thus G�p� � G�q� 
 G�uru� � G�q � uru��
It follows from ���� that the right�hand side of ��
� holds�

Corollary ���� KAT is deductively complete for formulas of the form �	�� over
relational models�

Proof� If the formula ���� is valid over relational models� then by Theorem ����
��
� holds� Since KAT is complete for valid equations�

KAT � p� uru � q � uru�

But clearly

KAT � p� uru � q � uru � r � 
� p � q�

therefore

KAT � r � 
� p � q�
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�� COMPLEXITY

As de�ned in Section ���� the decision problem for PHL is to determine whether
a given rule of the form �
� is valid over all relational interpretations� Note that
PSPACE �hardness does not follow immediately from the PSPACE �hardness of the
equational theory� since the conclusion fbg p fcg is of a restricted form q � 
�
Indeed� E� Cohen has shown �Cohen ����� that the complexity of valid equations
of the form q � 
 in KAT is NP �complete�

Theorem ���� The decision problem for PHL is PSPACE�complete�

Proof� The reduction of Sections � and � transforms the decision problem for
PHL to the problem of the universal validity of Horn formulas of the form ����� As
shown in Section �� this can be reduced to testing the validity of a single equation
without premises� The equational theory of KAT is decidable in PSPACE �Cohen
et al� ������ thus the decision problem for PHL is in PSPACE�
We now show that the problem is PSPACE �hard� This holds even if the premises

fbig pi fcig are restricted to refer only to atomic programs� and even if they are
restricted to refer only to a single atomic program p� We give a direct encoding
of the computation of a polynomial space�bounded one�tape deterministic Turing
machine in an instance of the decision problem for PHL� Our approach is similar to
�Halpern and Reif ��
��� using the premises fbig pi fcig to circumvent the determi�
nacy assumption� E� Cohen �Cohen ����� has given an alternative hardness proof
using the universality problem for regular expressions�
Consider the computation of a polynomially�space�bounded one�tape determin�

istic Turing machineM on some input x of length n� Let N be a polynomial bound
on the amount of space used by M on input x� Let Q be the set of states of M � let
 be its tape alphabet� let s be its start state� and let t be its unique halt state� We
use polynomially many atomic propositional symbols with the following intuitive
meanings�

Ti�a !the ith tape cell currently contains symbol a�" 
 � i � N � a �  �

Hi !the tape head is currently scanning the ith tape cell�" 
 � i � N �

Sq !the machine is currently in state q�" q � Q�

Let p be an atomic program� Intuitively� p represents the action of one step of M �
We will devise a set of assumptions ��� � � � � �m that will say that p faithfully models
the action of M � The PCA � will say that if started in state s on input x� the
program

while the current state is not t do p

fails� The PCA � will be a logical consequence of ��� � � � � �m i� M does not halt
on input x�
The start con�guration of M on x consists of a left endmarker � written on tape

cell 
� the input x � a� � � � an written on cells � through n� and the remainder of
the tape �lled with the blank symbol t out to the N th cell� The machine starts in
state s scanning the left endmarker� This situation is captured by the propositional
formula

start
def
� T��� �

�

��i�n

Ti�ai �
�

n���i�N

Ti�t � Ss �H��
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We will need a formula to ensure that M is in at most one state� that it is
scanning at most one tape cell� and that there is at most one symbol written on
each tape cell�

format
def
�

�

��i�N

�

a��b

��Ti�a � Ti�b� �
�

p��q

��Sp � Sq�

�
�

��i�j�N

��Hi �Hj��

We include the PCA

fformatg p fformatg

as one of the assumptions �i to ensure that format is an invariant of p and therefore
preserved throughout the simulation of M �
Suppose the transition function of M says that when scanning a cell containing

symbol a in state p� M prints the symbol b on that cell� moves right� and enters
state q� We capture this constraint by the family of PCAs

fTi�a �Hi � Spg p fTi�b �Hi�� � Sqg� 
 � i � N � ��

All these PCAs are included for each possible transition of the machine� there are
only polynomially many in all�
We must also ensure that the symbols on tape cells not currently being scanned

do not change� this is accomplished by the family of PCAs

fTi�a � �Hig p fTi�ag� 
 � i � N� a �  �

These are the assumptions ��� � � � � �m in our instance of the decision problem� It
is apparent that under any interpretation of p satisfying these PCAs� successive
executions of p starting from any state satisfying start � format move only to
states whose values for the atomic propositions Sq� Ti�a� and Hi model valid con�g�
urations of M � and the values change in such a way as to model the computation
of M � Thus there is a reachable state satisfying St i� M halts on x�
We take as our conclusion � the PCA

fstart � formatgwhile �St do p ffalseg�

which says intuitively that when started in the start con�guration� repeatedly ex�
ecuting p will never cause M to enter state t� The PCA � is therefore a logical
consequence of ��� � � � � �m i� M does not halt on x�
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