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1 Introduction

Logics of Programs are formal systems for reasoning about computer programs. Tradition-
ally, this has meant formalizing correctness specifications and proving rigorously that those
specifications are met by a particular program. Other activities fall into this category as
well: determining the equivalence of programs, comparing the expressive power of various
operators, synthesing programs from specifications, etc. These activities range from the
highly theoretical to the highly practical. Formal systems too numerous to mention have
been proposed for these purposes, each with its own peculiarities.

This chapter gives a brief introduction to some of the basic issues in the study of
program logics. We have chosen one system, Dynamic Logic, to illustrate these issues.
There are perhaps many other reasonable choices: Temporal Logic, Algorithmic Logic,
etc. We discuss the relationships among these systems where appropriate. By our choice
of Dynamic Logic we do not advocate its use over any other system; we just feel that it is
an appropriate vehicle for illustrating the concepts we wish to discuss, and it is the system
with which we are the most familiar.

Program logics differ from classical logics in that truth is dynamic rather then static.
In classical predicate logic, the truth value of a formula ¢ is determined by a valuation of
its free variables over some structure. The valuation and the truth value of ¢ it induces
are regarded as immutable; there is no formalism relating them to any other valuations or
truth values. In program logics, there are explicit syntactic constructs called programs to
change the values of variables, thereby changing the truth values of formulas. For example,
the program z := z + 1 over the natural numbers changes the truth value of the formula
“c is even”. Such changes occur on a metalogical level in classical predicate logic, for
example in the Tarski definition of truth of a formula: if u : {z,y, .. .} — N is a valuation
of variables over the natural numbers AV, then the formula 3z z? = y is defined to be true
under the valuation u iff there exists an @ € A such that the formula z? = y 1s true under
the valuation u[z/a|, where u[z/a] agrees with u everywhere except z, on which it takes the
value a. This definition involves a metalogical operation which produces u[z/a| from u for
all possible values a € . This operation becomes explicit in Dynamic Logic in the form of
the program z :=7?, called a nondeterministic assignment. This is a rather unconventional
program, since it is not effective; however, it is quite useful as a descriptive tool. A more
conventional way to obtain a square root of y, if it exists, would be the program

z:=0; while 22 <ydoz:=z+1o0d. (1)

In Dynamic Logic, programs are first-class objects on a par with formulas, complete with a
collection of operators for forming compound programs inductively from a basis of primitive
programs. In the simplest version of DL, these program operators are U (nondeterministic
choice), ; (sequential composition), * (iteration), and ? (test). These operators are already
sufficient to generate all while programs (which over A are sufficient to compute all partial
recursive functions). To discuss the effect of the execution of a program p on the truth of
a formula ¢, DL uses a modal construct (p)$, which intuitively states, “It is possible to
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execute p and halt in a state satisfying ¢.” For example, the first-order formula 3z z? = y
is equivalent to the DL formula

(z:=Na’=y. (2)

In order to instantiate the quantifier effectively, we might replace the nondeterministic
assignment inside the ( ) with the while program (1); the resulting formula would be
equivalent to (2) in N.

1.1 States, Input/Output Relations, Traces

A state is an instantaneous description of reality. In first-order Dynamic Logic, a state is
often taken to be a valuation u : V — |A| of variables V ranging over a first-order structure
A= (|A],...,fA...,R*,...). In practice, variables may be of different types and range
over the different sorts of a many-sorted structure, but for simplicity we usually assume
that A is single-sorted. Here |A4| is the carrier of A, f* represents a typical function of A,
and R4 is a typical relation on A.

A program can be viewed as a transformation on states. Given an initial (input) state,
the program will go through a series of intermediate states, perhaps eventually halting in a
final (output) state. A sequence of states that can obtain from the execution of a program
p starting from a particular input state is called a trace.

The traces of p need not be uniquely determined by their start states; i.e., p may be
nondeterministic. A trace can be infinite, in which case p is said to be looping or diverging.
A finite trace corresponds to a halting computation of p, and in this case we say that p
halts, terminates, or converges. The set of all pairs of first and last states of finite traces of
p is called the input/output relation of p.

In Dynamic Logic, programs are interpreted as input/output relations. DL cannot be
used to reason about program behavior not manifested in the input /output relation. For
this reason it is inadequate for dealing with programs that are not normally supposed to
halt, such as operating systems. Other program logics, such as Temporal Logic or Process
Logic, use an execution sequence semantics which overcomes this limitation. However,
for programs that are supposed to halt, correctness criteria are traditionally given in the
form of an input/output specification, consisting of a formal relation between the input and
output states that the program is supposed to maintain. The input/output relation of a
program carries all the information necessary to determine whether the program is correct
relative to such a specification.

1.2 Exogenous and Endogenous Logics

There are two main approaches to modal logics of programs: the ezogenous approach, ex-
emplified by Dynamic Logic and its precursor, the Partial Correctness Assertions Method
(Hoare Logic) [70], and the endogenous approach, exemplified by Temporal Logic and its
precursor, the Inductive Assertions Method [42]. A logic is ezogenous if its programs are



explicit in the language. Syntactically, a Dynamic Logic program is a well-formed expres-
sion built inductively from primitive programs using a small set of program operators.
Semantically, a program is interpreted as its input/output relation. The relation denoted
by a compound program is determined by the relations denoted by its parts. This aspect of
compositionality allows proofs by structural induction. In Temporal Logic, the program is
fixed and considered part of the structure over which the logic is interpreted. The current
location in the program during execution is stored in a special variable for that purpose,
called the program counter, and is part of the state along with the values of the program
variables. Instead of program operators, there are temporal operators that describe how
the program variables, including the program counter, change with time. Thus Temporal
Logic sacrifices compositionality for a less restricted and hence more generally applicable
formalism.

1.3 Historical Note

The idea of introducing and investigating a formal system dealing with properties of pro-
grams in an abstract model was advanced by Thiele [147] and independently by Engeler
[37] in the mid 1960s. Research in program verification flourished in the late 1960s and
thereafter with the work of many researchers, notably Floyd (42|, Hoare [70], and Salwicki
[136]. Dynamic Logic, which emphasizes the modal nature of the program/assertion inter-
action, was introduced by Pratt in [126] (see also [57]) and is a relatively late development.

There are by now a number of books and survey papers treating logics of programs
and Dynamic Logic. We refer the reader to (54,56,117,47,48,75].

1.4 Acknowledgments

We would like to thank the following colleagues for their valuable criticism: J. Bergstra,
P. van Emde Boas, E. A. Emerson, J. Halpern, D. Harel, M. Karpinski, N. Klarlund, D.
McAllester, A. Meyer, R. Parikh, V. Pratt, and M. Vardi. We are especially indebted to

David Harel, on whose excellent survey [56] the present work is modeled.



2 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL) was first defined by Fischer and Ladner [40,41]. It
plays the same role in Dynamic Logic that classical propositional logic plays in classi-
- cal predicate logic. It describes the properties of the interaction between programs and
propositions that are independent of the domain of computation.

2.1 Basic Definitions
2.1.1 Syntax

Syntactically, PDL is a blend of propositional logic, modal logic, and the algebra of regular
events. It has expressions of two sorts: programs p,q,r,... and propositions or formulas
#,%,... . There are countably many atomic symbols of each sort, as well as a variety of
operators for forming compound expressions from simpler ones:

e propositional operators V, —
e program operators U, ;, *
e mixed operators 7, ( )

Compound programs and propositions are defined by mutual induction, as follows. If b,
are propositions and p, q are programs, then

®V 1 (propositional disjunction)
¢ (propositional negation)
(p)¢  (modal possibility)

are propositions and
P;q  (sequential composition)
pUgq (nondeterministic choice)

p* (iteration)
é?  (test)
are programs. The intuitive meanings of the less familiar of these constructs are as follows:
(p)¢ = “Itis possible to execute p and terminate in a state satisfying ¢.”
p;q = “Execute p, then execute ¢.”
pUgq = “Choose either p or ¢ nondeterministically and execute it.”
p" = “Execute p repeatedly a nondeterministically chosen finite number of times.”
¢? = “Test ¢; proceed if true, fail if false.”

The set of propositions is denoted ®. We avoid parentheses by assigning precedence to
the operators: unary operators, including (p), bind tighter than binary ones, and ; binds



tighter than U. Also, under the semantics to be given in the next section, the operators ;
and U will turn out to be associative, so we may write p; ¢;7 and pUqUr without ambiguity.

The primitive operators are chosen for their mathematical simplicity. A number of
more conventional programming constructs can be defined from them. The propositional
operators A, —, «, false, and true are defined from V and - in the usual way. In addition:

skip = true?
fail = false?
[pl¢ = ~(p)-¢

if g1 —pr [ [dn—pfi = S7pU---Udn?;pa
do¢y —pr - [ dn —paod = (A17p1U - Uua?;pn)’;(mhs A+ A —6hp)?
if¢gthenpelsegfi = ifgop-¢p—gfi = ¢?2;pU—¢?:gq
while 4 dopod = dogp—pod = (47;p);-¢?
repeat p until ¢ = p;while ~¢ do pod = p;(-¢?;p)*;4?
{¢}p{¥} = ¢ —[ply

The propositions (p)¢ and [p|¢ are read “diamond p ¢” and “box p ¢”, respectively.
The latter has the intuitive meaning, “Whenever p terminates, it must do so in a state
satisfying ¢.” Unlike (p)¢, [p|¢ does not imply that p terminates. Indeed, the formula
[plfalse asserts that no computation of p terminates. For fixed program p, the operator
(p) behaves like a possibility operator of modal logic (see [72,20]). The operator [p| is the
modal dual of (p) and behaves like a modal necessity operator.

The ternary if-then-else operator and the binary while-do operator are the usual con-
ditional test and while loop constructs found in conventional programming languages. The
constructs if-|-fi and do-[-od are the alternative guarded command and iterative guarded
command constructs, respectively (see [49]). The construct {¢}p{s} is the classical Hoare
partial correctness assertion [70].

2.1.2 Semantics

The formal semantics of PDL comes from modal logic. A Kripke model is a pair M =
(SM,1*) where SM = {u,v,...} is an abstract set of states and I™ is an interpretation
function. Each proposition ¢ is interpreted as a subset ¢™M C SM, and each program p
is interpreted as binary relation p* on S™M. We may think of ¢ as the set of states
satisfying the proposition ¢, and p™ as the input/output relation of the program p.

The function I™ assigns an arbitrary subset of S* to each atomic proposition symbol
and an arbitrary binary relation on S™ to each atomic program symbol. Compound
programs and propositions receive their meanings inductively:

(V)M = gMuypM
(~p)M = SM M
(P = pMo¢™M = {u]Fv (u,v) € p™ and v € $™}
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g™ = pMog™ = {(u,9)] Iw (v,w) € p™ and (w,v) € g™}
(Pug™ = pMugM
(p‘)M = the reflexive transitive closure of pM

@™ = {(u,u)|ue ¢}

where the reflexive-transitive closure of a binary relation pis
Ue,
n<w
where
M
P = {(uu)|ue M)
n+1

P = pop".

The symbol o denotes relational composition.
The defined operators inherit their meanings from these definitions:

(pAP)M = oMnypM
(Ple)™ = {u|Vv (u,v) € pM — v € ¢}

trueM = SM

false™ =

skip = {(u,u)|ue SM}
fail™ = ¢

The if-then-else, while-do, and guarded commands also receive meanings from the above
definitions.

It can be argued that the input/output relations given by these definitions capture the
intuitive operational meanings of these constructs. For example, the relation associated
with the program while ¢ do p od is the set of pairs (u,v) for which there exist states
Uo, Uty s Un, m 2> 0, such that u = ug, v = un, u; € M and (u;,ui4,) € pM for 0 < i < n,
and u, € —¢M.

We often write M,u |= ¢ for u € ¢M and say that u satisfies ¢ in M. We may write
u |= ¢ when M is understood. We write M |= ¢ if M,u = ¢ for all u € M, and we write
= ¢ and say that ¢ is valid if M |= ¢ for all M. We say that ¢ is satisfiable if M,u |= ¢
for some M,u. If T is a set of propositions, we write M EXifMIEd¢dforal ¢ € .
A proposition 1 is said to be a logical consequence of ¥ if for all M; M = ¢ whenever
M = X, in which case we write & |= 1. (Note that this is not the same as saying that
M, u |= 1 whenever M,u |= £.) We say that an inference rule

r

Y

is sound if ¢ is a logical consequence of ¥.



This version of PDL is usually called . regular PDL because of the primitive operators
U,;,*, which are familiar from the algebra of regular events (see [7T1]). Programs can
be viewed as regular expressions ever the atomic programs and tests. In fact, it can be
shown that if ¢ is an atomic proposition symbol, then any two test-free programs p, q are
equivalent as regular expressions if and only if the formula (p)¢p — (q)¢ is valid.

Example 1 Let ¢ be an atomic proposition, let p be an atomic program, and let M =
(SM,I™) be a Kripke model with

SM = {u,v,w}

o™ {u,v}

M = {(u’”)a(u’w)v(”sw)’(wav)}
Then u |= (p)=¢ A (p)#, but v |= [p|~¢ and w = [p]¢. Moreover,

M E () (p;p)']e A (") (i p)'] ¢ -

()
Other semantics besides Kripke semantics have been studied (12,110,76,77,129].

2.1.3 Computation Sequences

Let p be a program. A finite computation sequence of p is a finite-length string of atomic
programs and tests representing a possible sequence of atomic steps that may occur in a
halting execution of p. The set of all such sequences is denoted CS(p). We use the word
“possible” loosely—CS(p) is determined by the syntax of p alone, and may contain strings
that are never executed in any interpretation.

Formally, the set CS(p) is defined by induction on syntax:

CS(p) = {p}, p an atomic program or test

CS(piq) = {a;8|ae CS(p), B € CS(q)}
CS(pUq) = CS(p)U CS(q)

CS(p*) = U CS(™)

n>0

where p® = skip and p"*! = p;p". For example, if p is an atomic program and ¢ is an
atomic formula, then the program

while ¢ do pod = (¢7;p)"; ~¢?
has as computation sequences all strings of the form
¢Tp 8755 - ¢7; py skip; g7 .
Note that each finite computation sequence q of a program p is itself a program, and
C5(q) = {q} -
Moreover, the following proposition is not difficult to prove by induction on syntax:

Proposition 2 pM = Ugecsmy @™ -



2.2 A Deductive System for PDL -
The following Hilbert-style axiom system for PDL was formulated by Segerberg [139].

Axioms of PDL

1. azioms for propositional logic
(P)o A [pl¥ — (P)(P A 9)
()P V) = (p)dV (p)y
(PUq)¢ < (p)dV (q)¢
(P;q)¢ — (p)(q)¢
(¥ PN

(¢V (p)(p*)¢) — (p*)¢
- (p7)¢ = (B V (p*)(~4 A (p)9))

Axioms 2 and 3 are not particular to PDL, but hold in all normal modal systems (see
(72,20]). Axiom 8 is called the PDL induction aziom, and is better known in its dual form
(Theorem 3(8) below).

2.
3.
4-
5.
6.
7.
8

Rules of Inference

1. modus ponens:
¢ ¢
¥

2. modal generalization:

¢

[pl¢

We write - ¢ if the proposition ¢ is a theorem of this system, and say that ¢ is consistent
if not - ~¢. A set I of propositions is consistent if all finite conjunctions of elements of ¥
are consistent.

The soundness of these axioms and rules over the Kripke semantics can be established
by elementary arguments in relational algebra.
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2.3 Basic Properties

We list some basic theorems and derived rules of PDL that are provable in the deductive
system of the previous section.

Theorem 3 The following are theorems of PDL:

1. all propositional tautologies

[pl(¢ — ) — ([pl¢ — [pl®)
[pl(¢ A 9) = [plo A [ply
[pUql¢ < [p]é A [q]¢
[p; qlé — [pllg]¢
[$?]% < (¢ — ¥)
[p*]é — ¢ A [pl[p*]¢
(A [p*](¢ — [pl9)) — [p°]¢
(P)(dAY) = (P)S A (p)Y
[pl(¢ V%) — [pl$ V [Pl
- (p%p")¢ < (p*)d

(p**)¢ < (p*)¢
(Vv (p)(p*)¢) < (p*)¢
14. (p*)¢ < (6 V (p*)(~¢ A (p)9))
15. (¢ A [p*)(¢ — [p]#)) < [p*]

© ® NS & ™ L o

~ e~ N
o =~ 0O

~
s

Theorem 4 The following are sound rules of inference of PDL:

1. monotonicity of (p):

¢
¢

2. monotonicity of p|:

11



3. reflexive-transitive closure:

(¢V(p)y) =¥
(p*)d — ¥

4. loop invariance rule:

Y — [plY

Y — [p*]y

5. Hoare composition rule:

{¢}p{o}, {o}e{¥}
{#}p; ¢{v}

6. Hoare conditional rule:

{¢ Aatp{v}, {4 Aa}e{y}
{o}if ¢ then p else ¢ fi{y)}

7. Hoare while rule:

{¢ A db}p{s}
{¢}while ¢ do p od{-¢ A ¥}

The properties of Theorem 3(2-8) are the modal duals of Axioms 2-8. The converses
of Theorem 3(9,10) are not valid. They are violated in state u of the model of Example
1. The rules of Theorem 4(1,2) say that the constructs (p)¢ and [p|¢ are monotone in ¢
with respect to the ordering of logical implication. These constructs are also monotone
and antitone in p, respectively, as asserted by the following metatheorem:

Proposition 5 If pM C ¢M, then for all ¢,

1. M= (p)é — (q)¢
2. M= [q]¢ — [p]¢.

These follow from Axiom 4 and Theorem 3(4).
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2.3.1 The * Operator, Induction, and Reflexive-Transitive Closure

The iteration operator * is interpreted as the reflexive-transitive closure operator on binary
relations. It is the means by which looping is coded in PDL. Looping introduces a level of
complexity to PDL beyond the other operators. Because of it, PDL is not compact: the
set

{(p")8} U {9, ~(p)¢, ~(p), ...} (3)

is finitely satisfiable but not satisfiable. This seems to say that looping is inherently infini-
tary; it is thus rather surprising that there should be a finitary complete axiomatization.

The dual propositions Axiom 8 and Theorem 3(8) are jointly called the PDL induction
aziom. Together with Axiom 7, they completely axiomatize the behavior of *. Intuitively,
the induction axiom in the form of Theorem 3(8) says: if ¢ is true initially, and if the truth
of ¢ is preserved by the program p, then ¢ will be true after any number of iterations of
p- It is very similar to the induction axiom of Peano arithmetic:

¢(0) AVn (¢(n) — d(n +1)) — Vn ¢(n).

Here ¢(0) is the basis of the induction and Vn (¢(n) — ¢(n+1)) is the induction step, from
which the conclusion Vn ¢(n) may be drawn. In the PDL induction axiom, the basis is ¢
and the induction step is [p*](¢ — [p]¢), from which the conclusion [p*]¢ may be drawn.

The induction axiom is closely related to the reflexive-transitive closure rule (Theorem
4(3)). The significance of this rule is best described in terms of its relationship to Axiom 7.
This axiom is obtained by substituting (p*)# for 4 in the premise of the reflexive-transitive
closure rule. Axiom 7 thus says that (p*)¢ is a solution of

(Vv (pX)—X; (4)

the reflexive-transitive closure rule says that it is the least solution to (4) (with respect to
logical implication) among all PDL propositions.

The relationship between the induction axiom (Axiom 8), the reflexive-transitive closure
rule (Theorem 4(3)), and the rule of loop invariance (Theorem 4(4)) is summed up in
the following proposition. We emphasize that this result is purely proof-theoretic and is
independent of the semantics of §2.1.2.

Proposition 8 In PDL without the induction aziom, the following azioms and rules are
interdertvable:

(1) the induction aziom (Aziom 8);
(4) the loop invariance rule (Theorem 4(4));

(i) the reflezive-transitive closure rule (Theorem 4(3)).

13



Proof. First we show that the monotonicity rule (Theorem 4(2)) is derivable in PDL
without induction. Assuming the premise ¢ — 1 and applying modal generalization, we
obtain [p|(¢ — 9); the conclusion [p|¢ — [p]y then follows from Theorem 3(2) and modus
ponens. The dual monotonicity rule (Theorem 4(1)) can be derived from this rule by pure
propositional reasoning.

(i) — (ii): Assume the premise of (ii):

¢ — [pl¢.
By modal generalization,

p*l(¢ — [p]4) ,

thus

¢ — oA[p’l(¢ — [p]9)
- [p’]¢.

The first implication is by propositional reasoning, and the second is the box form of the
induction axiom (Theorem 3(8)). By transitivity of implication, we obtain

¢ — [p'le,
which is the conclusion of (ii).
(i) — (iii): Dualizing the rule (iii) by purely propositional reasoning, we obtain a rule
Y — SA[plY
v — [plé
equipollent with (iii). It thus suffices to derive (5) from (ii). From the premise of (5), we
obtain by propositional reasoning the two formulas

(5)

¥ — ¢ (6)
v — [ply. (7)
Applying (ii) to (7), we obtain
v — [Py,
which by (6) and monotonicity gives
v — [ple.

This is the conclusion of (5).
(iii) — (i): By Axiom 3, propositional reasoning, and Axiom 7, we have
¢V (p)(¢V (p')(~4 A (p)¢))
— ¢V (p)eV (p)(p*)(~4 A (p)9)
= V(=g A (p)8) V (P)(P") (=9 A (p)9)
— V(P )(~dA(p)d) .

14



By transitivity of implication,
¢V (p)(eV (P ) (¢ A (p)9) — @V (PN~ A (p)9).
Applying (iii), we obtain the induction axiom:
() — SV (P ) (-4 A(p)9) .

. a

2.3.2 Encoding of Hoare Logic

Dynamic Logic subsumes Hoare Logic. As an illustration, we show how to derive the Hoare
while rule (Theorem 4(7)) in PDL. The other Hoare rules are also derivable.
Assume that the premise

{onvlp{v} = (6A¥) — [plo (8)
holds. We wish to derive the conclusion
{¢}while ¢ do p od{-d Ay} = ¥ — [(7;p)"; ¢ (~d A D) . (9)

Using Theorem 3(5,6) and propositional reasoning, the right-hand-side of (8) is equivalent
to

v — [¢%pl¢ .

Applying the loop invariance rule (Theorem 4(4)), we obtain

v — [(¢%p)]9 .

By the monotonicity of [(¢?;p)*] (Theorem 4(2)) and propositional reasoning,
v = [(@%p))(~d — ~pAY) .

Again by Theorem 3(5,6) and propositional reasoning, we obtain the right-hand-side of

(9)-
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2.4 The Small Model Property

The small model property comes from modal logic. Although the proof for PDL is sub-
stantially more complicated than for simpler modal systems, the same proof technique,
called filtration, applies. The small model property for PDL was first proved by Fischer
and Ladner [40,41].

The small model property says that if ¢ is satisfiable, then it is satisfied at a state in a
model with no more than 2%/ states, where |¢| is the length (number of symbols) of ¢. This
immediately gives a naive nondeterministic exponential-time algorithm for the satisfiability
problem. A deterministic exponential-time algorithm will be obtained in §2.6.1.

2.4.1 The Relation < and the Fischer-Ladner Closure

Many proofs in simpler modal systems use induction on subformulas. In PDL, the situation
is complicated by the simultaneous inductive definitions of programs and propositions; it is
further complicated by the behavior of the * operator. We must therefore do our induction
on another well-founded relation that resembles the subformula relation but is somewhat
more intricate.

Let < be the smallest transitive relation on {0,1} x ® containing the following inequal-
ities:

1. (0,¢), (0,%) <(0,¢V )

2. (0,¢) < (0,~9)

3. (0,4), (1,(p)¢) < (0,(p)¢)

4. (L, (p)¢), (1,(q)¢) < (1,(pU q)4)
5. (1, (p)(a)9), (1,(a)¢) < (1,(p; q)¢)
6. (1, (p)(p")¥) < (1,(p*)9)

7. (0,4) < (1,(¢7)%)

It is not hard to see that the relation < is well-founded.
Define (i,4) < (j,) if either (i,¢) < (j,$) or (i,¢) = (j,$). The Fischer-Ladner
closure of ¢, denoted FL(g), is the set

FL(¢) = {¢10,¥) =(0,9), j€{0,1}}.

Let |A| denote the cardinality of a set A and let |¢| and |p| denote the length (number of
symbols) of ¢ and p, respectively. The following lemma is easily established by induction
on the well-founded relation <.

Lemma 7
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L {(5,%) 1 (5,9) < (0,¢)}] < |4|

2. H(&9) [ (6,9) 2 (1, (p)d)} < |p|
It follows immediately from Lemma 7 that |FL($)| < |¢|. We also have
Lemma 8 If (p) € FL($) then 4 € FL(¢).

2.4.2 Filtration

Given a PDL proposition ¢ and a Kripke model M = (S, ™), we define a new model
M/FL($) = (SM/FLS) [MIFU#)) called the filtration of M by FL(¢), as follows. Define a
binary relation = on states of M by:

u=v iff Vi€ FL(¢) (u€ypM = veyp™).

In other words, we collapse u and v if they are not distinguishable by any formula of F L(¢).
Let

[u] = {v|v=u}
SMIFU®) = (lu] |u € SM}
M/ FH®) = {[u]|u € ™M}, ¢ atomic
PO = {([ul, o)) | (u,v) € P}, p atomic.

IM/FU®) is extended inductively to compound propositions and programs as in §2.1.2.

The following lemma relates M and M/FL(¢). Most of the difficulty in the following
lemma is in the correct formulation of the induction hypotheses in the statement of the
lemma. Once this is done, the proof is a straightforward induction on the well-founded
relation <.

Lemma 9 (Filtration Lemma)
1. For all (0,4) < (0,4), u € p™ iff [u] € pM/FUS),
2. For all (1, (p)¥) < (0,9),
(a) if (u,v) € p™* then ([u], [v]) € p/FU®);
(b) if ([u],[v]) € P/ FL9) and v € Y™, then u € (p)p™.
Using the filtration lemma, we can prove the small model theorem easily:

Theorem 10 (Small Model Theorem) Let ¢ be a satisfiable formula of PDL. Then ¢ is

satisfied in a model with no more than 2'#! states.

Proof. 1f ¢ is satisfiable, then there is a model M and state w € M with u € ¢M.
Let FL(¢) be the Fischer-Ladner closure of ¢. By the filtration lemma, [u] € ¢M/FLU#)

Moreover, M /FL($) has no more states than the number of truth assignments to formulas
in FL(#), which by Lemma 7(1) is at most 2/¢/. O
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2.4.3 Filtration over Nonstandard Models

We note for future use that the filtration lemma (Lemma 9) actually holds in more gener-
ality. In particular, it holds for nonstandard models as well as the standard models defined
in §2.1.2.

Definition 11 A nonstandard Kripke model is any structure A/ = (S¥,I¥) that is a
Kripke model in the sense of §2.1.2 in every respect, except that (p*)¥ need not be the
reflexive-transitive closure of p¥ | but only a reflexive, transitive relation containing pV and
satisfying the PDL induction axiom (Axiom 8). O

It is easily checked that all the axioms and rules of §2.2 are still valid over nonstandard
models.

Lemma 12 (Filtration for Nonstandard Models) The Filtration Lemma (Lemma 9)
holds for nonstandard models.

Proof. All cases are identical to the corresponding cases of Lemma 9, except case 2(a)
for p*. For standard models M, the proof is straightforward, using the fact that (p*)* is
the reflexive-transitive closure of p*. This does not hold in nonstandard models in general,
so we must depend on the weaker induction axiom. We argue this case explicitly.

Let A be a nonstandard model, and suppose (u,v) € (p*)¥. We wish to show that
([u], [v]) € (p*)V/FH#) or equivalently that u € E, where

E = {weN|(w],P]) € )V} .

Since E is a union of equivalence classes defined by truth assignments to the elements of
FL(#), there is a PDL formula ¢ defining E in A/; ie., E = ;bg There is likewise a PDL
formula 4, defining just the equivalence class [v]. Since [v] C E,

Also,

N (p)¥e — ¥& , (11)
since if w € ((p)¥g)¥, then there exists a t € Y¥ = E such that (w,t) € pV; then
([w], [t]) € p¥/FH#) by the induction hypothesis, and (It], [v]) € (p*)V/FU9), thus ([w],[v]) €
(p*)V/FU#) and therefore w € E.

Combining (10) and (11), we get
N = (¥ V (p)¥E) — ¥ -

Using the reflexive-transitive closure rule (Theorem 4(3)), which by Proposition 6 is equiv-
alent to the induction axiom, we have that

NE @) — ¥5 -
But u € ((p‘)'l,b[,,])jv by assumption; therefore u € E. O
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2.5 Deductive Completeness

Completeness of the deductive system of §2.2 was first shown independently by Gabbay
[44] and Parikh [115]. A particularly easy-to-follow proof is given in [84]. Completeness
is also treated in [127,12,110]. The completeness proof sketched here is from (80] and is
based on the approach of [12].

Lemma 13 Let L,I' be mazimal consistent sets of PDL propositions. Then the following
two statements are equivalent:

1. forally €T, (p) € &;

2. for all [pld € £, ¢ € T.
Define a nonstandard model F by:
s* = {maximal consistent sets of propositions of PDL}
¢© = {ue ST |pecu}
P’ = {(%,v) Vg€ v (p)g € u}
= {(u,v) | V[pl$ € u ¢ € v}
The two definitions of p” are equivalent, by Lemma 13.
Proposition 14 F is a nonstandard Kripke model in the sense of Definition 11.
Theorem 15 (Completeness of PDL) If = ¢ then I ¢.

Proof. Equivalently, we need to show that if ¢ is consistent, then it is satisfied in a
standard Kripke model. If ¢ is consistent, then by Zorn’s Lemma it is contained in a
maximal consistent set u, which is a state of the nonstandard model F. By the filtration
lemma for nonstandard models (Lemma 12), ¢ is satisfied at state [u] in the finite standard

model F/FL(¢). O

2.5.1 Logical Consequences

In classical logics, a completeness theorem of the form of Theorem 15 is easily adapted to
handle the relation of logical consequence ¢ |= ¥ between formulas, since usually

sy iff Eé— (12)
Unfortunately, (12) fails in PDL, as can be seen by taking ¢ = [p|¢. However, the following

result allows Theorem 15, as well as Algorithm 17 of §2.6.1 below, to be extended to handle
logical consequence:

Proposition 16 Let ¢, be any PDL formulas. Then
¢EY f ElpU...Up) ¢~ 9,
where p,...,p, are all atomic programs appearing in ¢ or 1.

It is shown in [99] that the problem of deciding whether ¥ |= 1, where T is a fixed r.e.
set of PDL formulas, is II}-complete.
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2.6 - Complexity of the Satisfiability Problem for PDL
2.6.1 A Deterministic Exponential-Time Algorithm

The naive algorithm for the satisfiability problem that comes from the small model the-
orem is double-exponential time in the worst case. Here we develop an algorithm that
runs in deterministic time 2°(¢). In fact, the problem is deterministic exponential-time
complete (see §2.6.2), so it is unlikely that a significantly more efficient algorithm will be
found. Deterministic exponential-time algorithms were first given by Pratt [127,129]. The
algorithm given here is from [129)].

The algorithm constructs the small model A’ = F|FL(¢) obtained in the completeness
proof of §2.5 explicitly. If ¢ is satisfiable, then it is consistent, by the soundness of the
deductive system of §2.2; then ¢ will be satisfied at some state u of F, and hence at the
state [u] of NV.

We start with the set S of all truth assignments u : FL(¢) — {true, false}. By the
construction of N, the states of A are in one-to-one correspondence with the consistent
truth assignments to FL(¢), thus we may consider S¥ to be a subset of S; i.e., for all
Y € FL(¢) and u € SV,

weyp’ o u(y) = true . (13)
We will approximate A with a sequence of models A; = (S, 1), 1 > 0, such that
§2528 228V,

obtained by deleting from S any truth assignments that we can determine to be inconsis-
tent. When we are done, we will be left with the model A. '

The interpretations of the primitive formulas and programs in the models N; will be
defined in the same way for all i:

P = {ueS; | u() = true} , 9 atomic (14)

p’v' = {(u,v) € S? | u((p)¥) = true whenever v(¢)) = true} , p atomic . (15)

Algorithm 17
1. Construct S.

2. For each u € S, check whether u respects Axioms 1, 4, 5, and 6 of §2.2 and Theorem
2.3(13) of §2.3, all of which can be checked locally. For example, to check Axiom 4,
which says

(pU@Y « (PYV(gv,

check that u((p U g)¥) = true if and only if either u((p)®) = true or u((q)y) = true.
Let So be the set of all u € S passing this test. The model A is defined by (14) and
(15) above.
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3. Repeat the following for : = 0,1,2,... until no more u are deleted: find a <-minimal
(1,{p)¥) < (0,¢) and u € S; violating the property

u((p)y) = true — v (u,v) € p* and v(¢) = true . (16)

Delete u from S; to get S;,,. O
The correctness of this algorithm will follow from the following lemma (cf. Lemma 9):

Lemma 18 Let (5,£) =< (0,4) be such that every (1, (p)¥) < (j,€) and u € S; satisfy (16).
1. For all (0,9) < (3,¢) and u € S;, u(¥) = true iff u € 7.
2. For all (1,(p)¥) =< (3,€) and u,v € S;,

(a) if (u,0) € p then (u,v) € p;
(b) if (u,v) € p¥* and v(¥) = true, then u((p)y) = true.

Proof. By induction on <. O

Since every u € SV passes the test of Step 2 of the algorithm, S¥ C S,; and (13) and
Lemma 18(2(a)) imply that no u € S¥ is ever deleted in Step 3, since for u € SV,

w((p)¥) = true — we ((p)9)"
— v (u,v) € p¥ and v € YV
— v (u,v) € p* and v(¥) = true .

Thus
S¥ C S ,i>0.

Moreover, when the algorithm terminates with the model A, then by Lemma 18(1), every
u € S, (viewed as a truth assignment) is satisfiable, since it is satisfied by the state u in
the model A,; thus S, C S¥. We can now test the satisfiability of ¢ by checking whether
u($) = true for some u € N,,.

Algorithm 17 can be programmed to run in exponential time without much difficulty.
The efficiency can be further improved by observing that the p in the <-minimal (1, (p)%)
violating (16) in Step 3 must be either atomic or of the form ¢*, because of the preprocessing
in Step 2. This follows easily from Lemma 18. We have shown:

Theorem 19 There is an ezponential-time algorithm for deciding whether a given formula

of PDL 1s satisfiable.

As previously noted, Proposition 16 of §2.5.1 allows this algorithm to be adapted to
test whether one formula is a logical consequence of another.
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2.6.2 A Lower Bound

1In [40,41], it is shown how PDL formulas can encode computations of linear-space-bounded
alternating Turing machines. It follows from [18] that the satisfiability problem for PDL
is deterministic exponential-time hard, therefore requires at least deterministic time 29"
on formulas of size n.

The satisfiability problem for PDL is thus exponential-time complete. In contrast, the
satisfiability problem for classical propositional logic is NP-complete.
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2.7 Variants of PDL

A number of interesting variants are obtained by extending or restricting PDL in various
ways. In this section we describe some of these variants and review some of the known
results concerning relative expressive power, complexity, and proof theory.

2.7.1 Deterministic PDL and While Programs

A program p is said to be (semantically) deterministic in M if its traces are uniquely
determined by their first states. If p is atomic, this is equivalent to the requirement that
p™ be a partial function. The class of deterministic while programs, denoted DWP, is the
class of programs in which

1. the operators U, ?, and * may appear only in the context of the conditional test,
while loop, skip, or fail;

2. tests in the conditional test and while loop are purely propositional (i.e., there is no
occurrence of the ( ) operator).

The class of nondeterministic while programs, denoted WP, is the same, except uncon-
strained use of the nondeterministic choice construct U is allowed. It is easily shown
that if p and q are semantically deterministic in M, then so are if ¢ then p else ¢ fi and
while ¢ do p od.

Definition 20 We define PDL(DWP) to be the syntactically and semantically constrained
version of PDL in which

e only deterministic while programs are allowed;

e every atomic program is semantically deterministic.

O

(This version of PDL is sometimes called strict deterministic PDL in the literature.)

If ¢ is valid in PDL, then ¢ is also valid in PDL(DWP), but not conversely: the formula

(p)$ — [plo (17)

is valid in PDL(DWP) but not in PDL. Also, PDL(DWP) is strictly less expressive than
PDL, since the formula

(pUq)*)¢ (18)
is not expressible in PDL(DWP) [53].

Unlike PDL, the satisfiability problem for PDL(DWP) is PSPACE-complete [53).

If the deductive system of §2.2 is modified so as to refer only to deterministic while
programs, and if axiom (17) is included, the resulting system is sound and complete for
PDL(DWP) [8].

Related results are obtained in [12,157,8).
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2.7.2 Rich and Poor Tests

Tests ¢? in PDL are defined for arbitrary propositions ¢. This is called rich-test. This is
substantially more power than one would find in a conventional programming language.
Indeed, in the first-order version over the natural numbers, rich test allows undecidable
problems to be decided in one step. Poor-test PDL, on the other hand, can only test atomic
propositions.

The exponential-time hardness result described in §2.6.2 still holds for poor-test PDL,
since the construction does not require tests. However, it can be shown [124,11,14] that
rich-test PDL is strictly more expressive than poor-test PDL, which in turn is strictly more
expressive than test-free PDL. These results also hold for PDL(DWP) (see §2.7.1). In fact,
the formula 2.7.1(18) of test-free PDL is not expressible in PDL(DWP).

2.7.3 Context-Free Programs

A PDL program can be viewed as a regular expression denoting the set of its computation
sequences (§2.1.3). The set of computation sequences is thus a regular set in the sense of
the theory of formal languages and automata (see [71]).

More complex sets of computation sequences can be allowed as programs to obtain more
expressive versions of PDL. In particular, contezt-free PDL, denoted PDL;, is obtained by
allowing programs to be context-free sets of computation sequences. This corresponds to
a syntax allowing recursive calls without parameters. For example, the set

{p";q" |n > 0} (19)

where p and ¢ are atomic, is a program of PDL.s but not of PDL. Programs may be built
compositionally using a context-free grammar-like syntax, or represented by pushdown
automata accepting sets of computation sequences.

The satisfiability problem for PDL.; was shown undecidable by Ladner [unpublished];
the problem was shown to be II!-complete in (62], even for PDL extended with the single
context-free program (19). Related results can be found in [63,61].

2.7.4 Automata Theory and Program Logics

A PDL program represents a regular set of computation sequences. This same regular set
could possibly be represented exponentially more succinctly by a finite automaton. The
difference between these two representations corresponds roughly to the difference between
while programs and flowcharts.

Since finite automata are exponentially more succinct in general, the complexity results
of §2.6 could conceivably fail if finite automata were allowed as programs. Moreover, we
must also rework the deductive system of §2.2.

However, it turns out that the completeness and exponential-time decidability results
of PDL are not sensitive to the representation, and still go through in the presence of
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finite automata as programs, provided the deductive system of §2.2 and the techniques of
§§2.4-2.6 are suitably modified [129,130,66).

In very recent years, the automata-theoretic approach to logics of programs has yielded
significant insight into propositional logics more powerful than PDL, as well as substantial
reductions in the complexity of their decision procedures. Especially enlightening are the
connections with automata on infinite strings and infinite trees: by viewing a formula
as an automaton and a tree-like model as an input to that automaton, the satisfiability
problem for a given formula becomes the emptiness problem for a given automaton. Logical
questions are thereby transformed into purely automata-theoretic questions.

This connection has prompted renewed inquiry into the complexity of automata on
infinite objects, with considerable success (29,31,34,36,96,122,135,141,145,158,159,160,161,
163,164]. Especially noteworthy in this area is the recent result of Safra [135] involving the
complexity of converting a nondeterministic automaton on infinite strings to an equivalent
deterministic one. This result has already had a significant impact on the complexity of
decision procedures for several logics of programs [29,34,35,135].

2.7.5 Converse

The converse operator ~ is a program o erator Wthh allows a program to be “run back-
wards”:

()" = {(s,t)[(t,5) e p™} .

This operator strictly increases the expressive power of PDL, since the formula (p7)¢
is not expressible without it. More interestingly, the presence of the converse operator
implies that the operator (p) is continuous in the sense that if ® is any (possibly infinite)
family of formulas possessing a join \ ®, then V(p)® exists and is logically equivalent to
(p) V @ [154]. In the absence of the converse operator, there exist nonstandard models for
which this fails.

The completeness and single-exponential decidability results of §2.5 and §2.6.1 can be
extended to PDL with converse [115] provided the following two axioms are added:

¢ — [pl(p7)o
¢ — [P lpe.

The filtration lemma (Lemma 9) still holds in the presence of ~, as does the finite model
property.

The complexity of PDL with converse and various forms of well-foundedness constructs
(see §2.7.6 below) is studied in [159].

2.7.6 Well-Foundedness and Total Correctness

If p is a deterministic program, the formula ¢ — (p)3 asserts the total correctness of p with
respect to pre- and postconditions ¢ and ¥, respectively. For nondeterministic programs,
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- ‘however, this formula does not express total correctness: it asserts that if ¢ then there
ezists a halting computation sequence of p yielding v, whereas we would really like to
assert that if ¢ then all computation sequences of p terminate and yield . Unfortunately,
this property is not expressible in PDL.

The problem is essentially concerned with well-foundedness. A program p is said to be
well-founded at a state ug if there exists no infinite sequence ug, u;, Uz, ... with (u;,u;4,) €
pM for all 1 > 0.

Several very powerful logics have been proposed to deal with this situation. The most
powerful is perhaps the propositional pu-calculus (138,69,120,132,81,83,85,113,146,161]. The
version of this logic given in [81] is essentially propositional modal logic with a least fixpoint
operator u, which allows syntactic expression of any property that can be formulated as
the least fixpoint of a monotone transformation. The well-foundedness of p is expressed

pz.[p|z (20)

in this logic.

Two somewhat weaker ways of capturing well-foundedness without resorting to the full
p-calculus have been studied. One is to add an explicit predicate wf for well-foundedness.
Another is to add an explicit predicate halt, which asserts that all computations of its
argument p terminate. These constructs have been investigated in [65,67,113,144,145,146]
under the various names loop, repeat, and A.

The predicate halt can be defined inductively from wf, as follows:

halt(p), if p is an atomic program or test,

halt(p; g) < halt(p) A [p|halt(q),

halt(p U q) < halt(p) A halt(g),

halt(p*) — [p*]halt(p) A wi(p).

The propositional p-calculus is strictly more expressive than PDL with wf [113,146], which
is strictly more expressive than PDL with halt [67], which is strictly more expressive than
PDL [144].

The filtration lemma fails for the propositional p-calculus and for PDL with halt or
wf, as can be seen by considering the model M = (SM, I*) with

$M = {(55) EN?[0 <5 <a}u{u}
and atomic program p with
™) = {((3), (i = D)) 11 <5< i} U{(n,(6,9) [ € N}

The state u satisfies halt(p*) and wf(p), but [u] does not satisfy this formula in any finite
filirate. Despite this failure, these logics do satisfy the finite model property [144,145,83].
In the presence of the converse operator, the finite model property fails, since the formula

—halt(p®) A [p’|halt(p™*), p atomic
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is satisfiable but has no finite-model. All these logics are decidable [144,145,85,161,159];
very recently, they have been shown to be deterministic single-exponential time complete
(34,135].

There is no known complete axiomatization for PDL with halt or wf, or for the propo-
sitional p-calculus. A completeness result for a syntactically restricted version of the
p-calculus which includes the formula (20) for p a deterministic while program is given in
[81], and a complete infinitary deductive system is given in [83].

2.7.7 Other Work

Additional topics related to PDL, which space does not permit us to discuss in depth,
include work on complementation and intersection of programs [64], nonstandard models
[12,13,76,77,129,115], Dynamic Algebra [76,77,78,129,131], Process Logic [116,128,111,58,
162], PDL with Boolean assignments [1], restricted forms of the consequence problem [118],
concurrency [123], and probabilistic programs [79,134,82,119,29,68,158]. We also refer the
reader to Harel’s survey [56], which covers many of these topics in more detail.
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3 First-Order Dynamic Logic

In this section we define- various forms of first-order Dynamic Logic (DL) and discuss
their syntax, semantics, proof theory, and expressiveness. The main difference between
first-order DL and the propositional version discussed in 82 is the presence of a first-order
structure A, called the domain of computation, over which first-order quantification is
allowed. States are no longer abstract points, but valuations of a set of variables over A;
primitive programs are no longer abstract binary relations, but assignments of the form
z := t, for example, where z is a variable and t is a term; and primitive assertions are
first-order formulas.

3.1 Syntax

Let L = (...,f,...,R,...) be a finite first-order language with equality. Here f and
R denote generic function and relation symbols of L, respectively. Each function and
relation symbol of L comes with a fixed arity (number of inputs). Let V = {zo,z, .. .} be
a countable set of individual variables. The metasymbols s, ¢, . .. range over terms of L.

There are several versions of DL that we will discuss, depending on the choice of primi-
tive constructs. In general, these logics are similar to the propositional version introduced
in §2, with the following key exceptions:

e Primitive programs are assignment statements of the form
z:=t, (21)

for example. Here z € V and t is a term of L; this form of assignment is called a
simple assignment.

e Primitive assertions are atomic formulas of L, i.e. formulas of the form
R(ty,. .. t)
where R is an n-ary relation symbol of L and t,,...,t, are terms of L.

e In the inductive definition of formulas, we include the clause:
if ¢ is a formula, then so is 3z ¢, where z € V.

Otherwise, compound programs and formulas are formed exactly as in §2.1.1, using the
connectives ; (sequential composition), U (nondeterministic choice), * (iteration), ? (test),
( ) (modal possibility), V (propositional disjunction), and - (propositional negation).
The class R of regular programs contains all programs formed from simple assignments
(21), U, ;, *, and ?, in which any formula ¢ appearing in a test ¢? must be a quantifier-free
first-order formula. For much of the sequel, we will be concerned with while programs
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- only. The class of deterministic while-:programs, denoted DWP, is the subclass of R in
which the program operators U, ?, and * are constrained to appear only in the forms

skip = true?
fail = false?
if gthenpelse gfi = ¢7;pU-¢?;¢q
while ¢ do p od = (¢47;p)*;¢?

The class of (nondeterministic) while programs, denoted WP, is the same, except that we
allow unrestricted use of the nondeterministic choice construct U.

The definitions of R, WP, and DWP depend on the language L, but to save notation,
we do not make this dependence explicit.

3.1.1 Arrays and Stacks

We will eventually want to discuss the power of auxiliary data structures such as arrays and
stacks, as well as a powerful assignment statement called the nondeterministic assignment.
We mtroduce the syntactic machinery now so that we can give the semantics of these
constructs all at once in the next section.

To handle arrays, we include a countable set of array variables

‘/urray: {F07F1v---} .

Each array variable has an associated arity, or number of inputs, which we do not represent
explicitly. We assume that there are countably many variables of each arity n > 0. In the
presence of array variables, we equate V with the nullary array variables; thus V C Varray-
The variables in V;,,,, of arity n will range over n- ary functions with arguments and values
in the domain of computation. In our exposition, elements of the domain of computation
play two roles: they are used as indices into an array, and as values which can be stored
in an array. One might equally well introduce a separate sort for array indices; although
conceptually simple, this would complicate notation and would give no new insight.

The classes DWP,,,,, and WP, ay of deterministic and nondeterministic while pro-
grams with arrays are defined similarly to DWP and WP, respectively, except that in
addition to simple assignments, we allow array assignments. These are similar to simple
assignments, except that on the left-hand-side we allow a term in which the outermost
symbol is an array variable:

F(ty,...,tn):=t.

Here F is an m-ary array variable and t,,...,tn,t are terms, possibly involving other array
variables. Note that when m = 0, this reduces to the ordinary simple assignment.

To handle stacks or pushdown stores, we introduce stack variables o and two new atomic
programs:

push(a,t) pop(a,y)
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~where t is a term and y € V.. Intuitively, o represents a stack, the push operations pushes
the current value of ¢ onto the top of the stack o, and the pop operation pops the top
value off the top of the stack o and assigns that value to the variable y. Formally, o will
range over finite strings of elements of the domain of computation. The classes DWP,q4,
and WPpq, are obtained by augmenting the classes of deterministic and nondeterministic
while programs, respectively, with one stack variable o, and allowing the push and pop
operations above as atomic programs in addition to simple assignments. We emphasize
that the programs in DWP,,, and WP,y may use only one stack—the results change
dramatically when two or more stacks are allowed.

If we allow both a stack and arrays in deterministic and nondeterministic while pro-
grams, we obtain the programming languages DWP,rrayipas and WP iy pa,, Tespectively.

3.1.2 Nondeterministic Assignment

The nondeterministic assignment
=7
z:=7

is a device that arises in the study of fairness [5]. It has often been called random assignment
in the literature, although we prefer the name nondeterministic assignment, since it has
nothing to do with randomness or probability. Intuitively, it operates by assigning a
nondeterministically chosen element of the domain of computation to the variable z. This
construct may be considered an extension of the first-order existential quantifier, in the
sense that the two formulas

(z:=N¢ dz ¢

are equivalent. However, the nondeterministic assignment is (at least superficially) more
powerful, since it may be iterated.

3.1.3 Rich and Poor Tests

The variants of DL we have discussed may all be described as “open-test” or “poor-test”.
This means that only quantifier-free tests are allowed in the if-then-else and while-do
(cf. §2.7.2). One may allow arbitrary DL formulas in these tests to get the “rich-test”
versions. These versions are discussed briefly in §3.7.4.

3.2 Semantics

In this section, we assign meanings to all the syntactic constructs described above.

Let A= (|A|,...,fA,...,RA,...) be a first-order structure for the language L. We call
A the domain of computation. Here |A| is a set, called the carrier of A, fAis an n-ary
function f4: |A™ — |A| interpreting the n-ary function symbol f of L, and R* is an n-ary
relation R* C | A" interpreting the n-ary relation symbol R of L. (The equality symbol
= is always interpreted as the identity relation.) We henceforth dispense with the vertical
bars and use the notation A for both the structure and its carrier.
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For n > 0, let (A" — A) denote the set of all functions A® — A. By convention, we
take (A% — A) = A. Let A* denote the set of all finite-length strings over A.

The structure 4 determines a Kripke model, which we will also denote by A, as follows.
A valuation over A is a function u assigning an n-ary function over A to each n-ary array
variable, and a finite-length string of elements of A4 to each stack variable. That is:

u(F) € (A™— A), if Fis an n-ary array variable,
u(o) € A*, if o is a stack variable.

Under the convention (A° — A) = A, and assuming that V C V,,,,,, the individual
variables (i.e., the nullary array variables) are assigned elements of .4 under this definition:

u(z)e A, ifzeV.
The valuation u extends uniquely to terms ¢ by induction:

u(f(tr,- - stm)) = fAu(t1),...,u(tm)), if fisan m-ary function symbol,
w(F(t, ... tm)) = w(F)(u(t),...,u(tm)), if F is an m-ary array variable.

If z is a variable of any type and a is an object of the same type, we denote by u[z/a] the
new valuation obtained from u by changing the value of z to a, and leaving the values of
all other variables intact. For example, if F is an m-ary array variable and f:A™ — A,
then u[F/f] is the new valuation which assigns the same value as u to all stack variables
and array variables other than F', and

ulF/fI(F) = f.

If f: A™ — Ais an m-ary function and a,,...,am,a € A, we denote by flai,...,am/a] the
m-ary function that agrees with f everywhere except input ay,...,am, on which it takes
the value a. l.e.,

a, ifbi:a.-,lﬁiim
f[al,...,am/a](bx,...,bm) = {f(bla-"’bm)’ otherwise.

Definition 21 We call valuations u and v finite variants of each other if
1. u(F) = v(F) for all but finitely many array variables F';
2. for all array variables F of positive arity n,
u(F)(ay,...,a,) = v(F)(ar,-..,a,)

for all but finitely many n-tuples a,,...,a, € A"; in other words, » and v may differ
on only finitely many array variables, and for those F' on which they do differ, the
functions u(F) and v(F) may differ on only finitely many values;
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3. for all but finitely many stack variables o, (o) = v(o).

a

The relation “is a finite variant of” is an equivalence relation on valuations. Since a
halting computation can run for only a finite time and therefore execute only finitely many
assignments, it will not be able to cross equivalence class boundaries; i.e., in the binary
relation semantics given below, if the pair (u,v) is an input/output pair of the program p,
then v is a finite variant of u.

We are now ready to define the states of our Kripke model.

Definition 22 Let « € A. Let w, be the valuation in which all array and individual
variables are interpreted as constant functions taking the value a everywhere, and all
stacks are empty. A state is any valuation that is a finite variant of w, for some a. The
set of states of A is denoted SA. O

It is meaningful, and indeed useful in some contexts, to take as states the set of all
valuations. Our purpose in restricting our attention to states as defined in Definition
22 is to avoid highly complex oracles that might compromise the value of the relative
expressiveness results below.

As in §2.1.2, with every program p, we associate a binary relation p* C S4 x S (the
input/output relation of p), and with every formula ¢, we associate a set ¢* C SA. The
sets p™ and ¢4 are defined by mutual induction on the structure of p and ¢.

For the basis of this inductive definition, we first give the semantics of all the assignment
statements discussed in §3.1.

1. The array assignment F(t,...,t,,) :=t is interpreted as the binary relation
(Pt tm) == 0% = {(w,ulFfu(F)u(t), . u(tw) /u(t)]]) |u € 54} .

In other words, the array assignment has the effect of changing the value of F on
input u(t1),...,u(tm) to u(t), and leaving the value of F on all other inputs and the
values of all other variables intact. For m = 0, this definition reduces to the following
definition of simple assignment:

(z:=0" = {(u,ufz/u(t)]) |ue $4}.
2. The stack operation push(o,t) is interpreted as the binary relation

push(o,t)* = {(u,ulo/(u(t) - u(o))]) |u € S4} .

In other words, this operation changes the value of o from (o) to the string u(t)-u(o),
the concatenation of the value u(t) with the string u(c).
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3. The stack operation pop(s,z) is interpreted as the binary relation

pop(0,t)* = {(u,ulo/tail(u(0))|[z/head(u(c),u(2))]) |u € 54},

where
tailla-a) = a
tail(e) = ¢
head(a - a,b) =

a
head(e,b) = b

where € is the null string. In other words, if u(o) # ¢, this operation changes the
value of o from u(0) to the string obtained by deleting the first element of u(o), and
assigns that element to the variable z; if u(o) = ¢, then nothing is changed.

4. The nondeterministic assignment z :=? for = € V is interpreted as the relation

(z:=1* = {(u,u[z/a])|ue SH ac A} .

The meanings of the primitive constructs U (nondeterministic choice), ; (sequential
composition), * (iteration), ? (test), ( ) (modal possibility), V (propositional disjunction),
and — (propositional negation) are exactly as in §2.1.2, as are those of the defined constructs
skip, fail, if-then-else, while-do, [ ], etc.

We consider the first-order quantifier 3 a defined construct:

dJz g - (z:=74¢.
Thus,
(Fz 9)* = ((z:=7)¢)"

= {(u7u[$/a]) lu € SA, ac A} o ¢A
= {u|3Jda € Aulz/d € ¢} .
The universal quantifier is then given by
Ve dp — -3z ¢
— —a<x = ?>—|¢
- [z:=7)¢.
Note that for deterministic programs p, p* is single-valued, thus a partial function from
states to states. The partiality of p* arises from the possibility that p may diverge when

starting its computation in certain states. For example, (while true do skip od)* is the
empty relation. For nondeterministic programs p, the relation p* need not be single-valued.
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If A'is a:structure and u is a state of A, the pair (A, u) is called.an interpretation. As
in §2.1.2, we write A,u |= ¢ for u € ¢* and say that u satisfies ¢ in A. We may write
u = ¢ when A is understood. We write 4 = ¢ if A, u = ¢ for all u in A4, and we write |= ¢
and say that ¢ is valid if A = ¢ for all A. We say that ¢ is satisfiable if A,u = ¢ for some
(A,u). If ¥ is a set of propositions, we write .4 FXif A= ¢ forall ¢ € . A proposition
1 is said to be a logical consequence of ¥ if for all structures A, A= 9 whenever A = .
We say that an inference rule

X

¥

is sound if 9 is a logical consequence of ¥.

In particular, A,u |= (p)¢ iff there exists a computation of p starting in state u and
terminating in a state satisfying ¢, and A, u |= [p]4 iff every terminating computation of P
starting in state u terminates in a state satisfying ¢. For a pure first-order formula ¢, the
metastatement A, u |= ¢ has the same meaning as in first-order logic (see, e.g., [19]).

As noted in §2.3.2, DL subsumes Hoare logic [70]. If p is a program and ¢ and ¥
are pure first-order formulas, the classical Hoare partial correctness formula {#}p{¥} of
program p with respect to precondition ¢ and postcondition 1 is expressed ¢ — [p|i. The
corresponding total correctness formula (for deterministic programs only—see §2.7.6) is
expressed ¢ — (p)v.

If K is a given subset of the syntactic constructs introduced in §3.1, we refer to the
version of Dynamic Logic built from these constructs as Dynamic Logic over K, and denote
this logic by DL(K). In particular, we henceforth adopt the following abbreviations:

DL = DIL(WP)
DDL = DL(DWP)
DLyray = DL(WP,.4,)
DLarruy+pds = DL( Wparray+pds) .
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3.3 Complexity
3.3.1 The Validity Problem

First, we discuss the complexity of-the validity problem for three fragments of Dynamic
Logic: full DL, partial correctness formulas, and total correctness formulas. These results
give us the first estimate of what can be expected from formal proof systems designed for
the above three fragments. The results are stated for nondeterministic while programs,
but remain true for more powerful programming languages.

The first result of this section is due to Harel, Meyer, and Pratt [67]. The proof can
also be found in [56, pp. 551-554].

Theorem 23 (i) If L contains at least two unary function symbols and a binary function
symbol, then the set of valid DL-formulas is a I1}-complete set.

(#) If L contains at least one unary function symbol and one binary function symbol, then
the set of valid partial correctness formulas

{#¢ — [pl¥ | 6,9 are first-order formulas and = ¢ — [p|v}

is a I19-complete set.

(11) For every L, the set of valid total correctness formulas

{¢ — (p)¥ | 4,9 are first-order formulas and = ¢ — (p)v}
is in X0,

The assumptions on the language L in the above theorem can presumably be further
weakened, but the reader should notice that if L contains no function symbols, then the
validity problem for DL is in &Y.

It follows from Theorem 23 that there is no sound and complete finitary proof system
capable of dealing with either of the two fragments described in (i) and (ii). For total
correctness, however, the situation is different. Such a system will be presented in the
next section. Although the reader may feel comfortable with Theorem 23(iii), it should
be stressed that only very simple computations are captured by valid total correctness
formulas. This is explained by the next result.

Proposition 24 Let ¢ — (p)y be a valid total correctness formula of DL. There ezists a
constant k > 0 such that for every structure A and state u, if A,u |= ¢, then there ezists a
computation sequence q of p of length at most k such that A,u |= (q)%.

Proof. This is a standard compactness argument. Consider the set CS(p) of finite
computation sequences of p defined in §2.1.3. For any finite computation sequence g, there
is a first-order formula @, giving necessary and sufficient conditions under which ¢ can
execute and terminate successfully; i.e., ¢, is logically equivalent to (q)true. The formula
¢, is defined by induction on the length of g, as follows:
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e if g is the empty string, then ¢, = true.

e if ¢ = (z :=t);q, then ¢, = ¢, [z/t], where @q[x/t] is the result of substituting ¢
for all free occurrences of z in ¢, renaming bound variables as necessary to avoid
capture.

o if ¢ =107;¢, then ¢, = 0 A ¢,

By Proposition 2, the total correctness formula in the statement of the Proposition is
equivalent to the infinitary formula

¢ — V ¢,

q€ CS(p;9?)

which by assumption is valid. Hence, by the compactness of first-order logic, there exists
a finite subset F' C CS(p;9?) such that the finitary formula

¢ — V¢q

q€F
is valid. We may therefore take k to be the maximum of the lengths of the elements of F'.
]
3.3.2 Spectral Complexity

In this section, we introduce the notion of spectral complezity of a programming language.
This notion provides a measure of complexity of the halting problem for programs over
finite interpretations. The notion of spectral complexity is relatively new in the literature.
This name appears for the first time in [153], though the ideas were already present in
[150] and [60]. Spectral complexity plays an important role in establishing the expressive
power of logics of programs.

In order to introduce the notion of spectral complexity, we shall need some auxiliary
definitions.

Definition 25 An interpretation (A, u) is said to be Herbrand-like if the set
{u(z) |z € V}

generates A; i.e., if every a € A is u(t) for some term t over V (thus ¢ contains no array
variables of positive arity). O

Definition 26 A state u in A is called initial if:

1. there exists an @ € A such that for all array variables F of positive arity n and
ai,y...,a8, € A,

uw(F)(ar,.-.ha0) = a;
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2. for all stack variables o, u(o) = e.

Let m > 0.~The pair (A,u) is called an m-interpretation if u is an initiakstate in A
and there exists an a € A such that for all 1 > m,

u(z;)) = a.

Two interpretations (A,u) and (B,v) are said to be isomorphic if there exists an iso-
morphism h : A — B that commutes with the valuations u and v; i.e., for all m-ary array
variables F,

v(F)(h(a1),...,h(am)) = h(u(F)(ai,...,am))

(in particular,
oz) = h(u(s))
for individual variables z); and for any stack variable o,
if u(0) = a1a;- - ap,, then v(o) = h(a;)h(as) - h(an) -

Let L be a finite first-order language. We henceforth assume that L contains at least
one function symbol of positive arity (otherwise, only trivial relations can be computed).
The language L is said to be rich if it contains a function or relation symbol (other than
equality) of arity at least two, or at least two function or relation symbols of arity one;
otherwise, L is said to be poor. Thus, L is poor if it contains exactly one function symbol
of arity one and no relation symbols other than equality.

The essential difference between rich and poor languages is that for fixed m, over
structures with n elements, a rich language has exponentially (in ) many pairwise noniso-
morphic Herbrand-like m-interpretations, whereas poor languages have only polynomially
many. For a rich language L and fixed m € w, we can encode every finite Herbrand-like
m-interpretation (A, u) by a binary string ‘4,4’ € {0,1}* in such a way that the following
properties hold:

1. The length of ‘A, v’ is polynomial in the cardinality of A.
2. ‘A,u’ = ‘B,v’ iff (A,u) and (B,v) are isomorphic.
3. The set of codes
{*A,4’| (A,u) is a finite Herbrand-like m-interpretation}

is in DSPACE(logn).
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~ For a poor language, a similar encoding exists, except the length of ‘A, v’ is logarithmic
in the cardinality of A, and the logarithmic function of 3 should be replaced with a linear

one. For our purposes, the form of the encoding is not important, only the existence of
one; see [150,153] for details.

Now we are ready to define the notion of a spectrum of a programming language. Let

K be a programming language over L. For p € K and m € w, the m** spectrum of p is the
set

SPn(p) = {*A,%4’ | (A,u) is a finite Herbrand-like m-interpretation, and A,u = (p)true} .
The spectrum of K is the set
SP(K) = {SPu(p)|pc K, mecw}.

The next three definitions connect spectra with complexity classes. Let C c 2fony”
be a complexity class, and let K be a programming language. We say that the spectral
complezity of K is in C if SP,,(p) € C for all p € K and m € w; ie.,, SP(K) C C.
We say that the spectral complezity of K is at least C and write SP(K) > C if for every
X € C and m € w, if X is a set of codes of finite Herbrand-like m-interpretations, then
X = SP..(p) for some p € K. We say that the spectral complezity of K is equal to C and
write SP(K) = C if both SP(K) C C and SP(K) > C.

We conclude this section by establishing the spectral complexity of the programming
languages introduced in §3.1. The following result is due to Tiuryn and Urzyczyn [150],
except (le), which follows from a more general result of [153].

Theorem 27 1. Let L be a rich language.
(a) SP(DWP) C DSPACE(logn).
(b) SP(WP) C NSPACE(logn).
(c) SP(WP,q,) = SP(DWP,q4,) ~ DTIME(2°U%8™) — PTIME.
(d) SP(WPapray) = SP(DWP,,,,,) ~ DSPACE(200¢™) = PSPACE.
(¢) SP(WParrayspds) = SP(DWPorrayipas) = DTIME(2°**™) = EXPTIME.

2. If L contains a relation symbol of positive arity, ezactly one unary function symbol,
and no other function symbols, then C in (la) and (1b) can be replaced by ~.

3. If L is poor, then (1a)-(1e) carry over, provided logn is replaced by n.
The proofs of Theorem 27(1a,1b,1d) are by mutual simulations of programs and off-line

Turing machines. The proofs of Theorem 27(1c,le) are by mutual simulation of programs
and Cook’s auxiliary pushdown automata (see [71]).
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3.4 Deductive Systems

We will start our discussion-of formal deductive systems for first-order DL with the most
promising case (cf. Theorem 23(iii)), namely valid total correctness formulas. Here we will
consider the programming language R of regular programs. Extensions to handle arrays
can be found in [56, pp. 571-575]. Then, by extending the basic formal proof system S (to
be introduced below) in various ways, we will obtain:

1. a relatively complete system S( ) for partial correctness formulas;
2. an arithmetically complete system S,( ) for full DL; and
3. an infinitary complete system So( ) for full DL.

Some contrasting negative results are contained in [21,90,165].

It should be stressed that unlike syntaz-oriented formal proof systems of Hoare Logic
(cf, the chapter on Hoare logic in this volume), the systems presented in this section are
built in a style that resembles first-order reasoning.

Definition 28 (The Deductive System S) The deductive system S consists of the fol-
lowing axioms and rules of inference:

1. all valid first-order formulas;
2. all axioms and rules of PDL (see §2.2);

3. (z:=t)¢ — @[z/t], where t is a term, ¢ is a first-order formula, and #[z/t] denotes
the result of substituting ¢ for all free occurrences of  in ¢, renaming bound variables
as necessary to avoid capture.

We write 5 ¢ if ¢ is a theorem of this system, and say that ¢ is consistent if not Fs .
A set ¥ of formulas is consistent if all finite conjunctions of elements of ¥ are consistent.

The first result, due to Meyer and Halpern [102], establishes the soundness and com-
pleteness of S for total correctness formulas.

Theorem 29 For any first-order formulas ¢,% in L and program P,
Fé— ()Y if Fsé— ()Y .

The proof is by induction on p.

It follows from Theorem 23(ii) that we cannot have a result similar to Theorem 29
for partial correctness formulas. A way around this difficulty, suggested by Cook [26], is
to consider only ezpressive structures. A structure A for L is said to be ezpressive for a
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programming language A" with respect to first-order assertions if for every p € A and for
every first-order formula ¢ in L, there exists a first-order formula ¥ in L such that

AEY — [plé .

Examples of expressive structures for most programming languages are finite structures
and arithmetical structures. The latter class of structures was introduced by Moschovakis
[108] under the name acceptable structures (see also [54]). Briefly, a structure A is arith-
metical if it contains a first-order-definable copy of the standard model of arithmetic
N = (w,0,1,+,-,<), and has first-order definable functions allowing coding and decoding
of finite sequences of elements of A.

Definition 30 (The Deductive System S( )) For a structure A, let S(A) be the system
S extended by adding as axioms all first-order formulas valid in 4. O

The next result, essentially due to Cook [26], establishes the soundness and relative
completeness of S(A) for partial correctness formulas over structures A expressive for R.

Theorem 31 For every ezpressive structure A for R and for every partial correctness for-
mula ¢ — [p|y, where ¢, are first-order,

AEod— [l off Fsayé— [plv.

Again, the proof is by induction on p.
If the system S( ) is further strengthened and restricted to arithmetical structures,
then arithmetical completeness can be established for full DL. '

Definition 32 (The Deductive Systems S, and S,( )) Let S, be the system S extended
with the following two proof rules:

e quantifier generalization:

¢
Ve ¢

e rule of convergence:

$(n +1) — (p)¢(n)
$(n) — (p*)$(0)
where p € R, ¢(n) is a first-order formula with a free variable n ranging over (a copy

of) N such that n does not occur in p, and +1 and 0 replaced by a suitable first-order
definition. These requirements can be satisfied in arithmetical structures.

For an arithmetical structure A, let S,(A) be S, augmented by adding as axioms all
first-order formulas valid in A. O

The next result, due to Harel [54], asserts the arithmetical completeness of DL.
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‘Theorem 33 For every arithmetical structure A and for every ¢ € DL,

AE¢ iff Fs,ad.

By Theorem 23(i), there cannot exist a finitary complete proof system for full DL. A
complete infinitary proof system was proposed by Mirkowska for Algorithmic Logic [105].
We follow the exposition [56] where this system is presented for DL.

Definition 34 (The Deductive System S, ) Let S, be the system § augmented with
the following axiom schemes and proof rules:

o (z:=t)¢ — ¢[z/t], where ¢ € DL. (The substitution of a term for a variable in a DI
formula ¢ has to be defined carefully, due to the possible presence of programs in ¢.
The notions of free and bound variable are not as clear as they are in pure first-order

logic. See [56, p. 559] for details.)

© ¢ «— 1, where 1 is ¢ with some program p replaced by z := z;p';z := z, for some
z € V not appearing in ¢ or p, and p’ is p with all occurrences of z replaced by =z.

In addition, we also take quantifier generalization as in S,, and

(oo) infinitary convergence rule:
¢— [P, new
¢ — [p*ld

where ¢, € DLand pc R. O

Observe that the rule (co) has infinitely many premises. A proof in So is a possibly
infinite sequence of DL formulas, each one either an instance of an axiom scheme, or
following from previous formulas by application of a proof rule.

The next result is due to Mirkowska [105].

Theorem 35 For every ¢ € DL, ¢ is valid iff s ¢.
There are as many proofs of this theorem as there are proofs of infinitary completeness

for L,,.. In fact, every proof for the latter logic transforms into a proof of Theorem 35.
Algebraic methods are used in [105], whereas [56] uses Henkin’s method for L.
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3.5 Expressive Power

Let L be a finite first-order language with equality. The subject of study in this section is
the relation of relative ezpressiveness between logics £, L’ over L.

Definition 36 We say that L' is more ezpressive than £ and write £ < L' iff for every
¢ € L, there exists a 1 € £’ such that A,u }= ¢ — 9 for all structures A and initial states
u (Definition 26). We write £ = £’ if both £ < £’ and £’ < Lyand L < L' if L < L' but
not L=L' 0O

The reason for the restriction to initial states in Definition 36 is that if £ and £’
have access to different sets of data types, then they may be trivially incomparable for
uninteresting reasons, unless we are careful to limit the states on which they are compared.
For example, when comparing DL,4, and DLg,.qy, we had better disallow input states in
which the stack variable o is nonempty; otherwise, since WP,q, programs can access o and
WP, ay cannot, the DDL,y, formula

(pop(a,z); if z = y then skip else fail fi)true

would be trivially equivalent to no formula of DLgyray. Definition 36 effectively restricts the
input states of programs to initial states, but still allows non-initial states as intermediate
states in a computation. Recall also that stacks and arrays often play an auxiliary role in
programs and are not usually used for input/output.

In the definition of DL(K) given in §3.1, the programming language K is an explicit
parameter; but the first-order language L over which DL(K) and K are taken should be
treated as a parameter as well. It turns out that the relation < of relative expressiveness
is sensitive not only to K, but also to L. This second parameter is often ignored in the
literature, creating a source of potential misinterpretation of the results.

Let L., denote the first-order predicate calculus with equality over the language L,
and let L, , denote the infinitary language that allows countable disjunctions in addition
to the usual formation rules of L.

We start with a result which orders the versions of DL of §3.1 linearly.

Proposition 37 For every first-order language L,
(’L) wa S DL S DLpds }/_ DLurruy S DLarray+pda S Lulw .
(W) DDL < DL and DDL, < DL,, for * € {pds,array,array + pds} .

All inequalities of the above proposition are easy to establish, except the third one in
(1). This inequality will follow from a more general result (Theorem 45) relating < with
spectra and complexity classes.

- It is easy to show that the last inequality in (i) is strict for every language L. Henceforth,
we shall assume that L contains at least one function symbol of positive arity. Under this
assumption, the first inequality in (i) becomes strict, since it is possible to construct an
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infinite model for .L which is-uniquely definable in DL up to isomorphism. By the upward
Lowenheim-Skolem Theorem, this is impossible in L.

Strictness of the other inequalities in Proposition 37 will be discussed in the remainder
of this section. In order to discuss the relationship of these problems to complexity theory,
we must introduce some definitions.

For program p and structure A, let p* be the binary relation associated with p, as

defined in §3.2.

Definition 38 A program p is said to be semantically deterministic if for every A, ptis a
partial function. O

The remarks immediately following Definition 36 at the beginning of this section mo-
tivate the following definition.

Definition 39 Let p C S$4 x 5S4 be a binary relation on states of a structure .A. The
ground relation of p is the binary relation

ground(p) = {(u[V,v[V)|(u,v) € p and u is an initial state of A} .

(Here u[V denotes the function u restricted to domain V.) If K and R’ are programming
languages over L, we write K < K’ iff for every p € K, there exists a ¢ € K’ such that in
every structure A for L, ground(p*) = ground(q*). O

Definition 40 The programming language K is said to be semantically closed under the
n-ary programming construct c if for all programs pi,...,p, € K, there exists a ¢ € K
such that in every structure A,

).A A.

c(pry---,0n)" = ¢

a

For example, “K is semantically closed under sequential composition” means that for every
p,P' € K, there exists a ¢ € K such that ¢* = (p;p')* in all structures A.

Note that K need not contain the construct c; however, if it does, then it is trivially
semantically closed under c.

We now define a useful programming construct run-until, which works as follows. For
P,q € K and first-order formula ¢, the program

run p until (¢)¢

runs p, but after each atomic step of p, it runs g from the current state and tests whether g
-would halt in a state satisfying ¢. Depending on the outcome, it take the following actions:

e if q diverges, then the run-until statement itself diverges;

43



e if g terminates in a state v satisfying ¢, the entire run-until statement terminates
in state v;

o if ¢ terminates in a state v satisfying —¢, then control is returned to p in state v to
perform the next atomic step.

For regular programs, we can define this construct formally by induction on p:

run p until (9)¢ = p;q, for p an atomic program or test

)
)
run pUp' until (¢)¢ = (run p until (¢)¢) U (run p’ until (q)8)
)

(

run p;p’ until (g)¢ = (run p until (¢)¢);if 4 then skip else run p' until (¢)¢ fi

{
run p° until (¢9)¢ = qU (run p until (g)¢); (—~4?;run p until (9)9)° .

The construct also makes sense in more general programming languages, and can be de-
fined formally for any program p equivalent to its set CS(p) of computation sequences,
in the sense of Theorem 2, §2.1.3. The definition gives run p until (¢)¢ in terms of its
computation sequences. The definition of run r until (g)¢ for 7 a computation sequence
is given above, and for more general programs p,

CS(run p until (9)¢) = |J CS(run 7 until (g)¢) .

reCS(p)

Let WPy,4, denote the class of all while programs with two stacks.

Definition 41 A programming language K is said to be acceptable if it satisfies the fol-
lowing conditions: '

1. K < WPyp4,;

2. K contains all simple assignments z := ¢ and is semantically closed under sequential
composition, conditional, and while loop, with tests in the last two restricted to
quantifier-free formulas of L;

3. K is semantically closed under variable renaming; that is, if p € K and 7 is any
permutation of V, then there exists a ¢ € K such that for all A,

qA = {(uo m,vo0 7!‘) ‘ (u,v) € pA} )
4. K is semantically closed under the run-until construct

run p until (¢)¢

- for p and ¢ semantically deterministic and ¢ a quantifier-free formula of L.
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- Definition 41(1) insures that programs of A perform only effective operations (relative
to the interpretation of the symbols in L). WPp4, in (1) can be replaced by any program-
ming language of universal power: effective definitional schemes [43], recursive procedures
with integer counters, while programs with integer-indexed arrays, etc. Conditions (2-4)
say that K has some semantical flexibility, so that certain operations on programs can
be performed without leaving the class K. It should be clear that all the programming
languages of §3.1 are acceptable. The notion of an acceptable programming language was
introduced by Lipton [90] and used by many authors, e.g. (22,151].

Definition 42 An acceptable programming language K is semi-universal (cf. [151)) if for
every m € w there exists a semantically deterministic program p € K such that for every
Herbrand-like m-interpretation (A, u),

A,u = (p)true iff (A,u) is finite.

a .

The essence of this definition is that semi-universal programming languages have enough
power to search every submodel generated by the input. The notion of semi-universality
captures the concept of programs with unbounded memory in [56].

We now proceed to the last definition.

Definition 43 A programming language K is divergence-closed if for every p € K there
exists a ¢ € K and two variables ¢,y € V such that for every finite Herbrand interpretation
(A,u) with A having at least two elements,

A,u = (ptrue iff A,u = (g)(z =y),
A,u k= [plfalse iff Aju k= (q)(z #y) .

O
Informally, g decides without diverging whether p possibly terminates.

Proposition 44 The following programming languages are semi-universal and divergence-
closed:

1. for every L containing at least one function symbol of arity at least two, or at least two
unary function symbols: (D)WP,, for € {pds,array,array + pds} (cf. [151]);

2. for every L containing ezactly one unary function symbol and no other function symbols
of positive arity: DWP.

[t is not known whether WP is divergence-closed for any L.

The next result, due to Tiuryn and Urzyczyn [151,153], plays a key role in applying
the hierarchy results of complexity theory to problems concerning <.
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~ Theorem 45 Let K, and K, be programming languages over L such that K, is acceptable
and K, is semi-universal and divergence-closed. Let C.7Cy, C 2001} denote families of
sets that are closed downward under logarithmic space or linear space reductions, depending
on whether L is.rich or poor, respectively. - Let SP(R;) ~ C; fori = 1,2. The following
statements are equivalent:

~

. DL(Ky) < DL(K)
2. SP(K,) C SP(K,)
3. Cy C Cy.

The equivalence of (1) and (2) is proved in [151, Theorem 5|. The equivalence of (2)
and (3) is proved in (153, Theorem 3.9].

Combining Theorem 27, Proposition 44, and Theorem 45 with the known hierarchy
theorems of complexity theory, we obtain:

Corollary 46 1. For every L and for every * € {pds,array,array + pds},

DDL, = DL, .

2. If L has ezactly one unary function symbol and no other function symbols of positive
arity and at least one relation symbol of positive arity other than =, then

DDL = DL iff DSPACE(logn) = NSPACE(logn) .
3. For every L,
DLpg, < DLgrray -
4. If L is rich, then

DLPd' = DLarray 1ﬂ DTIME'(QO(lOgn)) = DSPACE(QO(IOS"))
(i.e., iff PTIME = PSPACE) .

5. For every L,

DLpd, < DLa,,ay+pd, .

6. If L is rich, then

DLurray = DLurrayipas iff DSPACE(2°0%8™) = DTIME(2*°"*")
(i.e., iff PSPACE = EXPTIME) .
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7. The results of (2), (4), (6) hold for poor languages when logn is replaced by n.

A consequence of Corollary 46 is that many questions on relative expressive power of
Dynamic Logics are equivalent to well-known difficult open problems of complexity theory.
Most of the results of Corollary 46 were proved in [150].

The following two questions are not settled by the method of spectral complexity.

1. Does DDL < DL hold for every L containing a function symbol of arity at least two
or at least two function symbols of arity one?

2. Does DL < DLy, hold for every L?

We conclude this section with a full answer to the first question and a partial answer
to the second.

Theorem 47 If L contains a function symbol of arity at least two or at least two function
symbols of arity one, then DDL < DL.

This result is due to Stolboushkin and Taitslin [143] and independently to Berman,
Halpern and Tiuryn [15]. The proof of [143] uses Adian’s Theorem [2]. It constructs an
infinite model A with two unary functions f,g and a constant c satisfying the property:

for every program p € DWP there exists a constant k € w such that every
terminating computation of p in A takes at most k steps.

This property of A, together with the compactness of first-order logic, imply that the
formula
(2 := ¢;while z # z do z := f(z) Uz := g(z) od)true ,

which expresses a nondeterministic search, is equivalent to no DDL formula.

The proof of [15] uses a purely combinatorial argument to construct a model .A with
the above property. In both cases the construction of A together with a proof that 4 has
the desired property is the major difficulty of the proof of Theorem 47. Other proofs of
Theorem 47 can be found in [156,74,152].

A partial answer to (2) is given by the next result.

Theorem 48 If L contains a function symbol of arity at least two, then DL < DL,g,.

This result is due to Erimbetov [38] and independently to Tiuryn [148]. The method
of proof in both cases is essentially the same, though [148] contains a slightly more general
statement. It says that two certain infinite models, constructed from constants, can be
distinguished by no formula of a certain fragment Lfl)g of the infinitary language L, .. The
proof uses two techniques: a pebbling argument invented by M. Paterson and C. Hewitt [121]
and independently by H. Friedman [43], and the technique of Ehrenfeucht-Fraisse games

[30]. The pebbling argument works in this framework only for languages that satisfy the
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assumption of Theorem 48. The proof is completed by checking that DL < Lfl'g, and that
the two models can be distinguished by a formula of DL,q4,.

A stronger result holds for deterministic programs. It follows from Corollary 46(1)
“and Theorem 47 that if L-contains a function symbol of arity at least two or at least
two function symbols of arity one, then DDL < DDLyg,. For languages with exactly one
unary function symbol and no function symbols of higher arity, the problems of comparing
DL to DLy, and DDL to DDL,,, reduce to open problems in complexity theory, such as
whether the classes DSPACE(logn) and PTIME are equal. A challenging open problem
not known to be equivalent to an open problem in complexity theory is the question of
whether DL < DLy, for all languages containing a function symbol of arity at least two
or at least two function symbols of arity one.

3.6 Operational vs. Axiomatic Semantics

In this section, we survey some results connected with the following question:

Can the semantics of a programming language be specified by partial correct-
ness formulas with first-order assertions?

This question is of fundamental importance for so-called aziomatic semantics.

Definition 49 Let K be a programming language. For p,q € K, we say that p is seman-
tically contained in q and write p C q iff for every model A4, pA C ¢t. O

For definiteness, we choose K = WP,,,,, while programs with two stacks.
Consider the two propositions

L.pCyq
2. for all first-order formulas ¢,v in L, if ¢ — [g|¢ is valid, then so is ¢ — [p]v.

The implication (1) — (2) follows immediately from Proposition 5. The essence of the
question raised above is whether the converse holds. A. Meyer conjectured that this was
indeed the case, and this conjecture was confirmed by Meyer and Halpern [102] and inde-
pendently by Bergstra, Tiuryn and Tucker [9].

Theorem 50 Let L be any first-order language ezcept one containing ezclusively unary re-
lations and at most one unary function symbol. Then for every P,q € WPy, if for all

first-order formulas ¢,% in L, |= ¢ — [q|¢p implies = ¢ — [p|v, then p C q.

It is noteworthy that Theorem 50 extends with the same proof of [102,9] to programming
languages whose power goes beyond any acceptable programming language; e.g., flowcharts
with arbitrary first-order tests, nondeterministic assignments, stacks, arrays, etc. We also
remark that the assertions ¢, and programs p,q in Theorem 50 are all over the same
language L. It is not known whether Theorem 50 extends to a language L consisting of
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only one unary function symbol and some number of unary relation symbols. The reader
is referred to [88] for a simpler proof of Theorem 50 for the special case of while programs.
However, the result of [88] is weaker than Theorem 50 for while programs, since the former
allows the assertions ¢, to be in an extension of L.

The definitions of this section can easily be relativized to a first-order theory T, ie.,
when interpretations are restricted to models of T. Currently, it is not well understood
what conditions on T might be sufficient to imply a relativized version of Theorem 50. It
is shown in [9] that the relativized version of Theorem 50 fails for as simple a theory as
the equational theory

{f(9(2)) = 9(f(2)) = =}

[9, Theorem 5.8, and for as complex a theory as Complete Number Theory |9, Theorem
5.10]. A positive result in this direction by Csirmaz [27] shows that Theorem 50 admits
relativization to Peano Arithmetic, confirming a conjecture posed in [9].

We conclude this section with a result showing that the validity of the partial correctness
formula ¢ — [g]¥ of Theorem 50 can even be proved in Hoare Logic, provided one allows
¢ and 9 to be in an extension of L. This result is due independently to Leivant (89] and
Meyer [104]. The method of proof given in [104] adapts to any programming language
other than WPfor which there is a sound and relatively complete proof system.

Theorem 51 Let L be any first-order language. There ezists an eztension L' O L such that
for any p € WPypa, and g € WP over L, if p £ q, then there ezist first-order formulas ¢,
in L' such that ¢ — [q]y is a theorem of Hoare logic, but ¢ — [p|¥ s not vald.

It is not known, even for L satisfying the assumption of Theorem 50, whether the
extension of the language L in Theorem 51 is essential.

The reader is also referred to [10] where various schemes for establishing program
inclusion are studied.

3.7 Other Programming Languages

For uniformity of exposition, we have concentrated on the language of while programs,
occasionally augmented with arrays and stacks. Other definitions appearing in the litera-
ture (e.g., [54,56]) may differ slightly from ours, but the reader should have no difficulty
establishing that these versions are equivalent in expressive power.

Below we discuss briefly some possible extensions of WP.

3.7.1 Algol-Like Languages

One can add to WP recursive procedures without parameters, recursive procedures with
individual parameters passed by name, reference, value/result, or other mechanism, or re-
cursive procedures with higher-order procedure parameters. Blocks with local declarations
can be added as well. Depending on scope rules (dynamic vs. static) and the features
allowed, one easily arrives at a family consisting of thousands of programming languages.
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Proof theory for -Algol-like languages is well developed by now. The reader is referred
to the chapter in this volume on Hoare Logic and [4,46] for typical results and further
references.

The expressive power of logics based on Algol-like programmming languages has been
studied to a lesser extent. A typical result in this area, which follows from [16,24], is that
Dynamic Logic with recursive procedures in which individual parameters are passed by
value/result is equivalent to DL,,,.

3.7.2 Nondeterministic Assignment

The nondeterministic assignment ¢ :=?, introduced in §3.1, chooses an element of the
domain of computation nondeterministically and assigns it to z. Thus, it is a device
representing unbounded nondeterminism, as opposed to the binary nondeterminism of the
nondeterministic choice construct U. The programming language WP augmented with
the nondeterministic assignment is not an acceptable language. Adding nondeterminis-
tic assignment to a programming language usually increases expressive power. For more
information, the reader is referred to [56].

3.7.3 Auxiliary Data Types

WP can be augmented with other data types, such as counters, binary stacks, or higher-
order arrays and stacks. Data types can be combined.

Proof theory for programming languages with these data types is not sufficiently devel-
oped. Their relative expressive power has been studied more intensively. One interesting
result, due to Urzyczyn [155], is that adding a binary stack to DWP results in a logic strictly
more expressive than DDL. (The corresponding question for nondeterministic while pro-
grams is open.) It follows from [148] that this logic is strictly weaker than DL,4,. An
infinite hierarchy of logics over WP with higher-order arrays and stacks is studied in [153].

3.7.4 Tests

In previous sections, we allowed tests to be quantifier-free first-order formulas. One can
increase the power of programs by allowing arbitrary first-order formulas as tests. One
can even go further and define programs and formulas by simultaneous induction, allowing
programs to test arbitrary formulas. This is called a rich-test logic of programs. The
reader is referred to [56] for more information on this topic.

50



4- Other Approaches

4.1 Nonstandard Dynamic Logic

Nonstandard -Dynamic Logic (NDL) was introduced by Andréka, Németi, and Sain in
1979. The reader is referred to [109,3] for a full exposition and further references. The
main idea behind NDL is to allow nonstandard models of time by referring only to first-
order properties of time when measuring the length of a computation. The approach
described in [3] and further research in Nonstandard Dynamic Logic is concentrated on
proving properties of flowcharts, i.e., programs built up of assignments, conditionals and
go to’s.

Nonstandard Dynamic Logic is well suited to comparing the reasoning power of var-
lous program verification methods. This is usually done by providing a model-theoretic
characterization of a given method for program verification. To illustrate this approach,
we briefly discuss a characterization of Hoare Logic for partial correctness formulas. For
the present exposition, we choose a somewhat simpler formalism which still conveys the
basic idea of nonstandard time.

Let L be a first-order language. We fix for the remainder of this section a deterministic
while program p over L in which the while-do construct does not occur. (Such a program
is called loop-free.) Let z = (z1,...,2,) contain all variables occurring in p, and let ¥ =
(¥1,---,Yn) be a vector of n distinct individual variables disjoint from z.

Since p is loop-free, it has only finitely many computation sequences. One can easily
define a quantifier-free first-order formula 8, with all free variable among ¥,z which defines
the input/output relation of p in all structures A for L, in the sense that the pair of states
(u,v) is in p* if and only if

Aoy /u(z1), - yn/u(za)] 6

and u(z) = v(z) forall z € V — {z,...,2,}.
Let p* be the following deterministic while program:

Y=z
p;
while Z # 5 do ¥:=%; p od

where z # y stands for 2; # 4, V---V z, # y, and Y := z stands for y, := 215+ ;yp = 2,.
Thus program p* performs p iteratively until p does not change the state.

The remainder of this section is devoted to giving a model-theoretic characterization,
using NDL, of Hoare’s system for proving partial correctness properties of p* relative to a
given first-order theory T in L. We denote provability in Hoare Logic by .

Due to the very specific form of p*, the Hoare system reduces to the following rule:

¢ — X, X{E/?7]A0p—>x, X[E/ﬂ/\ap/\zzy_’d’
¢ — [pt]e
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where ¢, x,v are first-order formulas, and no variable of ¥ occurs free in y.

The next series of definitions introduces a variant of NDL. A structure 7 for the language
consisting of a unary function symbol +1 (successor), a constant symbol 0, and equality is
called a time model if the following axioms are valid in 7:

1.:1:-+-1:y+1—>;1::y
2.2+1#0
3.2#0 - Jyy+1=2

dz#z+1+14---+1 foranyn =1,2,...

n

Let A be a structure for L, and let 7 be a time model. A function p:I — A™is called
a run of p in A if the following two infinitary formulas are valid in A:

L. Aiez 0:(9/p(2),Z/p(i + 1)| 5

2. for every first-order formula ¢(2) in L,

#(p(0)) A \(8(p(3)) — ¢(p(i +1))) — A (p(3)) -

1€l 1€l

The first formula says that for i € 7, p(i) is the valuation obtained from p(0) after i
iterations of the program p. The second formula is the induction scheme along the run p.

Finally, we say that a partial correctness formula ¢ — [p*|4 follows from T in nonstan-
dard time semantics and write T |=n1 ¢ — [p*]¢ if for every model A of T, time model 7,
and run p of p in A,

A= ¢[z/p(0)] — A(p(x) = p(z + 1) — 9[2/p(2)]) -

1€l
The following characterization theorem is due to Csirmaz [28].

Theorem 52 For every first-order theory T in L and first-order formulas é,% in L, the
following conditions are equivalent:

1. Trur ¢ — [pt)y;
2. TEnt ¢ — [pTY .

Other proof methods have been characterized in the same spirit. The reader is referred
to [93] for more information on this issue and further references.
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4.2 Algorithmic Logic

Algorithmic Logic (AL); first defined by Salwicki in 1970 [136], foreshadowed Dynamic
Logic in many respects. Research in AL has centered on program verification, infinitary
completeness, normal forms for programs, recursive procedures with parameters, and data
type specification; see [7,137] for surveys.

The original version of AL allowed deterministic while programs and formulas built
from the constructs

p$¢ Upd Npo

corresponding in our terminology to

(p)¢ ()6 AP,

necw

respectively, where p is a while program and ¢ is a quantifier-free first-order formula.
Mirkowska [106,107] extended AL to allow nondeterministic while programs and the con-
structs

Vpé Apg

corresponding in our terminology to

(p)¢ halt(p) A [plg A (p)d

respectively. The latter asserts that all traces of p are finite and terminate in a state satis-
fying ¢. Complete infinitary deductive systems are given for first-order and propositional
versions [106,107].

Constable [23,25] and Goldblatt [47] present logics similar to AL and DL for reasoning
about deterministic while programs.

4.3 Logic of Effective Definitions

The Logic of Effective Definitions (LED), introduced by Tiuryn in 1978 (see [149]), was
intended to study notions of computability over abtract models and to provide a universal
framework for the study of logics of programs over such models. It consists of first-order
logic augmented with new atomic formulas of the form p = ¢, where p and g are effective
definitional schemes [43):

if ¢, then ¢,
else if ¢, then ¢,
else if ¢; then t,4
else if ...

where the ¢; are quantifier-free formulas and ¢; are terms over a bounded set of variables,
and the function i — (¢;,t;) is recursive. The formula p = q is defined to be true in state
u if both p and ¢ terminate and yield the same value, or neither terminates.

Model theory and infinitary completeness of LED are treated in [149].
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4.4 Temporal Logic

Temporal Logic (TL) is an alternative application of modal logic to program specification
and verification. It was first proposed as a useful tool in program verification by Pnueli
[125], and has since been developed by many authors in various forms. This topic is
surveyed in depth elsewhere in this volume [32].

TL differs from DL chiefly in that it is endogenous, i.e., programs are not explicit in
the language. Every application has a single program associated with it, and the language
may contain program-specific statements such as at(¢), meaning “execution is currently
at location ¢ in the program.” Models can be a linear sequence of program states (so-
called linear-time TL), representing the execution sequence of a deterministic program
or a possible execution sequence of a nondeterministic or concurrent program; or a tree
of program states (so-called branching-time TL), representing the space of all possible
computation sequences of a nondeterministic or concurrent program.

Modal constructs used in TL include

O¢ “¢ holds in all future states”
O¢ “¢ holds in some future state”
0¢ “¢ holds in the next state”

for linear-time logic, as well as constructs for expressing

“for all paths starting from the present state...”
“for some path starting from the present state...”

for branching-time logic.

Temporal Logic is useful in situations where programs are not normally supposed to
halt, such as operating systems, and is particularly well suited to the study of concurrency.
Many of the classical program verification methods such as the intermittent assertions
method are treated quite elegantly in this framework.
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