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Abstract

First-order structures over a /xed signature � give rise to a family of trace-based and relational
Kleene algebras with tests de/ned in terms of Tarskian frames. A Tarskian frame is a Kripke
frame whose states are valuations of program variables and whose atomic actions are state
changes e2ected by variable assignments x := e, where e is a �-term. The Kleene algebras with
tests that arise in this way play a role in dynamic model theory akin to the role played by
Lindenbaum algebras in classical /rst-order model theory. Given a /rst-order theory T over �,
we exhibit a Kripke frame U whose trace algebra TrU is universal for the equational theory of
Tarskian trace algebras over � satisfying T , although U itself is not Tarskian in general. The
corresponding relation algebra RelU is not universal for the equational theory of relation algebras
of Tarskian frames, but it is so modulo observational equivalence.
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1. Dynamic model theory

Traditional model theory [3,4], like classical predicate logic, is static in nature. Mod-
els, valuations of variables, and truth values of predicates are regarded as /xed and
immutable. Dynamic model theory, on the other hand, is the study of abstract models
in the presence of explicit operators that can change state. State change is typically
e2ected by simple assignments x := e and similar constructs that are explicit in the
language. In addition, the language often provides various programming and data con-
structs for expressing high-level algorithmic properties of structures.
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Dynamic model theory relates to dynamic logic and other programming logics as
classical model theory relates to classical /rst-order logic. It has existed as a /eld
of study almost as long as programming logics. One can /nd its roots in the early
work of AndrGeka, NGemeti and Sain, Constable and O’Donnell, Engeler, Harel, Meyer,
Mirkowska, Pratt, Salwicki, Stoulboushkin, Tiuryn, and many others; see [6] and ref-
erences therein.
Dynamic model theory focuses on general algorithmic properties of /rst-order

Tarskian structures, such as halting and equivalence of program schemes. Traditional
model theory has had a profound inKuence on the development of the subject. For
example, one interprets formulas and programs over /rst-order structures as in the
Tarskian approach to the model theory of /rst-order logic. Perhaps the dominance of
denotational over operational semantics in programming languages can be attributed to
this inKuence as well.
However, there are some fundamental incompatibilities. For example, there are very

simple and ubiquitous concepts in computer science, such as transitive closure, that
cannot be expressed in /rst-order logic. Indeed, probably the single most important tool
in reasoning about programs is induction, but /rst-order logic is incapable of handling
it in general structures. In dynamic model theory, as programs and computation take on
greater importance, the traditional /rst-order constructs ∀ and ∃ play a correspondingly
lesser role.
In this paper, we continue the study begun in [1,12] of the general properties of

trace-based and relational Kleene algebras with tests (KAT) that arise naturally from
/rst-order structures. Such algebras are de/ned in terms of a specialized class of
Kripke frames called Tarskian frames. A Tarskian frame is a Kripke frame whose
states are valuations of program variables and whose atomic actions are state changes
that arise from variable assignments x := e, where e is a term over some /xed
/rst-order signature. The Kleene algebras with tests that arise in this way play a
role in dynamic model theory comparable to the role played by Lindenbaum al-
gebras (a particular subclass of Boolean algebras) in classical /rst-order model
theory.
In this paper, we prove the following results. Let � be a /xed /rst-order signature.

Given a /rst-order theory T over �, we exhibit a Kripke frame U whose trace algebra
TrU is universal for the equational theory of Tarskian trace algebras over � satisfying
T , although U itself is not Tarskian in general. The corresponding relation algebra
RelU is not universal for the equational theory of relation algebras of Tarskian frames,
but it is so modulo observational equivalence.
This paper is organized as follows. Sections 2 and 3 contain background material.

In Section 2, we review the syntax of propositional and /rst-order (schematic) Kleene
algebra with tests (KAT and SKAT, respectively). In Section 3, we review the various
semantic interpretations of KAT and SKAT. At the propositional level, we recall the
de/nitions of Kripke frames and relation and trace algebras. We discuss the guarded
string model and its particular importance in the theory of KAT. We also discuss
canonical homomorphisms and recall basic results on the equational theories of these
models. At the /rst-order level, we recall the de/nition of Tarskian frames over a
/rst-order signature �.
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In Section 4, we introduce the universal frame U and develop some of its basic
properties, including the notion of spectrum of a /rst-order structure. Many of these
properties follow from more general propositional-level considerations, and we develop
these tools in Section 5, including the notions of induced subframes, coherence, and
autobisimulation, along with their algebraic consequences. The main theorem on the
universality of U for trace algebras of Tarskian frames is stated in Section 4 and
proved at the end of Section 5.
In Section 6 we turn to relation algebras. We show that the universality result of

Section 4 does not hold for relation algebras of Tarskian frames. However, it does
hold modulo observational equivalence. Again, these results follow from more general
propositional considerations, which we develop in Section 7.

2. Syntax

Kleene algebra (KA) is the algebra of regular expressions. A Kleene algebra with
tests (KAT) is a Kleene algebra with an embedded Boolean subalgebra. In this section
we describe the language of propositional and /rst-order Kleene algebra with tests.

2.1. Propositional

Let P and B be disjoint sets of symbols called the atomic actions and atomic tests,
respectively. Tests are Boolean expressions over B and actions are regular expressions
over P and tests. Formally,

tests b; c; d; : : : b ::= atomic tests | b+c | bc | Mb | 0 | 1
actions p; q; r; : : : p ::= atomic actions | p+q | pq | p* | b

The set of all actions over P and B and the set of all tests over B are denoted RExpP,B
and BExpB, respectively. Note that the latter is a subset of the former.
Ordinary programming constructs such as conditional tests and while loops can be

encoded. For example, while b do p is (bp)∗ Mb. The Hoare partial correctness assertion
{b} p {c} is expressed as an equation bp Mc= 0, or equivalently, bp= bpc.

2.2. First order

For interpretations over /rst-order (Tarskian) structures, we re/ne the language of
KAT to accommodate /rst-order terms and formulas. The resulting system is called
schematic KAT (SKAT) [1].
Let � be a /rst-order signature consisting of function symbols f; g; : : : and relation

symbols P;Q; : : :, each with a /xed arity. We also have in/nitely many individual /rst-
order variables x; y; : : : : Individual terms are denoted d; e; : : : and /rst-order formulas
are denoted ’;  ; : : : :
In SKAT, atomic programs P are assignments x := e, where x is a variable and e

is a �-term, and atomic tests B are atomic formulas P(e1; : : : ; en), where P is an n-ary
relation symbol of � and e1; : : : ; en are �-terms.
The substitution operator that simultaneously substitutes a term d for all free occur-

rences of a variable x is denoted [x=d]. The substitution operator can be applied to
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either terms or formulas, as in e[x=d] or ’[x=d]. Bound variables in ’ are implicitly
renamed to avoid capture.
A program scheme is just an automaton over this language [11], which by a con-

struction analogous to Kleene’s theorem gives an equivalent expression in RExpP,B.
Using this idea, it is possible to give an alternative algebraic treatment of the theory
of program schemes [1].

3. Semantics

3.1. Kleene algebra with tests

A Kleene algebra with tests (KAT) is a two-sorted structure (K; B; +; ·; ∗; M; 0; 1)
such that
• (K; +; ·; ∗; 0; 1) is a Kleene algebra,
• (B; +; ·; M; 0; 1) is a Boolean algebra, and
• (B; +; ·; 0; 1) is a subalgebra of (K; +; ·; 0; 1).
The Boolean complementation operator M is de/ned only on B. Elements of B are
called tests. These algebras were introduced in [9] and their theory and applications
further developed in [1,2,5,10,11,13–15].
Boolean algebra has a well-known equational axiomatization; see for example [3,4].

Kleene algebra has a quasiequational axiomatization consisting of equations and equa-
tional implications. A Kleene algebra (K; +; ·; ∗; 0; 1) is an idempotent semiring un-
der +; ·; 0; 1 such that p*q is the 6-least solution to q + px6x and qp* is the 6-
least solution to q + xp6x, where 6 refers to the natural partial order p6q def⇔ p +
q= q. A Kleene algebra is ∗-continuous if it satis/es the stronger in/nitary property
pq∗r= supn pq

nr.
Standard examples of Kleene algebras include the family of regular sets over a /nite

alphabet, the family of binary relations on a set, and the family of n× n matrices over
another Kleene algebra. Other more exotic interpretations include the min,+ algebra
or tropical semiring used in shortest path algorithms and models consisting of convex
polyhedra used in computational geometry. All these models are ∗-continuous.

The axiomatization for KA above was proposed in [8], where it was shown that
all true identities between regular expressions interpreted as regular sets of strings are
derivable from the axioms of Kleene algebra. Equivalently, the algebra of regular sets
of strings over the /nite alphabet P is the free Kleene algebra on generators P. The
axioms are also complete for the equational theory of relation algebras.
Analogous results exist for KAT, which we describe in Section 3.7 below. In addi-

tion, KAT is deductively complete for relationally valid propositional Hoare-style rules
involving partial correctness assertions [10], whereas Hoare logic is not.

3.2. Kripke frames

For applications in program veri/cation, one usually interprets programs and tests
over a KAT consisting of sets of traces or sets of binary relations on a set of states.
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Both these classes of algebras are de/ned in terms of Kripke frames. A Kripke frame
over a set of atomic programs P and a set of atomic tests B is a structure (K; mK),
where K is a set of states, mK : P→ 2K×K , and mK :B→ 2K . The map mK speci/es a
canonical interpretation of the atomic actions and tests.

3.3. Relation algebras

The set of all binary relations on a Kripke frame K forms a KAT under the standard
binary relation-theoretic interpretation of the KAT operators. The operator · is inter-
preted as relational composition ◦, + as union, 0 and 1 as the empty relation and the
identity relation on K , respectively, and ∗ as reKexive transitive closure. The Boolean
elements are subsets of the identity relation. This is called the full relation algebra on
K . One can de/ne a canonical interpretation [ ]K :RExpP,B → 2K×K by

[p]K
def= mK (p); p ∈ P

[b]K
def= {(u; u) | u ∈ mK (b)}; b ∈ B

extended homomorphically. A binary relation is regular if it is [p]K for some p∈
RExpP,B. The subalgebra consisting of all regular binary relations on K is denoted
RelK .

3.4. Trace algebras

A trace in a Kripke frame K is a sequence s0p0s1 · · · sn−1pn−1sn, where n¿0, si ∈K ,
pi ∈ P, and (si; si+1)∈mK (pi) for 06i6n − 1. The set of all traces in K is denoted
TracesK . We denote traces by �; �; : : :. The /rst and last states of a trace � are denoted
first(�) and last(�), respectively. If last(�)= first(�), we can fuse � and � to get the
trace ��. If last(�) �= first(�), then �� does not exist.
The powerset of TracesK forms a KAT in which + is interpreted as set union, · as

the operation

AB def={�� | � ∈ A; � ∈ B; last(�) = first(�)};

0 and 1 as I and K , respectively, and A∗ as the union of all /nite powers of A. The
Boolean elements are the subsets of K , the sets of traces of length 0. This is called the
full trace algebra on K . A canonical interpretation [[ ]]K for KAT expressions over P
and B is given by

[[p]]K
def= {spt | (s; t) ∈ mK (p)}; p ∈ P

[[b]]K
def= mK (b); b ∈ B;

extended homomorphically. A set of traces is regular if it is [[p]]K for some KAT
expression p. The subalgebra of all regular sets of traces of K is denoted TrK .
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3.5. Guarded strings

When B is /nite, a language-theoretic interpretation is given by the algebra of regular
sets of guarded strings [7,14]. This algebra plays the same role in KAT that the algebra
of regular sets of ordinary strings plays in KA.
Let AtomsB denote the set of atoms (minimal nonzero elements) of the free Boolean

algebra generated by B. The symbols �; �; : : : denote atoms. For an atom � and a test
b, note that �6b in the sense of KAT i2 �→ b is a propositional tautology.

A guarded string over P;B is a trace in the Kripke frame G whose states are AtomsB
and

mG(p)
def= AtomsB × AtomsB; p ∈ P

mG(b)
def= {� ∈ AtomsB | �6 b}; b ∈ B:

Thus a guarded string is just a sequence �0p0�1 · · · �n−1pn−1�n, where the �i ∈AtomsB
and pi ∈ P, and TracesG is the set of all guarded strings over P;B. Each KAT term
p∈RExpP,B denotes a set [[p]]G of guarded strings under the canonical interpretation
de/ned in Section 3.4. A guarded string � is itself a member of RExpP,B, and [[�]]G =
{�}.
The trace algebra TrG of regular sets of guarded strings over P;B forms the free

Kleene algebra with tests on generators P;B; in other words, [[p]]G = [[q]]G i2 p=q is
a theorem of KAT [14].

3.6. Canonical homomorphisms

If K; K ′ are KATs with distinguished canonical interpretations I :RExpP,B →K and
I ′ :RExpP,B →K ′, a homomorphism h :K →K ′ is canonical if it commutes with I and
I ′. In particular, a homomorphism involving trace or relation algebras on Kripke frames
over P;B is canonical if it commutes with [[ ]]K and [ ]K .

An example of a canonical homomorphism is the map Ext :TrK → RelK de/ned by

Ext(A) def={(first(�); last(�)) | � ∈ A}: (1)

This is canonical because Ext([[p]]K)= [p]K for all p∈RExpP,B [15, Section 3.4].
Another important example is given by the following construction, which shows that

every trace algebra is canonically isomorphic to a relation algebra. This construction
is a straightforward generalization of a similar construction of [16] for regular sets of
strings and [14] for regular sets of guarded strings.
Given a Kripke frame (K; mK), de/ne a new Kripke frame (R; mR) with

R def= TracesK

mR(p)
def= {(�; ��) | �� ∈ TracesK ; � ∈ [[p]]K}; p ∈ P

mR(b)
def= {� ∈ TracesK | last(�) ∈ [[b]]K}; b ∈ B:
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For A⊆TracesK , de/ne

h(A) def={(�; ��) | �� ∈ TracesK ; � ∈ A}:

Lemma 3.1. The map h is an injective KAT homomorphism from the full trace al-
gebra 2TracesK to the full relation algebra 2R×R. Its restriction to the regular trace
algebra TrK is a canonical isomorphism TrK → RelR.

Proof. We show /rst that h is a homomorphism.

h

(⋃
i

Ai

)
=

{
(�; ��)

∣∣∣∣∣�� ∈ TracesK ; � ∈
⋃
i

Ai

}

=
⋃
i

{(�; ��) | �� ∈ TracesK ; � ∈ Ai}

=
⋃
i

h(Ai);

h(AB) = {(�; ��!) | ��! ∈ TracesK ; � ∈ A; ! ∈ B}
= {(�; ��) | �� ∈ TracesK ; � ∈ A}

◦ {(��; ��!) | ��! ∈ TracesK ; ! ∈ B}
= h(A)h(B):

The argument for ∗ follows from these facts. For B⊆K ,

h( MB) = h(K − B)

= {(�; ��) | �� ∈ TracesK ; � ∈ K − B}
= {(�; �) | � ∈ TracesK ; last(�) ∈ K − B}
= {(�; �) | � ∈ TracesK} − {(�; �) | � ∈ TracesK ; last(�) ∈ B}
= {(�; �) | � ∈ TracesK} − {(�; ��) | �� ∈ TracesK ; � ∈ B}
= {(�; �) | � ∈ TracesK} − h(B)

= h(B):

The additive identities of 2TracesK and 2R×R are the empty set of traces and the empty
relation, respectively, and

h(I) = {(�; ��) | �� ∈ TracesK ; � ∈ I} = I:

The multiplicative identities of 2TracesK and 2R×R are the set K and the identity relation
on R, respectively, and the argument for this case follows from the above two facts.
The function h is injective, since A is uniquely recoverable from h(A):

A = {� | (first(�); �) ∈ h(A)}:
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To show that the restriction of h to TrK is canonical, it suOces to show that h acts
canonically on atomic symbols; that is,

h([[p]]K) = [p]R; p ∈ P;

h([[b]]K) = [b]R; b ∈ B:

We have

h([[p]]K) = {(�; ��) | �� ∈ TracesK ; � ∈ [[p]]K}
= mR(p)

= [p]R;

h([[b]]K) = {(�; ��) | �� ∈ TracesK ; � ∈ [[b]]K}
= {(�; �) | � ∈ TracesK ; last(�) ∈ [[b]]K}
= {(�; �) | � ∈ mR(b)}
= [b]R:

3.7. Coincidence of the equational theories

The completeness theorem of [14] says that the guarded string algebra TrG and
its associated canonical interpretation [[ ]]G are universal for Kleene algebras with
tests in the sense that for any KAT K and interpretation I :RExpP,B →K , there is a
homomorphism h :TrG →K that commutes with [[ ]]G and I . In particular, the free
KAT (RExpP,B=≡; BExpB=≡) on generators P;B, where ≡ is provable equivalence, is
canonically isomorphic to TrG. This says that p=q in all Kleene algebras with tests if
and only if [[p]]G = [[q]]G.
In addition, the equational theory of KAT is the same as the equational theories of

trace algebras and relation algebras [14]. Since TrG is universal, its equational theory
is contained in the equational theories of trace algebras and relation algebras; and the
reverse inclusions follow from the fact that TrG is itself a trace algebra and canonically
isomorphic to a relation algebra by Lemma 3.1.

3.8. Tarskian frames

At the /rst-order level, we are primarily interested in interpretations over Kripke
frames of a special form de/ned with respect to /rst-order structures A of signa-
ture �. Such frames are called Tarskian. A state of a Tarskian frame is a map
s : {x; y; : : :} → |A| assigning a value to each variable. Such maps are commonly called
valuations in logic and model theory and environments in computer science. These
maps extend to terms and formulas inductively in the usual way, thus we may
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consider a valuation s variously as a function s : {terms} → |A| or s : {formulas} → {0; 1}.
We write s � ’ if s(’)= 1.
The action of the assignment x := e is to change the state in the following way.

The expression e is evaluated in the input state and the value assigned to x, and the
resulting valuation is the output state. To de/ne this formally, we de/ne s[x=a] to be
the valuation that agrees with s everywhere except possibly at x, where it takes value
a:

s[x=a](x) def= a;

s[x=a](y) def= s(y); y di2erent from x:

Then the behavior of the assignment x := e is to take state s to state s[x=s(e)].
The unary operator [x=a] on states is called a rebinding operator. It is not to be con-

fused with the substitution operator, although its appearance is (intentionally) similar.
There is a fundamental relationship between substitution and rebinding: for any term
or formula E,

s[x=s(e)](E) = s(E[x=e]): (2)

This is easily proved by induction on the structure of E.
Given a /rst-order structure A of signature �, we can now de/ne the Tarskian frame

(KA; mA) as follows:

KA
def= {valuations over A}

mA(x := e) def= {(s; s[x=s(e)]) | s ∈ KA}
mA(P(e1; : : : ; en))

def= {s ∈ KA | s � P(e1; : : : ; en)}:

The Tarskian frame KA is just a Kripke frame, and as such gives rise to a regular
relation algebra RelA and a regular trace algebra TrA as described in Sections 3.3 and
3.4. The set of all traces is denoted TracesA. The canonical interpretations associate
sets [p]A and [[p]]A of pairs and traces, respectively, with the term p.
We are interested in the specialized structure of trace and relation algebras of

Tarskian frames as an algebraic representation of /rst-order program schemes. Note
that a trace in KA is a sequence s0p0s1 · · · sn−1pn−1sn, where si+1 = si[xi=si(ei)] if pi is
the assignment xi := ei, 06i6n − 1. Thus a trace is uniquely determined by its start
state and its sequence of atomic actions.

4. Universal frames

The importance and usefulness of the guarded string model in propositional KAT
motivates us to seek a similar structure that plays the same role for the class of Tarskian
models and SKAT. We propose the following de/nition.
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4.1. Quanti=er-free types

Let T be a /xed /rst-order theory of signature � (consistent set of /rst-order sen-
tences closed under entailment). A quanti=er-free type (qf-type) is a maximal con-
sistent set of quanti/er-free formulas. A qf-type of T is a qf-type consistent with T .
Quanti/er-free types are the natural analog of the atoms of B in the guarded string
model.
De/ne the Kripke frame (U; mU ) by

U def= {qf -types of T}
mU (x := e) def= {($; {’ |’[x=e] ∈ $}) |$ ∈ U}

mU (P(e1; : : : ; en))
def= {$ ∈ U |P(e1; : : : ; en) ∈ $}:

For the de/nition of mU (x := e) to make sense, the set {’ |’[x=e]∈$} had better be
a qf-type of T whenever $ is. We argue this below (Corollary 4.2).
We will ultimately show that TrU is universal for trace algebras of Tarskian frames

over models of T . Unlike the propositional case, however, this is not true for relation
algebras. However it is almost true in a sense to be made precise in Section 6. The
frame U itself is not isomorphic to any Tarskian frame in general.
Let A be a model of T . For any valuation s over A, there is a unique qf-type $(s)

such that s � $(s). Note that $(s)∈U , since any qf-type realized in a model of T is
consistent with T .

Lemma 4.1. $(s[x=s(e)])= {’ |’[x=e]∈$(s)}. In other words, the following diagram
commutes:

Proof. This is essentially a restatement of the relationship between substitution and
rebinding (2).

Corollary 4.2. If $∈U , then {’ |’[x=e]∈$} ∈U .

Proof. Suppose $∈U . Let A be a model of T realizing the type $, say $=$(s). By
Lemma 4.1, {’ |’[x=e]∈$}=$(s[x=s(e)])∈U .

Now extend the map $ :KA →U to traces

$(s0p0s1 · · · sn−1pn−1sn)
def= $(s0)p0$(s1) · · ·$(sn−1)pn−1$(sn):
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Lemma 4.3. For any trace � of KA, the sequence $(�) is a trace of U .

Proof. We need to only argue that for any state s, ($(s); $(s[x=s(e)]))∈mU (x := e).
This is immediate from Lemma 4.1 and the de/nition of mU .

By Lemma 4.3, we may consider $ to be a map $ :TracesA → TracesU . Now for
A⊆TracesU , de/ne

$−1(A) def={� ∈ TracesA |$(�) ∈ A}:
Our main theorem is the following.

Theorem 4.4. $−1 is a canonical KAT homomorphism TrU → TrA. Moreover, TrU is
universal for the equational theory of Tarskian trace algebras over models of T in
the following sense. For all p,q, [[p]]U = [[q]]U if and only if [[p]]A = [[q]]A for all
models A of T .

Theorem 4.4 will follow from some fairly general considerations, which we will
develop in Section 5. We thus defer the proof of Theorem 4.4 until the end of that
section.

4.2. Spectra

Let A be a model of T . De/ne the spectrum of A to be the set of qf-types realized
in A:

spec A
def={$(s) | s ∈ KA}:

Then spec A⊆U , since every qf-type realized in A is consistent with T . The set spec A
is the image of KA in U under $ and gives an induced subframe

mspec A(x := e) def= mU (x := e) ∩ (spec A)2

mspec A(P( Me))
def= mU (P( Me)) ∩ spec A:

Theorem 4.5. The map $−1 :Trspec A → TrA is a canonical isomorphism.

Like Theorem 4.4, Theorem 4.5 holds under quite general conditions. These condi-
tions can be stated and proved in a purely propositional framework, so we again defer
the proof until after we have developed the requisite tools.

5. Constructions on Kripke frames

In this section, we develop the machinery that will be used in the proof of Theorems
4.4 and 4.5.



14 D. Kozen / Science of Computer Programming 51 (2004) 3–22

5.1. Induced subframes

Let (L; mL) be a Kripke frame and let K be a subset of L. The induced subframe
on K is (K; mK), where

mK (b)
def= mL(b) ∩ K; b ∈ B (3)

mK (p)
def= mL(p) ∩ K2; p ∈ P: (4)

We say that a binary relation R on L preserves K if t ∈K whenever s∈K and (s; t)∈R.

Lemma 5.1. Let (K; mK) be an induced subframe of (L; mL) such that all atomic
actions mL(p) preserve K .

(a) The map A �→A∩TracesK for A⊆TracesL is a canonical KAT homomorphism
TrL → TrK .

(b) The map A �→ A∩K2 for A⊆L2 is a canonical KAT homomorphism RelL → RelK .

Proof. (a) To show that A �→ A∩TracesK is a homomorphism with respect to the KAT
operations, it suOces to show that (

⋃
i Ai)∩TracesK =

⋃
i(Ai ∩TracesK), (A∩TracesK)

(B∩TracesK)=AB∩TracesK , and for A⊆L, (L − A)∩TracesK =K − (A∩TracesK).
These arguments are all straightforward.
The map is canonical on TrL since it is a homomorphism and since it acts canonically

on atomic symbols; that is, [[p]]L ∩TracesK = [[p]]K and [[b]]L ∩TracesK = [[b]]K . These
two equations are immediate from (3) and (4).
(b) The relations on L that preserve K form a sub-KAT of the full relation algebra

on L. Moreover, if all atomic actions mL(p) preserve K , then this algebra contains
RelL as a subalgebra. To show that A �→ A∩K2 is a homomorphism of this algebra
with respect to the KAT operations, it suOces to show that (

⋃
i Ai)∩K2 =

⋃
i(Ai ∩K2),

(A∩K2)(B∩K2)=AB∩K2, and for A a subset of the identity relation on L, ({(u; u) |
u∈L} − A)∩K2 = ({(u; u) | u∈L} − A)∩K2 = {(u; u) | u∈K} − (A∩K2). These ar-
guments are all straightforward except for the inclusion AB∩K2 ⊆ (A∩K2)(B∩K2),
which is the only case that uses the assumption regarding the preservation of K . We
argue this case explicitly.

(s; t) ∈ AB ∩ K2

⇒ ∃u ∈ L (s; u) ∈ A; (u; t) ∈ B; s; t ∈ K

⇒ ∃u ∈ K (s; u) ∈ A; (u; t) ∈ B; s; t ∈ K since A preserves K

⇒ ∃u (s; u) ∈ A ∩ K2; (u; t) ∈ B ∩ K2

⇒ (s; t) ∈ (A ∩ K2)(B ∩ K2):

Again, A �→A∩K2 is canonical on RelL since it is a homomorphism and by (3) and
(4) acts canonically on atomic symbols; that is, [p]L ∩K2 = [p]K and [b]L ∩K2 =
[b]K .
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Lemma 5.2. Let C be a collection of induced subframes of a frame L whose union
covers L such that each subframe in C is preserved under atomic actions mL(p). Then
TrL is universal for the equational theory of {TrK |K ∈C} and RelL is universal for
the equational theory of {RelK |K ∈C} in the sense that

(i) [[p]]L = [[q]]L ⇔ for all K ∈C, [[p]]K = [[q]]K ,
(ii) [p]L = [q]L ⇔ for all K ∈C, [p]K = [q]K .

Proof. For (i), if [[p]]L = [[q]]L, then [[p]]K = [[q]]K for all K ∈C, since there is a
canonical homomorphism TrL → TrK by Lemma 5.1(a). Conversely, if [[p]]L �= [[q]]L,
say �∈ [[q]]L−[[p]]L, then since

⋃
C covers L, there exists K ∈C such that first(�)∈K .

Since the atomic actions mL(p) preserve K , � is a trace of K . Then �∈ [[q]]L ∩TracesK
= [[q]]K but � =∈ [[p]]K ⊆ [[p]]L.

The proof of (ii) is similar.

Note that spec A is an induced subframe of U , and if spec A⊆ spec B, then spec A
is an induced subframe of spec B.

5.2. Coherence

Let K; L be Kripke frames over P;B. A function f :K →L is said to be coherent if

(i) (s; t)∈mK (p) ⇒ (f(s); f(t))∈mL(p), p∈ P;
(ii) s∈mK (b) ⇔ f(s)∈mL(b), b∈B.
Condition (i) implies that f can be extended to traces f :TracesK → TracesL:

f(s0p0s1 · · · sn−1pn−1sn)
def= f(s0)p0f(s1) · · ·f(sn−1)pn−1f(sn):

This is essentially the property that we needed of $ in the proof of Lemma 4.3. The
function f is said to be onto on traces if its extension f :TracesK → TracesL is onto.

For a coherent function f :K →L and A⊆TracesL, de/ne

f−1(A) def={� ∈ TracesK |f(�) ∈ A}:

Lemma 5.3. If f :K →L is coherent, then f−1 is a KAT homomorphism on the full
trace algebras of K and L, and its restriction to the regular trace algebra TrL is a
canonical homomorphism TrL → TrK . If in addition f is onto on traces, then f−1 is
one-to-one, therefore f−1 :TrL → TrK is a canonical isomorphism.

Proof. First, we check that f−1 is a KAT homomorphism. It follows easily from
elementary set-theoretic arguments that f−1 commutes with the Boolean operations
and maps L to K . For concatenation, since f(�!)=f(�)f(!),

� ∈ f−1(AB)⇔ f(�) ∈ AB

⇔ ∃� ∃! � = �!; f(�) ∈ A; f(!) ∈ B
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⇔ ∃� ∃! � = �!; � ∈ f−1(A); ! ∈ f−1(B)

⇔ � ∈ f−1(A)f−1(B):

The case of the operator ∗ follows from these cases.
To show that f−1 restricted to TrL is canonical, it suOces to show that it acts

canonically on atomic symbols; that is,

f−1([[p]]L) = [[p]]K ; p ∈ P;

f−1([[b]]L) = [[b]]K ; b ∈ B:

This amounts to showing that for all s; t ∈K ,

((s; t) ∈ mK (p) and (f(s); f(t)) ∈ mL(p))⇔ (s; t) ∈ mK (p); p ∈ P;

f(s) ∈ mL(b)⇔ s ∈ mK (b); b ∈ B

which are exactly properties (i) and (ii) in the de/nition of coherence.
Finally, we show that f−1 is one-to-one whenever f is onto on traces. If A; B⊆

TracesL and A �=B, say with A − B �=I, then since f is onto on traces, there exists
a trace � of K such that f(�)∈A − B. Then �∈f−1(A − B)=f−1(A) − f−1(B),
therefore f−1(A) �=f−1(B).

5.3. Autobisimulation

By Lemma 5.3, in order to prove Theorem 4.5, it will suOce to argue that the map
$ :KA → spec A is coherent and onto on traces. For the latter property, we establish a
general suOcient condition based on the notion of bisimulation.
For a coherent f to be onto on traces, the original f :K →L must be onto, since

each single state of L is a trace. Assuming that this is true, every trace of L is of
the form f(s0)p0f(s1) · · ·f(sn−1)pn−1f(sn). We need to be able to construct a trace
s′0p0s

′
1 · · · s′n−1pn−1s

′
n of K such that f(s′i)=f(si). This will be possible when the

function f is obtained from an autobisimulation.
An equivalence relation ≈ on K is called an autobisimulation if it satis/es the

following two properties:

(i) For b∈B, if s≈ s′ and s∈mK (b), then s′ ∈mK (b).
(ii) For p∈ P, if s≈ s′ and (s; t)∈mK (p), then there exists t′ such that (s′; t′)∈mK (p)

and t ≈ t′.
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The ≈-equivalence class of s is [s] def= {t | s ≈ t}. Given an autobisimulation ≈ on K ,
one can de/ne a quotient frame (K=≈; mK=≈) as follows:

K=≈ def= {[s] | s ∈ K}
mK=≈(b)

def= {[s] | s ∈ mK (b)}; b ∈ B

mK=≈(p)
def= {([s]; [t]) | (s; t) ∈ mK (p)}; p ∈ P:

Lemma 5.4. Let ≈ be an autobisimulation on K with equivalence classes [ ]. The
map [ ] :K →K=≈ is coherent and onto on traces, therefore [ ]−1 :TrK=≈ → TrK is
a canonical isomorphism.

Proof. By Lemma 5.3, it suOces to check that the map [ ] :K →K= ≈ is coherent
and onto on traces. It is easy to check that it is coherent and onto on single states.
Now suppose we are given a trace

[s0]p0[s1] · · · [sn−1]pn−1[sn]

of K=≈. We wish to /nd s′0; : : : ; s
′
n such that s′0p0s

′
1 · · · s′n−1pn−1s

′
n is a trace of K and

s′i ≈ si, 06i6n. By the de/nition of mK=≈(p), for each i, 06i6n − 1, there exist
s′′i and s′′′i+1 such that (s′′i ; s

′′′
i+1)∈mK (pi), s′′i ≈ si, and s′′′i+1 ≈ si+1. We construct s′i by

induction on i. To start, take s′0 = s0. Now suppose we have constructed a pre/x of
the desired trace ending with s′i such that s′i ≈ si. Then s′i ≈ s′′i . By property (ii) of
autobisimulations, there exists s′i+1 such that (s′i ; s

′
i+1)∈mK (pi) and s′i+1 ≈ s′′′i+1 ≈ si+1.

We have extended the trace by one step and maintained the invariant s′i ≈ si.

At this point we are ready to prove our main theorems.

Proof of Theorem 4.5. Let KA be a Tarskian frame over a model A of T . Checking
the conditions of coherence for the map $ :KA →U , we observe that

(i) (s; t)∈mA(x := e) ⇒ ($(s); $(t))∈mU (x := e), since $(s[x=s(e)])= {’ |’[x=e]∈
$(s)} by Lemma 4.1; and

(ii) s∈mA(P( Me)) ⇔ P( Me)∈$(s) by de/nition of mA(P( Me)).

By Lemma 5.3, $−1 : TrU → TrA and $−1 :Trspec A → TrA are canonical homomor-

phisms. Moreover, by Lemma 4.1, the relation s≈ t def⇔$(s)=$(t) is an autobisimula-
tion, and the quotient frame KA=≈ is isomorphic to Kspec A, therefore by Lemma 5.4,
$−1 :Trspec A → TrA is a canonical isomorphism.

Proof of Theorem 4.4. For every model A of T , spec A is an induced subframe of U ,
and the set {spec A |A � T} covers U , since every qf-type of T is realized in some
model of T . It follows from Lemma 5.2 that TrU is universal for the equational theory
of {Trspec A |A � T}. But by Theorem 4.5, this is the same as the equational theory
of {TrA |A � T}, since TrA and Trspec A are canonically isomorphic.
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The frame U , although universal for trace algebras of Tarskian frames over models
of T , is not itself Tarskian. One might ask whether a universal Tarskian frame exists.
The answer is yes, provided T is a complete theory: take a qf-saturated model of T (one
realizing all qf-types consistent with T ). If T is not complete, then the answer is no in
general. For example, if T is generated by the single formula ¬ ∃x P(x)∨ ¬ ∃ x Q(x),
then there is a qf-type of T containing P(x) and one containing Q(x), since both are
consistent with T , but there is no single model of T containing both these qf-types in
its spectrum. However, the answer is again yes if we amend the de/nition of Tarskian
frame to allow disjoint unions of Tarskian frames as de/ned above. In this case we
can take the disjoint union of qf-saturated models, one for each complete extension
of T .

6. Relation algebras

Unlike the propositional case, relation and trace algebras of Tarskian frames do
not share the same equational theory. Inclusion does hold in one direction: since
Ext :TrA → RelA is a canonical homomorphism, the equational theory of trace alge-
bras is contained in the equational theory of relation algebras of Tarskian frames (and
in fact for any class of frames), but not vice versa. Note that Lemma 3.1 does not
apply, since the relation algebra on TracesA is not necessarily Tarskian.
The axioms of SKAT proposed in [1] provide some counterexamples for the reverse

inclusion:

x := d ; y := e = y := e[x=d] ; x := d (y =∈ FV(d));

x := d ; y := e = x := d ; y := e[x=d] (x =∈ FV(d));

x := d ; x := e = x := e[x=d];

x := e ; ’ = ’[x=e] ; x := e;

x := x = 1;

where x and y are distinct variables and FV(d) denotes the set of variables occurring
in d. Special cases are the commutativity conditions

x := d ; y := e = y := e ; x := d (x =∈ FV(e); y =∈ FV(d));

’ ; x := e = x := e ; ’ (x =∈ FV(’)).

What is worse, RelU is not universal for relation algebras of Tarskian frames, so
the analog of Theorem 4.4 for relation algebras does not hold. To see this, consider a
signature consisting of constants c; d and unary predicate P. Then

[P(c) ↔ P(d) ; x := c]U = [P(c) ↔ P(d) ; x := d]U ; (5)

but these two programs are not equivalent in any Tarskian frame in which c �=d. The
model U has essentially eight states, depending on the truth values of P(c), P(d),
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and P(x). Here is an illustration of relations (5):

However, note that the two programs of (5) are observationally equivalent—
indistinguishable by any formula in the language. This indicates that the relation of
equality on RelA is too /ne in that it distinguishes programs that are indistinguishable in
terms of the preconditions and postconditions satis/ed by their input and output states.
When we weaken the comparison of input/output relations to observational equivalence,
then RelU becomes universal.
As with the main results of Section 4, this result follows from more general consid-

erations, so we defer the formal statement and proof until the end of Section 7.

7. More constructions on Kripke frames

Let ≈ be an autobisimulation on a Kripke frame K . For binary relations R and S on
K , de/ne R. S if for all s; s′; t, if s≈ s′ and (s; t)∈R, then there exists t′ such that
(s′; t′)∈ S and t ≈ t′.

We call the relations R and S bisimilar with respect to ≈ and write R∼ S if both
R. S and S.R. Let D be the set of binary relations R such that R∼R.

Lemma 7.1. The set D forms a subalgebra of the full relation algebra on K and
contains RelK as a subalgebra.

Proof. It is straightforward to show that D is closed under all the KAT operations.
The de/nition of autobisimulation says exactly that D contains the generators [p]K ,
p∈ P and [b]K , b∈B of RelK , therefore D contains all [p]K ∈RelK .

The signi/cance of bisimilarity is that it is a KAT congruence on D, and the quotient
algebra RelK=∼ is isomorphic to RelK=≈.
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Lemma 7.2. Let [s] def= {t | s ≈ t}. For R∈D, de=ne [R] def= {([s]; [t]) | (s; t)∈R}.
The map [ ] is a KAT homomorphism on D and its kernel is the relation ∼. Re-
stricted to RelK , [ ] is a canonical homomorphism RelK → RelK=≈.

Proof. To show that [ ] is a KAT homomorphism on D, it suOces to show that
[
⋃

i Ai]=
⋃

i [Ai], [A][B]= [AB], and for A⊆ {(u; u) | u∈K}, [{(u; u) | u∈K} −
A]= {(u; u) | u∈K} − [A]. All these arguments are straightforward except for the in-
clusion [A][B]⊆ [AB]. This is the only place that uses the assumption of membership
in D. We argue this case explicitly:

([s]; [t]) ∈ [A][B]

⇒ ∃u ([s]; [u]) ∈ [A]; ([u]; [t]) ∈ [B]

⇒ ∃u; u′; u′′; s′; t′′ (s′; u′) ∈ A; (u′′; t′′) ∈ B; u′ ≈ u ≈ u′′; s ≈ s′; t ≈ t′′

⇒ ∃u′; u′′; s′; t′′; t′ (s′; u′) ∈ A; (u′; t′) ∈ B; u′ ≈ u′′; s ≈ s′; t ≈ t′′ ≈ t′

since B ∈ D
⇒ ∃s′; t′ (s′; t′) ∈ AB; s ≈ s′; t ≈ t′

⇒ ([s]; [t]) ∈ [AB]:

To show that [ ] is canonical on RelK , it suOces to show that it acts canonically on
atomic symbols; that is, [[p]K]= [p]K=≈ and [[b]K]= [b]K=≈. These properties are
immediate from the de/nition of K=≈.
Finally, to show that ∼ on D is the kernel of [ ], it suOces to argue that

R. S ⇔ {([s]; [t]) | (s; t) ∈ R} ⊆ {([s]; [t]) | (s; t) ∈ S}:
The left-hand side and right-hand side are equivalent to

(i) ∀s ∀s′ ∀t s≈ s′ ∧ (s; t)∈R ⇒ ∃t′ t ≈ t′, and (s′; t′)∈ S,
(ii) ∀s ∀t (s; t)∈R ⇒ ∃s′ ∃t′ s≈ s′ ∧ t ≈ t′ and (s′; t′)∈ S,
respectively. Now (i) implies (ii) by taking s′ = s. For the converse, suppose s≈ s′ and
(s; t)∈R. By (ii), there exist s′′; t′′ such that s≈ s′′, t ≈ t′′, and (s′′; t′′)∈ S. Since S ∈D,
S ∼ S, and s′ ≈ s≈ s′′, therefore there exists t′ such that (s′; t′)∈ S and t′ ≈ t′′ ≈ t.

Combining (1) and Lemmas 5.4 and 7.2, we have the following commutative diagram
that captures a fundamental relationship between trace and relation algebras:

(6)

The arrow labeled [ ]−1 is an isomorphism by Lemmas 5.3 and 5.4. The diagram
commutes because all the homomorphisms in question are canonical.



D. Kozen / Science of Computer Programming 51 (2004) 3–22 21

We say that terms p and q are observationally equivalent over A if [p]A and [q]A
are bisimilar with respect to the autobisimulation s≈ t def⇔$(s)=$(t) on the Tarskian
frame KA. In other words, if $(s)=$(s′) and (s; t)∈ [p]A, then there exists t′ such
that (s′; t′)∈ [q]A and $(t)=$(t′), and vice versa.
The following is our main result on relation algebras.

Theorem 7.3. The algebra RelU is universal for the equational theory of relation
algebras of Tarskian frames over models of T modulo observational equivalence. In
other words, [p]U = [q]U i? p and q are observationally equivalent over all models
of T .

Proof. In the special case of the autobisimulation s≈ t def⇔$(s)=$(t), diagram (6)
takes the form

By Lemma 7.2, p and q are observationally equivalent over A i2 [p]A and [q]A have
the same image under $, which occurs i2 [p]spec A = [q]spec A. But by Lemma 5.2,
RelU is universal for the equational theory of Relspec A for A � T . Thus [p]U = [q]U
i2 [p]spec A = [q]spec A over all A � T i2 p and q are observationally equivalent over
all models of T .

Can one capture the equational theory of relation algebras of Tarskian frames in a
Tarskian frame? As with trace algebras, the answer is yes, provided we allow disjoint
unions of Tarskian frames: take the disjoint union of suOciently many Tarskian frames,
where “suOciently many” means that if there exists A such that [p]A �= [q]A, then
there is at least one such frame in the class taken.
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