
Equational Verification of Cache Blocking in LU
Decomposition using Kleene Algebra with Tests

Adam Barth Dexter Kozen

Department of Computer Science
Cornell University

Ithaca, NY 14853-7501, USA

June 13, 2002

Abstract

In a recent paper of Mateev et al. (2001), a new technique for program analysis
called fractal symbolic analysis was introduced and applied to verify the correctness
of a series of source-level transformations for cache blocking in LU decomposition
with partial pivoting. It was argued in that paper that traditional techniques are inade-
quate because the transformations break definition-use dependencies. We show how
the task can be accomplished purely equationally using Kleene algebra with tests.

1 Introduction

Kleene algebra (KA) is the algebra of regular expressions. It was first introduced by
Kleene [9] and further developed by Conway [5]. Kleene algebra has appeared in one
form or another in relational algebra, semantics and logics of programs, automata and
formal language theory, and the design and analysis of algorithms. Many authors have
contributed over the years to the development of the algebraic theory; see [11] and refer-
ences therein.

Kleene algebra with tests (KAT), introduced in [11], combines programs and as-
sertions in a purely equational system. Simply stated, a Kleene algebra with tests is a
Kleene algebra with an embedded Boolean subalgebra. KAT strictly subsumes propo-
sitional Hoare Logic (PHL), is of no greater complexity than PHL, and is deductively
complete over relational models (PHL is not) [14, 4, 12, 15]. KAT is less expressive than
propositional Dynamic Logic (PDL) [7], but in the current state of complexity-theoretic
knowledge1 it is also less complex. Moreover, KAT requires nothing beyond classical
equational logic, in contrast to PHL or PDL, which depend on a more complicated syn-
tax involving partial correctness assertions or modalities.

KAT has been applied successfully in a number of low-level verification tasks in-
volving communication protocols, basic safety analysis, concurrency control, and local

1specifically, unless PSPACE � EXPTIME
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compiler optimizations [2, 3, 13]. A useful feature of KAT in this regard is its ability to
accommodate certain basic equational assumptions regarding the interaction of atomic in-
structions. This feature makes KAT ideal for reasoning about the correctness of low-level
code transformations.

In this paper we report on the use of KAT in a substantial compiler verification task.
Mateev et al. [16] have described a series of source-level transformations for automatic
cache blocking in LU decomposition with partial pivoting. These transformations are
used primarily in large applications to enhance locality of reference. In attempting to
verify the correctness of these transformations, Mateev et al. observed that the standard
approach involving symbolic dependence analysis is inadequate. The major complica-
tion is that, although the transformations are semantically correct, they do not preserve
definition-use dependencies. This led them to consider other approaches that exploit
knowledge of the semantics of the basic operations. They proposed a new system called
fractal symbolic analysis, in which programs are repeatedly simplified until symbolic
analysis becomes feasible. The semantics is not preserved in the simplification process,
but the equality of the simplified programs implies the equality of the original programs.

In this paper we demonstrate that the same verification task studied by Mateev et
al. can be adequately handled by KAT in a purely equational way. The semantics of
the underlying domain of computation are incorporated only as Boolean axioms, as in
Hoare logic. The code transformations themselves are purely schematic. The atomic-
level code transformations are instances of a small set of basic schematic rules governing
the interaction of atomic programs and tests. These rules play roughly the same role as
the assignment rule in Hoare Logic, but are more versatile. All other transformations are
instances of theorems of KAT.

2 Kleene Algebra and Kleene Algebra with Tests

Kleene algebra was introduced by S. C. Kleene [9] (see also [5]). We define a Kleene
algebra (KA) to be a structure �K� �� �� �� �� ��, where �K� �� �� �� �� is an idempotent
semiring, p�q is the least solution to q� px � x, and qp� the least solution to q� xp � x.
Here “least” refers to the natural partial order p � q� p� q � q. The operation� gives
the supremum with respect to �. This particular axiomatization is from [10].

We normally omit the �, writing pq for p � q. The precedence of the operators is
� � � � �. Thus p� qr� should be parsed p� �q�r���.

Typical models include the family of regular sets of strings over a finite alphabet, the
family of binary relations on a set, and the family of n� n matrices over another Kleene
algebra.

The following are some elementary theorems of KA.

p� � �� pp� � �� p�p � p�p� � p�� (1)

p�qp�� � �pq��p (2)

p��qp��� � �p� q�� � �p�q��p� (3)

qp � � � �p� q�� � p�q� (4)

px � xq � p�x � xq� (5)
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The identities (2) and (3) are called the sliding rule and the denesting rule, respectively.
These rules are particularly useful in program equivalence proofs. The property (5) is a
kind of bisimulation property. It plays a prominent role in the completeness proof of [10].
We refer the reader to [10] for further definitions and basic results.

A Kleene algebra with tests (KAT) [11] is a Kleene algebra with an embedded Boolean
subalgebra. More precisely, it is a two-sorted structure �K� B� �� �� �� � �� ��, where
is a unary operator defined only on B, such that B � K, �K� �� �� �� �� �� is a Kleene
algebra, and �B� �� �� � �� �� is a Boolean algebra. The elements of B are called tests.
We reserve the letters p� q� r� s� � � � for arbitrary elements of K and a� b� c� � � � for tests.

When applied to arbitrary elements ofK, the operators�� �� �� � refer to nondetermin-
istic choice, composition, fail and skip, respectively. Applied to tests, they take on the
additional meaning of Boolean disjunction, conjunction, falsity and truth, respectively.
These two usages do not conflict; for example, sequentially testing b and c is the same as
testing their conjunction bc.

The encoding of the while program constructs is as in PDL [7]. The conditional
test if b then p else q and while loop while b do p are expressed as bp� bq and �bp��b,
respectively.

The propositional fragment of Hoare Logic is subsumed by KAT [12]. The Hoare
partial correctness assertion fbg p fcg is expressed bpc � �, or equivalently, bpc � bp.

The following are some basic theorems of KAT.

bq � qb � bq� � �bq��b � q�b � b�qb�� (6)

bq � bqb � bq� � �bq��b � bq�b � b�qb�� (7)

bp � pc � bp � pc � bpc� bpc � �� (8)

A proof of (8) was given in [1]. See [11] for further definitions and basic results.
For applications in program verification, the standard interpretation would be a KA

of binary relations on a set and the Boolean algebra of subsets of the identity relation.

2.1 Schematic Reasoning

KAT, so far described, is propositional. Programs and tests are interpreted over an ab-
stract set of states, and programs are interpreted as abstract binary relations or traces. In
applications, however, we must instantiate these constructs. This involves the introduc-
tion of symbols for variables, constants, functions, and relations ranging over a domain of
computation. At this level, a state of the computation is typically taken to be a valuation
of the program variables over the domain of computation, and state changes are effected
by assignment statements x �� e, where x is an individual program variable and e is a
term. This extension is called SKAT (for schematic KAT) and was investigated in [1].

To avoid confusion when reasoning at this level, we use the symbol � for equality
between programs (equality in KAT), � for equality in the underlying domain, �� for
assignment,� for addition in KAT, and � for addition in the underlying domain. (When
reasoning purely propositionally, we will continue to use the symbols � and � for equal-
ity and addition in KAT.)

Many general properties can already be derived at the schematological level, without
specifying a particular interpretation of these new symbols. For example, consider the
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following identities:

x �� s � y �� t � y �� t�x�s� � x �� s �y 	
 FV�s�� (9)

x �� s � y �� t � x �� s � y �� t�x�s� �x 	
 FV�s�� (10)

x �� s � x �� t � x �� t�x�s� (11)

��x�t� � x �� t � x �� t � � (12)

where in (9) and (10), x and y are distinct variables and FV�s� denotes the set of variables
occurring in s. Special cases of (9) and (12) are the commutativity conditions

x �� s � y �� t � y �� t � x �� s �x 	
 FV�t�� y 	
 FV�s�� (13)

� � x �� t � x �� t � � �x 	
 FV���� (14)

The soundness of these identities over all schematic interpretations was proved in [1].
Another valid identity not considered in [1] is

x �� x � �� (15)

All of the properties (9)–(15) make sense even in the absence of equality. When equality
is present in the language, we may insert any valid formula of the theory of equality. The
following property is also valid:

s � t � x �� s � s � t � x �� t� (16)

It follows from (15) and (16) that

x � t � x �� t � x � t� (17)

One can also show that (10) is a consequence of (12) and (16).
In traditional Hoare logic, atomic programs are assignments x �� t and the only

atomic assumption is the assignment rule

f��x�t�g x �� t f�g�

which would be represented in KAT by either of the two equivalent equations

��x�t� � x �� t � � � ��x�t� � x �� t

��x�t� � x �� t � �� � ��

These equations follow from (12). In fact, (12) is actually equivalent to two applications
of the Hoare assignment rule, one for � and one for its negation. This can be seen by
taking b, c, and p to be ��x�t�, �, and x �� t, respectively, in (8).

To illustrate the use of (9)–(14), consider the equation pqr � rqp, where p, q, and r

are the assignments y �� x, y �� 	 � y, and x �� 	 � x, respectively. This example was
used in [16] to illustrate a simple transformation that is sound, yet breaks definition-use
dependencies. Here is an equational proof in KAT:

pqr � y �� x � y �� 	 � y � x �� 	 � x

� y �� 	 � x � x �� 	 � x by (11)

� x �� 	 � x � y �� x by (9)

� x �� 	 � x � y �� 	 � y � y �� x by (11)

� rqp�
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2.2 Interpreted Reasoning

In specific applications, we are not constrained to reason purely schematically. We may
take advantage of the fact that we are reasoning with respect to a particular interpretation
or class of interpretations over some underlying domain or class of domains, and deduc-
tion is relative to the theory of that class of interpretations. This theory determines the
Boolean algebra of the KAT in which we work. A valid assertion � takes the form of an
equation � � � in KAT, which may be taken as an extra axiom for deductive purposes.

In the application considered in this paper, variables are interpreted as integers or
reals, + is interpreted as addition, etc. Valid number-theoretic properties such as i � j �
i � j � 
 can be introduced as needed.

Here is an example of a property that can be derived at this level involving for loops.
If i and n are integer variables and p and i � n commute (for example, if p does not
assign to i or n), then

i � n � �i � n � p � i++�� � �i � n � p � i++�� � i � n� (18)

Here i++ is an abbreviation for i �� i� 
. Letting

c
def
� i � n d

def
� i � n q

def
� p � i++�

from (12) and number theory we have c � d and cq � qd. Once we have established these
premises that are particular to the interpretation, we can reason purely propositionally in
KAT to obtain

c � d � cq � qd � d�cq�� � �cq��d�

the conclusion of which is (18).

2.3 Arrays

For our application, we will need to extend (9)–(17) to handle arrays. Theories of arrays
have been considered by several authors, among them [18, 19, 6, 17]. Care must be taken
because of the possibility of aliasing.

Semantically, an array variable A is interpreted by a valuation as a map D � D,
where D is the domain of computation (see [8]). An array assignment A�s� �� t maps
valuation � to ��, where

���A����s�� � ��t�

���A��a� � ��A��a�� a 	� ��s�

���x� � ��x�� x any array or individual variable not equal to A.

Some of the extensions we will need are sound without any restrictions, such as

s � t � u � v � A�s� �� u � s � t � u � v � A�t� �� v (19)

However, other generalizations which may seem obvious at first glance turn out to be
unsound. For example,

A�s� �� t � A�s� �� t � A�s� � t
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is not true in general, even if t is a constant. Over N, if s is A�	� and t is �, and the
assignment is executed in a state in which A�	� � A��� � 	, then the value of t after the
assignment is still �, but the value of A�s� is 	.

Most of the properties we will need are consequences of the following metatheorem,
which allows us to transfer properties without arrays to properties with arrays. Define an
expression to be simple if it contains no array symbol.

Theorem 2.1 Let V be a finite set of individual variables and let A be an array variable.
For each x 
 V , let ix be a simple term. Suppose p � q is a valid equation such that
neither p nor q contains an occurrence of A or an assignment to any variable in i x,
x 
 V . Then the following is also a valid equation:

�

x�y�V
x��y

ix 	� iy � p�x�A�ix� j x 
 V � �
�

x�y�V
x��y

ix 	� iy � q�x�A�ix� j x 
 V ��

Proof. For any expression e, abbreviate e�x�A�ix� j x 
 V � by e�. The atomic
instructions of p� and q� are all of the form y �� t� or A�iy� �� t�. Because the ix are
simple and neither p nor q (therefore neither p � nor q�) assign to any variable of ix, none
of these atomic instructions can change the value of ix. Thus the atomic instructions of
p� and q� commute with the precondition

V
x�y�V� x��y ix 	� iy. By an inductive argument

involving (6), so do all subprograms of p � and q�. Thus the A�ix�, x 
 V , behave like
fixed and distinct individual variables throughout the computation of p � and q�. �

Applying Theorem 2.1 to the axioms (9)–(17) of SKAT gives corresponding axioms
that apply to arrays. For example, the following conditions are consequences of Theorem
2.1 applied to (9). These equations hold under the assumptions of Theorem 2.1 and in
the presence of the implicit precondition ix 	� iy. For any expression e, let ex and exy
abbreviate e�x�A�ix�� and e�x�A�ix�� y�A�iy��, respectively.

A�ix� �� sx � A�iy� �� txy � A�iy� �� ty�x�sx� � A�ix� �� sx (20)

x �� s � A�iy� �� ty � A�iy� �� ty�x�s� � x �� s (21)

A�ix� �� sx � y �� tx � y �� t�x�sx� � A�ix� �� sx (22)

where y 	
 FV�s�. Other axioms for arrays obtained similarly are

A�ix� �� sy � A�iy� �� txy � A�ix� �� sy � A�iy� �� ty�x�sy� (23)

A�ix� �� sx � A�ix� �� tx � A�ix� �� t�x�sx� (24)

��y�ty� � A�iy� �� ty � A�iy� �� ty � �y (25)

where x 	
 FV�s� in (23).
More general versions hold, but these are sufficient for our purposes, so we leave a

more thorough analysis for future work. We will take these conditions as axioms when
reasoning in the presence of arrays.

6



do j = 1,N-1 do j = 1,N-1
B1(j): //swap B1(j): //swap
tmp = A(j); tmp = A(j);
A(j) = A(j+1); A(j) = A(j+1);
A(j+1) = tmp; A(j+1) = tmp;

B2(j): //update do j = 1,N-1
do i = j+1,N B2(j): //update
A(i) = A(i)/A(j) do i = j+1,N

A(i) = A(i)/A(j);

(a) Original Program (b) Transformed Program

Figure 1: Loop Distribution Example from [16]

3 Loop Distribution—A Simplified Example

The transformation shown in Figure 1 is from [16]. This is a simplified version of LU
factorization with partial pivoting used to illustrate various aspects of their technique. As
they describe it:

The source program of Figure 1(a) traverses an arrayA; at the j th iteration, it
swaps elements A�j� and A�j�
�, and updates all the elements fromA�j�

� through A�N� using the new value in A�j�. This is a much simplified
version of LU factorization with partial pivoting in which entire rows of a
matrix are swapped and entire submatrices are updated at each step � � �

Loop distribution transforms this program into the one shown in Figure 1(b).
In this program, all the swaps are done first, and then all the updates are
done together. This transformation is useful because the second loop nest is
perfectly nested and can be tiled to get good locality of reference. Are these
programs equal?

Dependence analysis requires that there not be a dependence from an in-
stance B	�j�� to an instance B
�j�� where j� � j�. Unfortunately, this
condition is violated: instance B	�j�� writes to location A�j� � 
�, and in-
stance B
�j��
� reads from it. Symbolic analysis of these programs on the
other hand is too difficult. [16]

The remainder of this article is devoted to giving a formal, purely equational proof of
equivalence using KAT.

Let swap�j� denote the three-line subprogram labeled B
�j� and let update�j� de-
note the two-line subprogram labeled B	�j� in Figure 1. Let u�i� j� denote the array
assignment A�i� �� A�i��A�j�. Expressed in the language of KAT,

swap�j� � tmp �� A�j� � A�j� �� A�j � 
� � A�j � 
� �� tmp

update�j� � i �� j � 
 � �i � N � u�i� j� � i++�� � i � N�
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and the programs of Figure 1(a) and (b) are

j �� 
 � �j � N � swap�j� � update�j� � j++�� � j 
 N (26)

j �� 
 � �j � N � swap�j� � j++�� � j 
 N �

j �� 
 � �j � N � update�j� � j++�� � j 
 N� (27)

respectively. We wish to show that (26) and (27) are equivalent.

Lemma 3.1 Let a� b� t be distinct variables. Let f�x� be a term with a variable x but no
occurrence of a, b, or t. The following two schemes are equivalent:

a �� f�a� � b �� f�b� � t �� a � a �� b � b �� t � t �� � (28)

t �� a � a �� b � b �� t � t �� � � a �� f�a� � b �� f�b�� (29)

Proof. Starting from (28), we can move b �� f�b� right past the next two assignments
using (13) and (9), then annihilate it using (11) to obtain

a �� f�a� � t �� a � a �� f�b� � b �� t � t �� ��

Similarly, we can move a �� f�a� right past the next assignment using (9), then annihilate
it using (11) to obtain

t �� f�a� � a �� f�b� � b �� t � t �� ��

Applying (11) in the right-to-left direction to t �� f�a�, we obtain

t �� a � t �� f�t� � a �� f�b� � b �� t � t �� ��

Now we can move t �� f�t� right past the next two assignments using (13) and (9), then
annihilate it using (11) to obtain

t �� a � a �� f�b� � b �� f�t� � t �� �� (30)

Starting from (29), we can apply (13) three times to move t �� � all the way to the
right and exchange b �� t and a �� f�a� to obtain

t �� a � a �� b � a �� f�a� � b �� t � b �� f�b� � t �� ��

Now two independent applications of (11) yield (30). �

Lemma 3.2 Let j� k�N be distinct variables. The following programs are equivalent:

j � k � N � update�j� � swap�k� (31)

j � k � N � swap�k� � update�j�� (32)
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Proof. Let q abbreviate the program u�i� j� � i++ and let w abbreviate the program
i �� j � 
. First we show that under the precondition j � k � N , we can decompose
update�j� as follows:

j � k � N � update�j�

� j � k � N � w � �i � k � q�� �

i � k � u�k� j� � u�k � 
� j� �

i �� k � 	 � �i � N � q�� � i � N� (33)

To see this, first note that

update�j�

� w � �i � N � q�� � i � N

� w � �i � N � �i � k � i 
 k� � q�� � i � N

� w � ��i � N � i � k � q�� �i � N � i 
 k � q��� � i � N

� w � �i � N � i � k � q�� � �i � N � i 
 k � q�� � i � N� (34)

The last step follows from (4). The precondition of (4) is

i � N � i 
 k � q � i � N � i � k � q � �� (35)

To see (35), note that i 
 k and u�i� j� commute by (14) (amended by Theorem 2.1 to
handle arrays), and i � k and i � N commute by Boolean algebra. It thus suffices to
show i 
 k � i++ � i � k � �. But this is immediate from (12) and number theory.

By Boolean algebra and (12), we have

j � k � N � w � j � k � N � w � i � k � N�

thus by (34),

j � k � N � update�j�

� j � k � N � w � i � k � N �

�i � N � i � k � q�� � �i � N � i 
 k � q�� �

i � N� (36)

Since k � N and i � k imply i � N , by (6) we have

i � k � N � �i � N � i � k � q�� � i � k � N � �i � k � q���

By (6) and (18), this is equivalent to

i � k � N � �i � k � q�� � i � k � N� (37)

We also have

i � k � N � �i � N � i 
 k � q�� � i � N

� i � k � N � i � N � i 
 k � q � �i � N � i 
 k � q�� � i � N

� i � k � N � i � N

� ��
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therefore by (6),

i � k � N � �i � N � i 
 k � q�� � i � N

� i � k � N � �i � N � i 
 k � q�� � i � N

� i � k � N � �i � N � q�� � i � N� (38)

Combining (36), (37), and (38), we have

j � k � N � update�j�

� j � k � N � w �

i � k � N � �i � k � q�� �

i � k � N � �i � N � q�� � i � N� (39)

Let s � i � N � q, the body of the last loop in (39). Unrolling this loop twice, the last
line of (39) becomes

i � k � N � s� � i � N

� i � k � N � i � N � i � k � N � s � i � N � i � k � N � s � s � s� � i � N

and the first two terms vanish. Also, an elementary argument using (12), (16), and number
theory yields

i � k � N � s � s � i � k � N � u�k� j� � u�k � 
� j� � i �� k � 	�

Combining these observations with (39) gives

j � k � N � update�j�

� j � k � N � w �

i � k � N � �i � k � q�� �

i � k � N � u�k� j� � u�k � 
� j� � i �� k � 	 � s� � i � N� (40)

Thus the program (31) is equivalent to

j � k � N �

w � i � k � N � �i � k � q�� �

i � k � N � u�k� j� � u�k � 
� j� �

i �� k � 	 � �i � N � q�� � i � N �

swap�k��

and swap�k� commutes with each of the three lines above it by (13), Lemma 3.1, and
(13), respectively (amended by Theorem 2.1 to handle arrays). The final result is (32).

�

Lemma 3.3 Let j� k�N be distinct variables. The following programs are equivalent:

j � k � j � N � update�j� � j++ � k � N � swap�k� � k++ (41)

j � k � k � N � swap�k� � k++ � j � N � update�j� � j++� (42)
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Proof. By (13) and (14), these programs are equivalent to

j � k � k � N � j � N � update�j� � swap�k� � k++ � j++

j � k � k � N � j � N � swap�k� � update�j� � k++ � j++�

respectively. The equivalence of these two programs follows immediately from Lemma
3.2. �

Lemma 3.4 Let p� q be program symbols and e� c� d test symbols. Under the assumptions

epq � pqe (43)

dp � pd (44)

cq � qc (45)

ec � ed (46)

cp � � (47)

dq � �� (48)

the following equation holds:

e�pq��cd � e�pq���p� � q��cd� (49)

Proof. It follows from (46) and Boolean algebra that ec � ed. Then

e�pq��q�c � �pq��e��� qq��c by (43) and (6)

� �pq���ec� eqq�c�

� �pq���ec� ecqq�� by (45), using (6) and (8)

� �pq���ec� edqq��

� �pq��ec by (48)

� e�pq��c by (43) and (6).

A symmetric argument using (44) and (47) shows that e�pq��p�d � e�pq��d. The equa-
tion (49) follows immediately from these two equations. �

Lemma 3.5 Let p� q be program symbols and a� b test symbols. Under the assumptions

bp � pa (50)

aq � qb (51)

ap � apa (52)

apq � aqp� (53)

the following equations hold:

ap�q � aqp� (54)

a�qp���p� � q�� � ap�q� (55)

b�pq���p� � q�� � bp�q�� (56)
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Proof. We first show that (54) follows from (52) and (53). For the direction�, using
(53) we have

aq� apaqp� � aq� apqp� � aq� aqpp� � aqp��

therefore �ap��aq � aqp� by an axiom of Kleene algebra. Then by (52), (7), and (2),

ap�q � a�pa��q � �ap��aq � aqp��

For the reverse inequality, by (7) and (53),

aq� ap�qp � aq� ap�aqp � aq� ap�apq � aq� ap�pq � ap�q�

therefore aqp� � ap�q by an axiom of Kleene algebra.
It follows from (50) and (51) using (6) that aqp � qpa and a�qp�� � �qp��a. Also,

by (52) and (7), ap� � ap�a.
For the direction� of (55), we must show

a�qp��p� � ap�q� (57)

a�qp��q� � ap�q�� (58)

For (57), by (53), (52), and (54), we have

ap� � qpap�q� � ap� � aqpp�q� � ap� � apqp�q�

� ap� � apaqp�q� � ap� � apap�qq� � ap�q��

By (6) and an axiom of Kleene algebra,

a�qp��p� � �qp��ap� � ap�q��

This is (57). Equation (58) follows, since

a�qp��q� � a�qp��p�q� � ap�q�q� � ap�q��

For the direction
 of (55), by an axiom of Kleene algebra it suffices to show

ap� � a�qp���p� � q��q � a�qp���p� � q���

This follows from the four inequalities

ap� � a�qp���p� � q��

a�qp��q � a�qp���p� � q��

a�qp��pp�q � a�qp���p� � q��

a�qp��q�q � a�qp���p� � q���

of which all but the third are obvious. For the third, we use (6), (52), (53), and (54):

a�qp��pp�q � �qp��app�q � �qp��apap�q � �qp��apaqp�

� �qp��apqp� � �qp��aqpp� � a�qp��qpp� � a�qp��p��
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Finally, for (56), we have by (2), (6), (54), and (55) that

aq�pq���p� � q�� � a�qp��q�p� � q�� � �qp��aq�p� � q��

� �qp��a�p� � q��q � a�qp���p� � q��q � ap�q�q�

thus by (50),

bpq�pq���p� � q�� � paq�pq���p� � q�� � pap�qq� � bpp�qq��

It follows that

b�pq���p� � q�� � bp� � bq� � bpq�pq���p� � q��

� bp� � bq� � bpp�qq�

� bp�q��

�

We are now ready to prove our main theorem.

Theorem 3.6 The following two programs, with k �� � implicitly appended, are equiv-
alent:

j �� 
 � �j � N � swap�j� � update�j� � j++�� � j 
 N (59)

k �� 
 � �k � N � swap�k� � k++�� � k 
 N �

j �� 
 � �j � N � update�j� � j++�� � j 
 N� (60)

Proof. Under the abbreviations

a
def
� j � k p

def
� k � N � swap�k� � k++

b
def
� j � k q

def
� j � N � update�j� � j++

c
def
� k � N r

def
� k �� 


d
def
� j � N s

def
� j �� 
�

e
def
� j � k

all the premises (43)–(48) and (50)–(53) of Lemmas 3.4 and 3.5 hold. These facts are all
immediate except (53), which is Lemma 3.3. Program (59) is

s � �d � swap�j� � update�j� � j++�� � d�

Because k �� � is implicitly appended, by [1, Lemma 4.5], this is equivalent to

rs � �d � swap�j� � update�j� � k �� j � 
 � j++�� � d�

By two applications of (12), the assignments k �� 
 � j �� 
 establish the property j � k;
thus rs � rse. Since e commutes with d � swap�j� � update�j� and with k �� j�
 � j++,
by (6) we obtain

rse � �de � swap�j� � update�j� � e � k �� j � 
 � j++�� � de

� rse � �cde � swap�j� � update�j� � e � k �� j � 
 � j++�� � cde�
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By two applications of (16), this is equivalent to

rse � �cde � swap�k� � update�j� � e � k++ � j++�� � cde�

Removing e again by (6), then using commutativity, this is equivalent to

rs � �c � swap�k� � k++ � d � update�j� � j++�� � cd

� rs�pq��cd�

Applying Lemmas 3.4 and 3.5 and some obvious commutativity conditions, we obtain

rs�pq��cd � rse�pq��cd � rse�pq���p� � q��cd

� rseb�pq���p� � q��cd � rsebp�q�cd � rsp�q�cd

� rp�csq�d�

which is (60). �
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