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Abstract. We give an elementary proof of the completeness of the Segerberg axioms for 
Propositional Dynamic Logic. 

Introduction 

The completeness of Propositional Dynamic Logic (PDL) has been a source of 
considerable controversy. Several completeness proofs have: been proposed 
independently [1, 3, 5-7, 9-11]. Some of these have been shown to ontain subtle 
errors, and all are quite complicated. 

In this note we provide a short, elementary completeness proof of the Segertrerg 
axioms for PDL. The proof is essentially that of [7] but is much simpler, isolatinjg the 
main ideas in three lemmas, each of which is proved by a simple induction on formula 
structure. The proof requires no knowledge of logic or model theory apart from b~asic 
familiarity with PDL and tke propositiopal calculus. 

First we give a brief review of PDL. The reader is referred to [2] for details and 
intuition. 

Syntax 

PDL has two types of objects: programs and formulas. There are priinitive symb, ols 
a, b,~.. for progr:~ms and P, Q , . . .  for formulas. Compound prcbrams a, 13, y, . .  
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and formulas W, X, Y, Z , . . .  ate built up from these via the rules: if a,  B are 

programs and X. Y are formulas, then aB, a ,J B, and a*  are prograr.'.s and X v Y, 
--aX, and (a)  X are formulas. 7 ( a ) - 7 X  is abbreviated [a]X. We omii the program 

operators - a n d  ? for simplicity, although with some restructuring th~ proof can be 

extended to include them. 

Semantics 

PDL is interpreted over Kripke models. A Kripke model consists of a nonempty set 
$ of states, an assignment ~ of a subset of S to each primitive formula, and an 
assignment -,  of a binary relation on S to each primitive program. We write s ~ P to 

indicate that state s is a member of the subset assigned to P and say s satisfies P. We 
write s ...>a t to  indicate that the pair of states (s, t) is a member  of the binary relation 
assigned to a. The assignments ~ and -* are extended to compound programs and 
formulas as follows: 

s ~ tiff there is a u such that s ~ u and u ~t3 t, 
s _, ,ua t iff  s ~ t or s ~t3 t, 

s -~"* tiff there are s,,..., s, such that s = sl --,'~ ::2 "¢~ • • • -~ s, = t, 

s ~ X v Y i f f s ~ X o r s ~  Y, 
s ~ -7X iff not s ~ X, 

s ~ ( a ) X  iff there is a t such that s -*~ t and t w X. 

The Segerberg axioms 

Segerberg [ 11 ] proposed the following axiom schemata and rules of inference for 
PDL: 

(1) all propositional tautologies (or enough of them), 
(2) <~)false- fa|se, 
(3) <a u f l ) X - ( ~ x ) X  v (fl)X, 
(4) (a) tX v r ) - ( a ) X  v (a) Y, 
(5) (aB)X-<a)(B)X,  
(6) < a * ) X - X  v <a)<a*>X, 
(7) (a*>X = X v (ot*>(--TX a (a)X). 

Axiom 7 is the induction axiom and is probably better known in its dual form'  

x A [ , , * ] (X  = [,, IX)  = 

The rules o1~ inference are 

X, X D Y  X 
Y ' [ lx 

called modus ponens and generalization, respectively. 
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We write ~-X if X is provable in t~is system. A formula X is consistent iif not 
F- -aX. We shall make several uses of the principle that if a disjunction Yt v • • • v Yk 
i:; consistent, then some ]~ must be consistent. Also, we shall make several uses of the 
following substitution lemma: 

Lemma. f f  F - X -  Y, then ~ Z -  W, where W is the result of substituting Y for an 
occurrence of X in Z. 

Prr,,,f. The proof is by a simple i , dac t io ,  on formula structure and is left t~: the 

reader. 

We write X ~< Y if f -X D y. 

The completeness of the Segerberg system 

Theorem. The above deductive system for PDL is complete. 

Remark. The proof below constructs a finite model for any consistent formula W. 
The number of states in this model is exponential in the size of W. It folltows 
immediately from the soundness of the above deductive system that any satisfiable 
formala W has a model of size exponential in the size of Ire'. This is exactly the Small 
Modc~ Theorem of [2], used there to obtain an upper bound on l~he complexity of 

PDL. 

Proof. Let W be a consistent formula of PDL. We wish to construct a Kripke model 

Jf£ such that W is satisfied at some state of g,/../R will be constructed from FL(W),  the 
Fischer/Ladner closure of W [2, 7, 1, 10]. FL(W) is the smallest set of formulas 

containing W such that: 

(1) ii' X v Y ~ FL(W),  then X ~ FL(W) and Y ~ FL(W),  
(2) if - aX ~ FL(W),  then X ¢ FL(W),  
(3) if ( a ) X  ¢ FL(W),  then X ~ FL(W),  
(4) if <auI3)X ~ FL(W),  then ( a ) X  ~ FL(W) and (/3)X ~ FL(W),  
(5) if (aB)X ~ FL(W),  then (a)(13)X c FL(W),  
(6) if (a*)X ~ FL(W),  then (a)X ¢ FL(W) and (tz)(a*)X ~ FL(W).  

It is easy to see that FL(W) is finite, so let FL(W) = { X 1 , . . . ,  Xn}. An atom of FL(W) 
is any consistent conjunction YI A • • • ^ Yn, where each Y~ is either X, or -1X~. ".[he 
symbols A, B, C, D, E always denote atoms of FL(W).  1 Note that for any X ~ FL(W) 
and atom A, either A ~<X or A ~ ~ X ,  since either X or - I X  appears in the 

conjunction A. Since PDL contains the propo~,:;itional calculus, it is easy to show that 

t The term atom is from Boolean algebra: if ~ is the Boolean algebra of formulas of PDL modudo 
provable equivalence, then the A, B . . . .  me atoms of the Boolean subalgebra of .~ generated by elements 
of the Fischer/Ladner closure. 
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any X in FL(W)  is provably equivalent to the join of all A <~ X, and true is equivalent  
to the join of all atoms. It follows that there is at le~tst one atom A ~< W, since W is 

consistent. 
The Kripke model d / i s  defined as follows: S is the set ef atoms ~ ~ I ~ ( W ) .  For 

primitive programs a, A ~ B iff A ^ (a)B is consistent. For  prim:.ti, e fo:~'mulas P, 

A ~ P  iff A ~<P. 

Lemma 1. For any program a, i [ A  ^ (a)'B is consistent, then A -, ~ B. 

Remark.  This is the only place where the induction axiom of P D L  is used. The 

converse is false in general. 

Proof. The proof is by induction on the complexity of a. The basis a = a is by 
definition of a -~ . There are three other cases: (1) a = / 3 w y ,  (2) a =/33, and (3) 
0t =: ~ * .  

(!) If A ^ (/3 w y)B is co~sistent, then so is (A ^ (/3)B) v (A A (y)B),  by Axiom (3). 
Then either A ^ (/3)B or A ^ (y)B is consistent, so by the induction hypothesis either 
A _,a B or A - , v /~  ti.orefore A _,B~,v B. 

(2) If A A (/3y)B is consistent, then so is A ^ (/3)(y)B, by Axiom (5). Using Axiom 
(4), this is provably cquiva!ent to \ / (A ,x(~) (C ^ (y)B)),  where the join is taken over 
all atoms C Thus for some C, A ^ (/3)(C ^ (y)B)) must be consistent. By Axiom (4) 
and the generalization rule, A ~ (/3)C is consistent; by Axiom (2), C ^ (y)B i~, 
con ~ i,~tent. By the induction hypothesis, A -~ ~ C -~ * B, and therefore A -* ~* B. 

(3) Suppose A ^ (/3*)B is consistent. Let  G be the smallest set of a:oms containilag 
A such that if C e G and C A (/3)D is consistent, then D ~ G. By the induction 
hypothesis, if C ^ (/3)D is consistent, then C ~OD,  so by the definition of G, 
A ~ * C  for all C ~ G. Thus we need only show that B E G. Let Y = V G. Then 
Y ^ (/3)~ Y is inconsistent, because by Axiom (4) i t  is equivalent to V(C^(/3i~.,), 
where the join is taken over all C ~ 67 and Dg_-G, and ~ach such C ^ ( / : /D is 
inconsistent by the construction of 67. Thus t- Y =~ [/3]Y, and by the generalization 

rule, ~--[/3*](Y~[/~]Y), and F - A = [ / 3 * ] ( Y ~ [ / 3 ] I / ) .  Also ~ - A = Y ,  so by the 
induction axiom, ~ A  = [/3"] Y, or in other  words A ,~ (/3")--1Y is inconsistent. Thus 
B ~< Y and B ~ G, as desired. 

Lemlna 2. For any ( a ) X  ~ FL(W)  and atom A,  

A <~ ( a ) X  iff there exists a B such that A c ,  B and B <~ X. 

Proof. (-~) By Axiom (4), if A <~ (tr)X, then A ^ (a)13 is consistent for some B ~<X, 
and the result follows from Lemma 1. 

(*)  Suppose A ~ " B  and B ~<X. The proof proceeds by induction on the 

complexity of a. If a = a, then A ^ (a)B is consistent, therefore so is A ^ (a)X,  and 
thus A <~(a)X. This leaves the three induction cases: (1) a = B ~-J Y, (2) ~ --:/3y, and 
(3) a =/3".  
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(1) If A ~e~v B, then either A ~ a B  or A -,v B, so we can assume the former 
without loss cf generality. By Fischer/Ladner rule (4), (B)X e FI~ (W), so we .can 
apply the induction hypothesis to obtain A ~< (B)X. Since (B)X <- (B w y ) X ,  we have 
that A ~< (/3 u y)X. 

(2) If A -, ov B, then there must exist a C such that A -~B C ~ v B. By the induction 
hypothesis, C <~ (y)X. By Fischer/Ladner rules (5) and (3), (y)X ~ FL(W),  so again 
by :he induction hypothesis, A ~< (/3)(y)X. Thus A ~< (/3y)X by Axiom (5). 

(3) There must be A t , . . .  ,An  such that 

A =A1 " ¢ B A 2 - " 1 3 " ' " - ~ e A , = B .  

Since A ,  = B ~< X and X <~ (/3*)X by Axiom (6), A ,  ~< (/3*)X. By Fischer/Ladner 
rule (6), (/3)(B*)X ~ FL(W), and so by the induction hypothesis, A, -1  ~< (/3)(g*)X, 
and thus A,_ t  ~< (/3*)X by Axiom (6). Continuing in this fashion we get A = A ~ ~< 
(/3*)x. 

Lemma 3. For any X ~ F L ( W ) a n d  atom A,  

A ~ X i f f  A <~X. 

Proof. The proof is by induction on the complexity of X. The basis X = P is 
immediate from the definition of ~. This leaves the three induction cases: (1) 
X = Y v Z, (2) X = -1 Y, (3) X =(a)Y .  Case (1) is trivial and Case (2) is immediiate 
from the observation that for any X =_ FL(W) and atom A, either A <~ X or A <~ -~X. 
These two cas~:s use the Fischer/Ladner rules (1) and (2). 

(3) A ~<(a) Y iff (oy Lemma 2) ::iB <<_ Y A  ~ B, iff (by induction hypothesis:) =IB 
A ~ B and B ~ Y, iff A ~ (a)Y. 

Since W is consismnt, there is ar,~ atom A <~ W, and A is a state of/d.  By Lemma 3, 
A ~ W. This completes the proof of the theorem. 

References 

[1] F. Berman, A com~aleteness technique for D-axiomatizable semantics, Proc. llth ACM Syrup on 
Theory of Comp (May 1979) 160-166. 

[2] M.J. Fischer and R.E. Ladner, Propositional dynamic logic of regular programs, J. Comput. System 
Sci 18 (2) (1979) 194-211. 

[3] D. Gabbay, Axiomatizations of logics of programs, unpublished manuscript (1977). 
[4] J. Halpern, unpublished manuscript (1980). 
[5] G. Mirkowska, Model existence theorem in algorithmic logic with nondeterministic programs, 

University of Warsaw, unpublished manuscript. 
[6] H. Nishimura, Sequential method in propositional dynamic logic, Acta Informatic. 12 [1979) 

377-400. 
[7] R. Parikh, The completeness of Propositional Dynamic Logic, Proc. 7th Symp. on Math. For~'d. of 

Comp. Sci., Zakopane, Poland (Sept. 1978) 403-415. 
[8] R. Parikh, Propositional logics of programs, Proc. 7th ACMI Syrup. on Principles of Programm,!ng 

Languages (Jan. 19~) 186-192. 



118 D. Kozen, R. Parikh 

[91 V.R. Pratt, A practical decisio~,~ method for Propesitional Dynamic Logic, Proc. ~Oth ACMSymp, on 
Theory of Computing (May 1978) 326-337. 

[10] V.R. Pratt, Models of program logics, Proc. 20tF IEEE Syrup. on Foundations of Computer Science 
(Oct. 1979) 115-122. 

[11] K. Segerberg, A completeness theorem in the modal logic of programs, Notices A.~'S 24(6) (1977) 
A-522. 


