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1 Introduction

If Fis a commutative ring and g,h € F[z], then f = go h € Flz] is their (functional)
composition, and (g,h) is a (functional) decomposition of f. Given f ¢ F|z], there exists an
essentially unique complete decomposition f — fi 0 fyo0---0 fi, where fi,..., fi € Flz] are
indecomposable. This result is valid if F' is a field whose characteristic does not divide the
degree of f.

This paper deals with the following decomposition problem: given f € F[z] of degree n,
and r,s ¢ N with n = rs and 7,5 > 1, decide whether there exist g,h € Flz| of degree r,s
respectively, such that f = g o h. If so, determine the coefficients of g and h.

For some time, this problem was considered to be computationally hard: a cryptographic
protocol was based on its supposed intractability [5]. Barton and Zippel [3] and Alagar and
Thanh [1] gave exponential-time algorithms for it (in characteristic zero).

In §2, we present fast sequential and parallel algorithms for this problem. In the “tame”
case (when the characteristic p of F' does not divide 7), we present a sequential algorithm
requiring time O(nlog?nloglogn), and O(nlog?n) if F supports a Fast Fourier Transform.
We show that the problem is in NC, and give a depth-optimal O(logn)-depth circuit for it.
In addition, we show that the complete decomposition of f can be computed in sequential
O(n'*¢) or parallel O(logn) time.

*Supported by NSERC grant 3-650-126-40. Part of this work was done during a visit to Universitat des
Saarlandes, Saarbricken.

tSupported by NSF grant DCR-8602663.

!Supported by NSF grants DCR-8402175 and DCR-8301766.



In §3, we consider the “wild” case (no restrictions on the characteristic of F'). We give
a new structure theorem which gives necessary and sufficient conditions for testing decom-
posability over F'. The decomposition problem is shown to be reducible to the problem of
factoring univariate polynomials over F'. We obtain a range of results, from undecidability
over sufficiently general fields to fast sequential and parallel algorithms over finite fields.

A version of the algorithm of Theorem 1 below has been implemented [2,6] and compares
favorably with [3]. Dickerson [9] has extended some of these results to multivariate polynomi-
als.

We should give a brief history of the research behind this joint paper. Kozen and Landau
[18] gave the first polynomial-time sequential and NC algorithms for this problem in the tame
case. The time bounds were O(n?®) sequential, O(n?) if F supports an FFT, and O(log®n)
parallel. They also presented the structure theorem (Theorem 9), reducing the problem in the
wild case to factorization, and gave an O(n!°¢™) algorithm for the decomposition of irreducible
polynomials over general fields admitting a polynomial-time factorization algorithm, and an
NC algorithm for irreducible polynomials over finite fields.

Based on the algorithm of [18], von zur Gathen [17] improved the bounds in the tame case
to those stated above. These results are presented in §2. He also gave an improved algorithm
for the wild case, yielding a polynomial-time reduction to factorization of polynomials, and
observed undecidability over sufficiently general fields. These results are presented in §3.

2 Fast Decomposition in the tame case

We consider the following decomposition problem DECS,,_. We have a field F', integers n,» ¢ N
with r dividing n, and f € F|z| of degree n. Let s = n/r. The problem is to decide whether
there exist g,h € F[z] of degrees r,s > 1, respectively, such that f = g o h, and, in the
affirmative case, to determine the coefficients of g and h. We say f is indecomposable if no
such g and h exist for any r,s. The “tame” case is when the characteristic p of F' does not
divide r. This section deals only with the tame case.

For the question of uniqueness, we note the following three types of ambiguous decompo-
sitions. For any v € F[z], @ € F, and r,m > 2 we have

wo(z —a)o(z+a)=u
z"o(z™-u(z")) = (™ -u")oz"

T.oTw =TuoT:

where T,,T,, are Chebyshev polynomials. Ritt’s first theorem states that a decomposition
f = fio---0 fr with fi,..., fx indecomposable is unique up to these ambiguities, i.e., that
any two complete decompositions can be obtained from each other using these equalities ([20]
for F = C, [11] for p =0, [12] for p=0or p - n).

Decompositions are intimately related to the intermediate fields between F(f) and F(z)
[10,20] and between F' and a splitting field of f (see Theorem 9).



If f=goh and a,,c, are the leading coeflicients of f, h, respectively, then

L (o) o

an an Cs

is a decomposition of a monic polynomial into monic polynomials, and so we can assume that
f,g, and h are monic, and furthermore that A(0) = 0. Denoting by P C F[z] the set of monic
polynomials, we consider the relation

DECL, = {(f,(g,h)) € Px P*|f = goh, deg f =n, degg = r, and h(0) = 0}.

In the tame case, for every f there exists at most one such (g, k), so that we can view DEC,I:,,
as a partial function P — P?. Furthermore, the problem is rational, i.e., if there exists a field
extension A O F and (f,(g,h)) € DEC,”, then in fact g,h € F[z]| [12,19]. Both facts may
fail in the “wild” case; see Example 7.

Let M = Mp : N — R be such that the product of two polynomials in F[z| of degree
at most n can be computed with O(M(n)) arithmetic operations. We can choose M(n) =
nlognloglogn [21], and M(n) = nlogn if F supports a Fast Fourier Transform.

Theorem 1 Over any field F', the decomposition problem DECY
r, can be computed with O(M(n)logn) field operations.

with char(F') not dividing

n,r’

Proof. Let f € F[z] be monic of degree n = rs. We look for a decomposition f = go h,
with g,h monic. We first compute the unique candidate h, using that f and h" agree on
the hlghest s terms, i.e. deg(f — h") <n—s. Writing f = 2" + a,_12™ ! + --- + ao, we let
f=apz"+ - +an1z+1=2za" - f(1) be the reversal of f, and similarly h=a° h(i) Then

1 1 -

2h(_)" = (&"h(_)) = 17,

deg(f ~h")<mn—s « & ((f-h7)(})) = 0 mod 2*
— f — A" = 0 mod z°.

By [4], A mod z* can be computed with O(M(n)) operations. We obtain h from h by reversing
the coefficient sequence and setting the constant coefficient to zero.
Now we compute the coefficients b; of g as a Taylor expanbion of fin h: f =73, bi ht

with b, € F|z| of degree less than s, and return g = b,z* € Flz| if each b; € F, and

440\ i<r

otherwise conclude that no decomposition exists. O

Corollary 2 Let e > 0. If char(F') does not divide the degree n of f, a complete decomposition
of f into indecomposable polynomials can be computed with O(n'*) operations.

Open Question 3 Is it possible to improve the running time further, say to O(M(n))?



Remark 4 We have stated Theorem 1 only for the case of a field F. It actually works for an
arbitrary commutative ring F', provided that » is a unit in F.

Kozen and Landau observed that the general parallelization technique of [22] applies to
their construction, and obtained an arithmetic algorithm of depth O(log®n) in the tame case.
Using fast parallel arithmetic for polynomials (see [15]), one finds the following results of
order-optimal depth.

Theorem 5 Quer any field F', the decomposition problem DECF

n,r?

with char(F') not dividing
r, can be computed on an arithmetic network over F of depth O(logn).

Corollary 6 If char(F) does not divide the degree n of f, a complete decomposition of f into
indecomposable polynomials can be computed in depth O(logn).

3 Decomposition in the wild case

The literature contains no algorithm to solve the decomposition problem DEC,’:T in the “wild”
case, when the characteristic divides r. In this section, we present a reduction of the problem
to factoring univariate polynomials. We obtain results at four different levels, from worst
(undecidable) to best (polynomial time and poly-logarithmic depth). The first two negative
results are meant to explain the restrictions we impose in the positive results.

1. The decomposition problem is undecidable in general.

2. If F is not finitely generated over its prime field, decomposition may require algebraic
field extensions of F' of exponential degree.

3. If F is finitely generated, we have a polynomial-time algorithm.
4. If F is finite, we have a fast sequential (O(n®)) and a fast parallel (O(log?n)) algorithm.

The results of this section are from [17], except for Definition 1 and Theorem 9, which are
from [18].

In view of §2, we only have to consider a field F' of characteristic p > 0, and DEC,{:, with
p dividing 7. In the wild case, both the uniqueness and the rationality of decomposition may
fail [10,13]. Here are some simple examples of this wild behavior, which also illustrate the

general algorithm.

Example 7 Let p=r=2,s =4, n =8, and f = 2® + ayz* + ayz? a1z € Flz]. “f = goh”
is equivalent to:
a; = cg + by, ay = cf + bicy, ay = bic,.



The algorithm takes the first equation in two unknowns and solves for ¢, in terms of an
indeterminate z; later we find an equation for z alone and substitute its solutions for b;. ¢, is
similarly determined from the second equation:

¢ = \as +Vz, ¢ = Jay+ Va(Vaq + Vz).
The third equation, taken to the fourth power, then yields:
20t a‘;z6 + a";z4 + a‘l1 = 0.
We take b; to be any of the solutions, and substitute to obtain the corresponding ¢, c,.

Example 8 Let FF=Z3, f =2+ 2* — 2> +t 2 + z € Flz], h = 2 + cx, g = 2% + byz® + by z.
Then v = 2® + 2z + 1 € F|z| has no linear factors, and hence is irreducible. The high order
terms of g o h are 28 + byz* + (¢ + 2byc)z®; if by and c are in F, then f £ g o h. However, let
v € GF(27) be such that v(y) =0,c=7,by = 1,5, = —4? + 1. Then f = g o h. This shows
that decompositions may exist in algebraic extensions without existing in the ground field.
Also, the three conjugate solutions obtained in this way are not “essentially equivalent”; thus
Ritt’s first theorem also fails in this case.

Our first result is a structure theorem for decomposability. Let I be a field of arbitrary
characteristic. Let f € F|z] be monic of degree n = 75, not necessarily irreducible or separable.
Let F' denote the splitting field of f. Let G denote the Galois group of F" over F. The following
definition reduces to the usual notion of block decomposition for f irreducible and separable.

Definition 1 A block decomposition for f is a multiset A of multisets of elements of F' such
that

L. f(z) = [aea llacalz — a)
2.ifac Aec A, pe Be A, and o € G such that o(a) = f, then

B ={o(y) |7 c A}
A block decomposition A is an r x s block decomposition if |A| = r and |A| = s for all 4 € A.

Let ¢ denote the k** elementary symmetric function on m-element multisets of elements

of F':
a4 = > ]IIB

BCA, |B|=k

By convention, c¢gt = 1.

Theorem 9 Let f € Flz]| be monic of degree n = rs. The following two statements are
equivalent:



1. f =goh for some g,h € F|z] of degree r and s, respectively;

2. there exists an r X s block decomposition A for f such that
ci(A) =c¢i(B)€e F, forall A/ Be A, 0 < k< s—1.

If f is irreducible, then we need only check the condition of Theorem 9(2) for one 4 € A;
if it holds for one, then it holds for all, since G is transitive on A. The coefficients of h will be
the ¢i(A4), 1 < k < s — 1. The constant coefficient of h is 0, without loss of generality. The
roots of g are c}(A), A € A. The coefficients of g may be obtained by solving a triangular
linear system, or by the method of Theorem 1.

Theorem 9(2) gives an algebraic condition that can be used to test decomposability of any
f over any field F', provided one can factor over F' and thereby construct the splitting field of
f. The complexity of the algorithm depends on the complexity of factoring over F'.

In order to solve DECF

n,r?
However, a satisfactory solution to the decomposition problem should also return the decom-

it would be sufficient to compute the decompositions in F[z].

positions over algebraic extensions. We define mf, to be the computational problem of
testing whether a monic input f € Flz| of degree n = rs has an “absolute” decomposition
f = goh, where g,h € K|z] are monic polynomials of degree r, s, respectively, over an alge-
braic closure K of F. If such a decomposition exists, we also have to compute some standard
representations of all decompositions.

Theorem 10 Let F be any field. The problem DECfﬂ_ of decomposing polynomials over F
s polynomaal-time reducible to the problem of factoring univariate polynomials of degree less
than n over F.

Since polynomial-time factorization algorithms are available over finitely generated fields
[7], we have:

can be computed in polynomial time.

Corollary 11 Over a finitely generated field F, DEC:

r

The following undecidability result works over a computable field [14], has inputs encoded
over a finite alphabet, and the Turing machine as model of computation. The arithmetic
operations and tests are computable.

Theorem 12 There ezists a field F' such that DECE  is undecidable.

n,r

If f(0) =0 and f = g o h, then h is a nontrivial factor of f. However, in the tame case
the decomposition problem can be solved without recourse to factoring. In the wild case, our
algorithm does use a factoring routine. Is this really necessary?

For an affirmative answer, we fix a prime p, and for simplicity, only consider F' = Z,. We
call a polynomial w = Y w;2* € F[z] “special” if it has degree 1 4+ p + --- + p® for some e > 1,
and

w; #0 — 5 <e+1 i=p +pt 44t



The polynomial
w=2z" + a426 + a§z4 -+ a‘l1
from the Example 7 is special, with p = e = 2. It is conjectured that factoring special

polynomials is essentially as hard as factoring general polynomials, and that this conjecture
is hard to prove. In any case, we have:

Theorem 13 The problem of factoring special polynomials is linear-time reducible to the
decomposition problem.

We now work out the cost for decomposition over finite fields. We have a field F with
p™ elements. We then consider algorithms using arithmetic operations over Z,, assume that
F = Z,[t]/(v) is represented by an irreducible polynomial v € Z,[t| of degree m, and elements
of F represented by vectors in Z*. Let 7 be an exponent for matrix multiplication over F, so
that the product of two d x d matrices over F' can be computed with O(d™) operations in F.
[8] shows 7 < 2.38.

Theorem 13 noted that factorization of special polynomials is reducible to decomposition.
All known methods for factoring, based on Berlekamp’s (deterministic) algorithm, require
linear algebra and thus ((mn)”) operations (for optimal 7). It turns out that all complete
decompositions can be computed in essentially the same time bound; any improvement would
therefore be major progress. The standard algorithms for factoring univariate polynomials
(see e.g. [16]) yield the following bounds.

Theorem 14 Let F be a finite field with p™ elements, p = char(F), q the largest power
of p diniding r. Then DEC,I:,_ can be solved with O((mn)”) operations in Z,, and with
O(M(n)log n M(m)) operations, if q does not divide s = n/r.

Corollary 15 Let € > 0. Absolute indecomposability of polynomials of degree at most n over
GF(p™) can be tested with O((mn)™"¢) operations.

Corollary 16 If F s a finite field with p™ elements and p = char(F'), then DEC:T can be
solved on an arithmetic network over Z, of depth O(log®(mn)) and size (mn)°(),

Recall that a decomposition f = fy0---0 fi is complete if each f; is indecomposable. Since
fis fe—1 © fi,--- may be over larger and larger fields, it is somewhat surprising that we can
calculate all complete absolute decompositions of a polynomial (i.e. those over an algebraic
closure) quickly.

Theorem 17 Let F be a finite field with p™ elements and characteristic p, ¢ > 0,and f ¢ F|z]
of degree n. For p and n sufficiently large, all complete decompositions of f over F and all
complete absolute decompositions can be computed with O((mn)™+<) operations in F. If p* |/n,
they can be computed with O((mn)'*¢) operations.



In the preceding theorem, p may have to be large. For small p, we have:

Corollary 18 Let p be a prime, F a finite field with p™ elements and characteristic p. All
complete absolute decompositions of a polynomial in F[z] of degree at most n can be computed
with O(m>n”) operations in Z,,.

Further details, proofs, and precise bounds may be found in the journal versions of this
paper.
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