
A cyclic proof system for Guarded Kleene
Algebra with Tests

Jan Rooduijn1, Alexandra Silva2, and Dexter Kozen2

1 Institute of Logic, Language and Computation, University of Amsterdam, The
Netherlands j.m.w.rooduijn@uva.nl

2 Cornell University, Ithaca, USA

Abstract. Guarded Kleene Algebra with Tests (GKAT for short) is an
efficient fragment of Kleene Algebra with Tests, suitable for reasoning
about simple imperative while-programs. Following earlier work by Das
and Pous on Kleene Algebra, we study GKAT from a proof-theoretical
perspective. The deterministic nature of GKAT makes ordinary sequents
sufficient for achieving regular completeness, unlike the situation with
Kleene Algebra, where hypersequents are required. Moreover, the proof
search induces a coNP decision procedure, rather than one in PSPACE.

Keywords: Kleene Algebra · Guarded Kleene Algebra with Tests ·
Cyclic proofs

1 Introduction

In this paper we introduce a cyclic proof system for Guarded Kleene Algebra
with Tests, or GKAT for short. This formal system is used for reasoning about
simple imperative while-programs. It draws from a long tradition, which we
sketch below. For more on the history of GKAT we refer the reader to [13, 17, 16].

The first origin for GKAT is Kleene Algebra, an algebraic theory thoroughly
studied by Conway [5], and dating back to Kleene [9]. Recall that, given a finite
alphabet Σ, a regular expression over Σ is a string generated by the grammar:

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e∗

Under the standard interpretation, regular expressions denote languages over Σ,
i.e. sets of words over Σ. The constant 0 is interpreted as the empty language ∅,
and the constant 1 as the language {ε} containing just the empty string. The in-
terpretation of a is the language {a} containing only a. The operators +, ·,∗ are
interpreted as union, pairwise concatenation, and Kleene closure respectively.
The latter, applied to a language L, gives the smallest language extensions (or
superset) L∗ of L that is closed under repeated concatenation. A language de-
noted by some regular expression is said to be a regular language.

The research of Jan Rooduijn has been made possible by a grant from the Dutch
Research Council NWO, project number 617.001.857.



2 J.M.W. Rooduijn et al.

Although Kleene Algebra appears under different interpretations in various
areas of logic and computer science, it is most commonly understood as a gen-
eralisation of the algebra of regular languages under the operations (0, 1,+, ·,∗ ).
There has been much interest in finding a nice axiomatisation of the equational
validities of this algebra. The fragment without Kleene closure is finitely ax-
iomatised by the axioms of an algebraic structure called an idempotent semiring.
Extending this axiomatisation to the full language has posed a formidable chal-
lenge. Numerous proposed axiomatisations exist, with one of the most prominent
coming from Salomaa [15]. To capture the behaviour of the Kleene star ∗, this
system features the following rule:

eg + f ≡ g e does not have the empty word property
e∗f ≡ g

where e is said to have the empty word property if the language denoted by e
contains the empty word ε. Although Salomaa’s system is sound and complete
with respect to the algebra of regular languages, it is not entirely satisfactory,
because it is not algebraic. More precisely, the empty word property is not closed
under substitution and therefore itself not equationally axiomatisable. As a con-
sequence, this system does not give rise a notion of “a Kleene algebra”, in which
equations may be true or false.

A solution to this problem was provided by Kozen in [10]. Using e ≤ f as a
shorthand for e+ f ≡ f , Kozen axiomatised e∗f as a least fixed point by adding
the following axiom and rule:3

1 + ee∗ ≤ e∗ eg + f ≤ g
e∗f ≤ g

Kozen showed that this system is complete with respect to the algebra of reg-
ular languages. With this, a Kleene algebra is then defined to be any algebra
(K, 0, 1,+, ·,∗ ) such that (K, 0, 1,+, ·) is an idempotent semiring, and the axiom
and rule above are satisfied. It turns out that the algebra of regular languages
over Σ is then the free Kleene algebra generated by Σ.

Another way to interpret Kleene Algebra is as a semantics of programs.
Under this interpretation, characters in Σ are seen as primitive programs, 0
is a program without any valid behaviour, and 1 is skip, which simply does
nothing. The concatenation e·f is thought of as first running program e, and then
running program f . The union e+ f non-deterministically runs e or f . Finally,
e∗ repeats the program e a finite number of times, possibly zero. A shortcoming
of using Kleene Algebra for this purpose is that is unable to express common
programming constructs such as if-then-else statements and while loops, because
of the lack of tests for the control structures. This inspired the development of
an extension of Kleene Algebra, called Kleene Algebra with Tests, or KAT for
3 Kozen’s original axiomatisation also has a dual axiom and rule characterising fe∗ as
a least fixed point, but it turns out the other rules suffice to derive all valid equations.
The system we describe, without the dual axiom and rule, is often called left-handed
Kleene Algebra.



A cyclic proof system for Guarded Kleene Algebra with Tests 3

short [11]. KAT is a finite quasi-equational theory with two sorts, namely programs
and a subset thereof consisting of tests, such that the programs form a Kleene
algebra under the operations (+, ·, ∗, 0, 1) and the tests form a Boolean algebra
under the operations (+, ·,− , 0, 1). The tests allows one to express if-then-else
statements and while loops by b · e+ b · f and (b · e)(b) · b, respectively. Despite
the gain in expressive power, the complexity of deciding KAT-equations remains
the same as for Kleene Algebra, namely PSPACE-complete.

Finally, the system GKAT, initially presented in [13, 12], and subsequently
coined and further explored in [17], is a fragment of KAT, obtained by replacing
the operations + and ∗ by their guarded counterparts +b and −(b). Roughly,
this restricts the language to only if-then-else statements, rather than general
non-deterministic choice, and to only while loops, rather than the general (non-
deterministic) Kleene star. The main advantage of GKAT is the efficiency of de-
ciding equivalence of its programs, which can be done in nearly linear time, i.e.
in O(n · α(n)), where α is the very slow-growing inverse Ackermann function.

Cyclic proof systems are proof systems in which a leaf is not necessarily re-
quired to be an axiom, but may alternatively be justified by one of its ancestors
further down in the proof tree. As such, a cyclic proof is a graph (more specifi-
cally, a finite tree back edges), rather than a well-founded tree. Usually this leaf
must be labelled by exactly the same sequent as its justifying ancestor, and some
condition is required to hold between the leaf and this ancestor. Together, these
requirements ensure that infinite paths through this cyclic tree with back edges
satisfy a certain progress condition, facilitating a soundness proof by infinite de-
scent. Cyclic proof theory is an active field of research for logics with recursive
operators, see e.g. [3, 14, 2, 1, 8] for a variety of approaches.

In [7], Das & Pous propose a cyclic proof system HKA for Kleene Algebra.
Building on their work, we introduce a cyclic proof system SGKAT for GKAT.
Below is a summary of the contributions of this paper:

– We propose a new type of sequent tailored to GKAT (Definition 3).
– We propose a proof system SGKAT for GKAT (Figure 3).
– We show that (possibly infinitary) proofs in SGKAT are sound (Theorem 1)

and complete (Theorem 2) with respect to the language semantics of GKAT.
– We show that proofs are finite-state: each proof contains only finitely many

distinct sequents. More precisely, by a more fine-grained analysis than in [7],
we give a polynomial bound on the number of distinct sequents occurring in
a proof, in terms of the size of its endsequent. It follows that the subset of
regular4 proofs is complete. Since regular trees can be represented as finite
trees with back edges, SGKAT is indeed a proper cyclic proof system.

– We show that the proof search procedure used to establish completeness in-
duces a coNP decision procedure for deciding the language inclusion problem
for GKAT-expressions. This gives a (most probably non-optimal) upper bound
on the complexity of this decision procedure.

Due to space limitations all proofs are either omitted or sketched. Full proofs
can be found in the appendix of the extended version of this paper.
4 Recall that a labelled tree is regular if it has finitely many non-isomorphic subtrees.



4 J.M.W. Rooduijn et al.

2 Preliminaries

2.1 Syntax

The language of GKAT has two sorts, namely programs and a subset thereof
consisting of tests. It is built from a finite and non-empty set T of primitive tests
and a non-empty set Σ of primitive programs, where T and Σ are disjoint. For
the rest of this paper we fix such sets T and Σ. We reserve the letters t and p to
refer, respectively, to arbitrary primitive tests and primitive programs. The first
of the following grammars defines the tests, and the second the expressions.

b, c ::= 0 | 1 | t | b | b ∨ c | b · c e, f ::= b | p | e · f | e+b f | e(b),

where t ∈ T and p ∈ Σ. Intuitively, the operator +b stands for the if-then-else
construct, and the operator (−)(b) stands for the while loop. Note that the
tests are simply propositional formulas. It is convention to use · instead of ∧
for conjunction. As usual, we often omit · for syntactical convenience, e.g. by
writing pq instead of p · q.
Example 1. The idea of GKAT is to model imperative programs. For instance, the
expression (p+b q)

(a) represents the following imperative program:

while a do (if b then p else q)

Remark 1. As mentioned in the introduction, GKAT is a fragment of Kleene Al-
gebra with Tests, or KAT [11]. The syntax of KAT is the same as that of GKAT,
but with unrestricted union + instead of guarded union +b, and unrestricted
iteration ∗ instead of the while loop operator (b). The embedding ϕ of GKAT into
KAT acts on guarded union and guarded iteration as follows, and commutes with
all other operators: ϕ(e+b f) = b · ϕ(e) + b · ϕ(f), and ϕ(e(b)) = (b · ϕ(e))∗ · b.

2.2 Semantics

There are several kinds of semantics for GKAT. In [17], a language semantics, a
relational semantics, and a probabilistic semantics are given. In this paper we
are only concerned with the language semantics, which we shall now describe.

We denote by At the set of atoms of the free Boolean algebra generated
by T = {t1, . . . tn}. That is, At consists of all tests of the form c1 · · · cn, where
ci ∈ {ti, ti} for each 1 ≤ i ≤ n. Lowercase Greek letters (α, β, γ, . . .) will be
used to denote elements of At. A guarded string is an element of the regular
set At · (Σ · At)∗, that is, a string of the form α1p1α2p2 · · ·αnpnαn+1. We will
interpret expressions as languages (formally just sets) of guarded strings. The
sequential composition operator · is interpreted by the fusion product �, given
by L � K := {xαy | xα ∈ L and αy ∈ K}. For the interpretation of +b, we
define for every set of atoms B ⊆ At the following operation of guarded union on
languages: L+BK := (B �L)∪(B �K), where B is At\B. For the interpretation
of (b), we stipulate:

L0 := At Ln+1 := Ln � L LB :=
⋃
n≥0

(B � L)n �B



A cyclic proof system for Guarded Kleene Algebra with Tests 5

Finally, the semantics of GKAT is inductively defined as follows:

JbK := {α ∈ At : α ≤ b} JpK := {αpβ : α, β ∈ At} Je · fK := JeK � JfK

Je+b fK := JeK +JbK JfK Je(b)K := JeKJbK

Note that the interpretation of · between tests is the same whether they are
regarded as tests or as programs, i.e. JbK ∩ JcK = JbK � JcK.

Remark 2. While the semantics of expressions is explicitly defined, the semantics
of tests is derived implicitly through the free Boolean algebra generated by T . It
is standard in the GKAT literature to address the Boolean content in this manner.

Example 2. In a guarded string, atoms can be thought of as states of a machine,
and programs as executions. For instance, in case of the guarded string αpβ,
the machine starts in state α, then executes program p, and ends in state β.
Let us briefly check which guarded strings of, say, the form αpβqγ belong to the
interpretation J(p+b q)

(a)K of the program of Example 1. First, we must have
α ≤ a, for otherwise we would not enter the loop. Moreover, we have α ≤ b, for
otherwise q rather than p would be executed. Similarly, we find that β ≤ a, b.
Since the loop is exited after two iterations, we must have γ ≤ a. Hence, we find

αpβqγ ∈ J(p+b q)
(a)K⇔ α ≤ a, b and β ≤ a, b and γ ≤ a.

The following lemmas will be useful later on. The first lemma follows from the
fact that � is associative and At is its identity element.

Lemma 1. Ln+1 = L � Ln for every language L of guarded strings.

Lemma 2. Let p be a primitive program and let L and K be languages of guarded
strings. Then JpK � L = JpK �K implies L = K.

Remark 3. The fact that GKAT models deterministic programs is reflected in
the fact that interpretations of GKAT-expressions satisfy a certain determinacy
property . Namely, for every xαy and xαz in L, either y and z are both empty, or
both begin with the same primitive program. We refer to [17] for more details.

Remark 4. The language semantics of GKAT is the same as that of KAT (see [11]),
in the sense that JeK = Jϕ(e)K, where ϕ is the embedding from Remark 1, the
semantic brackets on the right-hand side denote the standard interpretation in
KAT, and e is any GKAT-expression.

2.3 Foundational results

In this subsection we briefly summarise some of the foundational results pre-
sented in [17]. Reading this subsection is not strictly necessary for understanding
the rest of this paper, but it may provide some helpful context and intuition.



6 J.M.W. Rooduijn et al.

Automaton model Automata for GKAT are given as coalgebras for the functor
G : X 7→ (2 +Σ ×X)At. That is, a state s ∈ X of a G-coalgebra, when given an
atom α ∈ At, does one of three things: halt and accept, halt and reject, or execute
a program p ∈ Σ and move to a new state in X. A G-automaton is simply a G-
coalgebra with a designated initial state. In [17], it is shown that the languages of
guarded strings accepted by some G-automaton, possibly with infinitely many
states, are precisely the languages which satisfy the determinacy property of
Remark 3. However, there are G-automata, even finite ones, whose language is
not denoted by any GKAT-program. To remedy this situation, the authors of [17]
introduce the notion of well-nestedness of G-automata, the definition of which
falls outside the scope of this paper. They show for any GKAT-expression e how to
construct a (finite) well-nested G-automaton Ae such that the language accepted
by Ae is precisely JeK. Conversely, they describe for any given well-nested G-
automaton A a GKAT-expression eA such that the language of A is precisely JeAK.

Decision procedure One of the main advantages of GKAT over KAT lies in the
efficiency of deciding program equivalence, i.e. whether JeK = JfK holds for two
given expressions e and f . Roughly, the decision procedure for GKAT-expressions
presented in [17] works by first converting e and f into G-automata Ae and Af .
By construction the number of states of Ae and Af will be linear in, respectively,
the sizes of the expressions e and f . After applying a certain normalisation pro-
cedure on Ae and Af , a general algorithm for checking bisimilarity of coalgebras
can be used to check whether their initial states are bisimilar. Since G is a
so-called polynomial functor, and the set of deterministic languages carries a G-
coalgebra structure under which it is the final coalgebra for normal coalgebras,
general coalgebraic theory entails that bisimilarity and language equivalence co-
incide on normal coalgebras. By virtue of the relatively small size of automata
for GKAT-expressions, the decision procedure runs in time O(n ·α(n)), when |At|
is constant, n is the sum of the sizes of the expressions e and f , and α is the in-
verse of the Ackermann function. Recall that this is a computable function which
grows so fast that it is not definable by primitive recursion. Hence, its inverse is
an extremely slow-growing function. One therefore says that this procedure runs
in nearly linear time. This is much more efficient than deciding KAT-equivalence,
which is PSPACE-complete, even when the number of atoms is constant.

Axiomatisation In [17] an axiomatisation for GKAT-equivalence was put for-
ward. While it is there presented from a more algebraic perspective, we will
present it explicitly as a proof system. For this will use the following definition.

Definition 1. A substitution is a function σ : Σ → GKAT, assigning a GKAT-
expression to each primitive program.

Given a substitution σ, we let σ̂ : GKAT → GKAT be the unique map which
extends σ such that σ̂ commutes with the guarded union, concatenation and
while-loop operators, and such that σ(b) = b for every test b. The system is
based on equational logic, of which the axioms and rules are given in Figure 1.



A cyclic proof system for Guarded Kleene Algebra with Tests 7

For background we refer the reader to [4]. The system moreover contains axioms
from Figure 2 (cf. [17, Figure 1]).

e ≡ e
e ≡ f
f ≡ e

e ≡ f f ≡ g
e ≡ g

e ≡ f
σ̂(e) ≡ σ̂(g)

e1 ≡ f1 e2 ≡ f2
e1 +b e2 ≡ f1 +b f2

e1 ≡ f1 e2 ≡ f2
e1 · e2 ≡ f1 · f2

e ≡ f
e(b) ≡ f (b)

Fig. 1: The axioms and rules of equational logic in the signature of GKAT.

U1. e+b e ≡ e S1. (e · f) · g ≡ e · (f · g)
U2. e+b f ≡ f +b e S2. 0 · e ≡ 0

U3. (e+b f) +c g ≡ e+bc (f +c g) S3. e · 0 ≡ 0

U4. e+b f ≡ be+b f S4. 1 · e ≡ e
U5. eg +b fg ≡ (e+b f) · g S5. e · 1 ≡ e
W1. e(b) ≡ ee(b) +b 1 W2. (e+c 1)

(b) ≡ (ce)(b)

Fig. 2: The GKAT axioms from [17, Fig. 1].

Definition 2. The system EGKAT consists of the following axioms and rules.

1. All axioms and rules of equational logic, as given in Figure 1.
2. For all tests b, c, every b ≡ c derivable from the axioms of Boolean algebra.
3. All axioms from [17, Fig. 1], i.e. all axioms in Figure 2 above.
4. A fixed point rule with a side condition (†):

g ≡ eg +b f
(†)

g ≡ e(b)f

We will not go into the technical details of the side condition (†) in the above
definition. In short, it is a syntactic restriction on the loop body e, called strict
productivity, which is analogous to Salomaa’s empty word property. The sound-
ness of the above axiomatisation, i.e. that EGKAT ` e ≡ f implies JeK = JfK is
not hard to show by induction on the length of derivations. The completeness
is an open question, although completeness has been shown for an extension by
a stronger fixed point axiom (see [17, Section 6]). Note, however, that even if
the above system were complete, it would still suffer from the same drawback as
Salomaa’s system: it is not algebraic, because the strict productivity condition
in the fixed point rule is not closed under substitution.



8 J.M.W. Rooduijn et al.

3 The non-well-founded proof system SGKAT∞

In this section we commence our proof-theoretical study of GKAT. We will present
a cyclic sequent system for GKAT, inspired by the cyclic sequent system for Kleene
Algebra presented in [7]. In passing, we will compare our system to the one in [7].

Definition 3 (Sequent). A sequent is a triple (Γ,A,∆), written Γ ⇒A ∆,
where A ⊆ At and Γ and ∆ are (possibly empty) lists of GKAT-expressions.

The list on the left-hand side of a sequent is called its antecedent , and the list
on the right-hand side its succedent . In general we refer to lists of expressions as
cedents. The symbol ε refers to the empty cedent.

Definition 4 (Validity). We say that a sequent e1, . . . , en ⇒A f1, . . . , fm is
valid whenever A � Je1 · · · enK ⊆ Jf1 · · · fnK.

We often abuse notation writing JΓ K instead of Je1 · · · enK, where Γ = e1, . . . , en.

Left logical rules

Γ ⇒A�b ∆
b-l

b, Γ ⇒A ∆

e, Γ ⇒A�b ∆ f, Γ ⇒A�b ∆
+b-l

e+b f, Γ ⇒A ∆

e, g, Γ ⇒A ∆
·-l

e · g, Γ ⇒A ∆

e, e(b), Γ ⇒A�b ∆ Γ ⇒A�b ∆
(b)-l

e(b), Γ ⇒A ∆

Right logical rules

Γ ⇒A ∆
(†) b-r

Γ ⇒A b,∆

Γ ⇒A�b e,∆ Γ ⇒A�b f,∆
+b-r

Γ ⇒A e+b f,∆

Γ ⇒A e, f,∆
·-r

Γ ⇒A e · f,∆
Γ ⇒A�b e, e

(b), ∆ Γ ⇒A�b ∆
(b)-r

Γ ⇒A e(b), ∆

Axioms and modal rules

idε⇒A ε ⊥
Γ ⇒∅ ∆

Γ ⇒At ∆
k

p, Γ ⇒A p,∆

Γ ⇒At 0
k0

p, Γ ⇒A ∆

Fig. 3: The rules of SGKAT. The side condition (†) requires that A � b = A.

Example 3. An example of a valid sequent is given by (cp)(b) ⇒At (p(cp+b 1))
(b).

The antecedent denotes guarded strings α1pα2p · · ·αnpαn+1 where αi ≤ b, c for
each 1 ≤ i ≤ n, and αn+1 ≤ b. The succedent denotes such strings where αi ≤ c
is only required for those 1 ≤ i ≤ n where i is even.



A cyclic proof system for Guarded Kleene Algebra with Tests 9

Remark 5. Like the sequents for Kleene Algebra in [7], our sequents express
language inclusion, rather than language equivalence. For Kleene Algebra this
difference is insignificant, as the two notions are interdefinable using unrestricted
union: JeK ⊆ JfK⇔ Je+ fK = JfK. For GKAT, however, it is not clear how to define
language inclusion in terms of language equivalence. As a result, an advantage
of axiomatising language inclusion rather than language equivalence, is that the
while-operator can be axiomatised as a least fixed point, eliminating the need
for a strict productivity requirement as is present in the axiomatisation in [17].

Given a set of atoms A and a test b, we write A � b for A�JbK, i.e. the set of atoms
{α ∈ A : α ≤ b}. The rules of the sequent system SGKAT are given in Figure
3. Importantly, the rules are always applied to the leftmost expression in a list
(whether in the antecedent or in the succedent). Also note that the system has
no propositional rules for tests, since the propositional reasoning is tucked away
in the set of atoms labelling a sequent. This simplifies the system, and aligns
with the usual treatment of the (finitely many) tests in the GKAT literature.

Remark 6. Following [7], we call k a ‘modal’ rule. The reason is simply that it
looks like the rule k (sometimes called K or �) in the standard sequent calculus
for basic modal logic. Our system also features a second modal rule, called k0.
Like k, this rule adds a primitive program p to the antecedent of the sequent.
Since the premiss of k0 entails that JΓ K = J0K, the antecedent of its conclusion
will denote the empty language, and is therefore included in any antecedent ∆.

Remark 7. Note that the rules of SGKAT are highly symmetric. Indeed, the
only rules that behave differently on the left than on the right, are the b-rules
and k0. For the b-rules, note that b-l changes the set of atoms, while b-r uses
a side condition. The asymmetry of k0 is clear: the succedent of the premiss
has a 0, whereas the antecedent does not. A third and final asymmetry will be
introduced in Definition 5, where a soundness condition is imposed on infinite
branches which is sensitive to (b)-l but not to (b)-r.

Remark 8. In [16] a variant of GKAT is studied which omits the axiom (S3) in Fig-
ure 2. This axiom, also called the early termination axiom, equates all programs
which eventually fail. A denotational model of this variant of GKAT is given in
the form of certain kinds of trees. We conjecture that our proof system without
the rule k0 is sound and complete with respect to this denotational model.

An SGKAT∞-derivation is a (possibly infinite) tree generated by the rules of
SGKAT. Such a derivation is said to be closed if every leaf is an axiom.

Definition 5 (Proof). A closed SGKAT∞-derivation is said to be an SGKAT∞-
proof if every infinite branch is fair for (b)-l, i.e. contains infinitely many appli-
cations of the rule (b)-l.

We write SGKAT `∞ Γ ⇒A ∆ if there is an SGKAT∞-proof of Γ ⇒A ∆.

Example 4. Let ∆1 := (p(cp+b 1))
(b) and ∆2 := cp+b 1, ∆1. The following proof

Π1 is an example of an SGKAT∞-proof of the sequent of Example 3. We use (•)



10 J.M.W. Rooduijn et al.

to indicate that the proof repeats itself at this leaf and, for the sake of readability,
omit branches that can be immediately closed by an application of ⊥.

(cp)(b) ⇒At ∆1 (•)
k
p, (cp)(b) ⇒At�bc p,∆1

c-r
p, (cp)(b) ⇒At�bc c, p,∆1·-r
p, (cp)(b) ⇒At�bc cp,∆1

+b-r
p, (cp)(b) ⇒At�bc ∆2

c-l
c, p, (cp)(b) ⇒At�b ∆2

·-l
cp, (cp)(b) ⇒At�b ∆2

idε⇒At�b ε
(b)-r

ε⇒At�b ∆1

1-r
ε⇒At�b 1,∆1

+b-r
ε⇒At�b ∆2

(b)-l
(cp)(b) ⇒At ∆2

k
p, (cp)(b) ⇒At�bc p, (cp+b 1),∆1·-r
p, (cp)(b) ⇒At�bc p(cp+b 1),∆1

(b)-r
p, (cp)(b) ⇒At�bc ∆1

c-l
c, p, (cp)(b) ⇒At�b ∆1

·-l
cp, (cp)(b) ⇒At�b ∆1

idε⇒At�b ε
(b)-r

ε⇒At�b ∆1
(b)-l

(cp)(b) ⇒At ∆1 (•)

Fig. 4: The SGKAT-proof Π1.

To illustrate the omission of branches that can be immediately closed by an
application of ⊥, let us write out the two applications of +b-r in Π1.

ε⇒At�bc cp,∆1
⊥

ε⇒∅ 1, ∆1
+b-r

ε⇒At�bc ∆2

⊥
ε⇒∅ cp,∆1 ε⇒At�b 1, ∆1

+b-r
ε⇒At�b ∆2

It can also be helpful to think of the set of atoms as selecting one of the premisses.

We close this section with a useful definition and a lemma.

Definition 6 (Exposure). A list Γ of expressions is said to be exposed if it
is either empty or begins with a primitive program.

Recall that the sets of primitive tests and primitive programs are disjoint. Hence
an exposed list Γ cannot start with a test.

Lemma 3. Let Γ and ∆ be exposed lists of expressions. Then:

(i) αx ∈ JΓ K⇔ βx ∈ JΓ K for all α, β ∈ At

(ii) Γ ⇒At ∆ is valid if and only if Γ ⇒A ∆ is valid for some A 6= ∅.



A cyclic proof system for Guarded Kleene Algebra with Tests 11

4 Soundness

In this section we prove that SGKAT∞ is sound. We will first prove that well-
founded (that is, finite) SGKAT∞-proofs are sound. For the sake of readability we
will write JΓ K to abbreviate Jγ1 · · · γnK for some list Γ of expressions γ1, . . . , γn.
The following lemma is useful for the soundness proof.

Lemma 4. For any set A of atoms, test b, and cedent Θ, we have:

1. Je+b f,ΘK = (JbK � Je,ΘK) ∪ (JbK � Jf,ΘK);
2. Je(b), ΘK = (JbK � Je, e(b), ΘK) ∪ (JbK � JΘK).

We will moreover use the following property of the system SGKAT, which follows
from direct inspection of the rules and the fact that sequents are lists.

Lemma 5. Let Γ ⇒A ∆ be a sequent, and let r be any rule of SGKAT. Then
there is at most one rule instance of r with conclusion Γ ⇒A ∆.

We prioritise the rules of SGKAT in order of occurrence in Figure 3, reading left-
to-right, top-to-bottom. Hence, each left logical rule is of higher priority than
each right logical rule, which is of higher priority than each axiom or modal rule.

Definition 7. A rule instance of r with conclusion Γ ⇒A ∆ is said to have
priority if any other rule instance, say of r′, with conclusion Γ ⇒A ∆ is of lower
priority (that is, the rule r′ appears after r in Figure 3).

Recall that a rule is sound if the validity of all its premisses implies the validity
of its conclusion. Conversely, a rule is invertible if the validity of its conclusion
implies the validity of all of its premisses.

The above notion of priority will be used in the completeness proof of Section
6 to guide a proof search procedure. Conveniently, the following proposition
entails that every rule instance which has priority is invertible, allowing this
proof search procedure to be deterministic.

Proposition 1. Every rule of SGKAT is sound. Moreover, every rule is invert-
ible except for k and k0, which are invertible whenever they have priority.

Proposition 1 entails that all finite proofs are sound. We will now extend this
result to non-well-founded proofs, closely following the treatment in [7]. We first
recursively define a syntactic abbreviation: [e(b)]0 := b and [e(b)]n+1 := be[e(b)]n.

Lemma 6. For every n ∈ N: if we have SGKAT `∞ e(b), Γ ⇒A ∆, then we also
have SGKAT `∞ [e(b)]n, Γ ⇒A ∆.

We let the while-height wh(e) be the maximal nesting of while loops in a
given expression e. Formally,

– wh(b) = wh(p) = 0; − wh(e · f) = wh(e+b f) = max{wh(e),wh(f)};
– wh(e(b)) = wh(e) + 1.



12 J.M.W. Rooduijn et al.

Given a list Γ , the weighted while-height wwh(Γ ) of Γ is defined to be the
multiset [wh(e) : e ∈ Γ ]. We order such multisets using the Dershowitz–Manna
ordering (for linear orders): we say that N < M if and only if N 6= M and for
the greatest n such that N(n) 6=M(n), it holds that N(n) < M(n).

Note that in any SGKAT-derivation the weighted while-height of the an-
tecedent does not increase when reading bottom-up. Moreover, we have:

Lemma 7. wwh([e(b)]n, Γ ) < wwh(e(b), Γ ) for every n ∈ N.

Finally, we can prove the soundness theorem using induction on wwh(Γ ).

Theorem 1 (Soundness). If SGKAT `∞ Γ ⇒A ∆, then A � JΓ K ⊆ J∆K.

5 Finite-stateness

Before we show that SGKAT∞ is not only sound, but also complete, we will first
show that every SGKAT∞-proof is finite-state, i.e. that it contains at most finitely
many distinct sequents. Our treatment differs from that in [7] in two major ways.
First, we formalise the notion of (sub)occurrence using the standard notion of a
syntax tree. Secondly, we obtain a polynomial bound on the number of distinct
sequents occurring in a proof, rather than an exponential one.

Definition 8. The syntax tree (Te, le) of an expression e is a well-founded,
labelled and ordered tree, defined by the following induction on e.

– If e is a test or primitive program, its syntax tree only has a root node ε,
with label le(ε) := e.

– If e = f1 ◦ f2 where ◦ = · or ◦ = +b, its syntax tree again has a root node ε
with label le(ε) = e, and with two outgoing edges. The first edge connects ε
to (Tf1 , lf1), the second edge connects it to (Tf2 , lf2).

– If e = f (b), its syntax tree again has a root node ε with label le(ε) = e, but
now with just one outgoing edge. This edge connects ε to (Tf , lf ).

Definition 9. An e-cedent is a list of nodes in the syntax tree of e. The reali-
sation of an e-cedent u1, . . . , un is the cedent le(u1), . . . , le(un).

Definition 10. Let u be a node in the syntax tree of e. We define the e-cedent
tail(u) inductively as follows:

– For the root ε of Te, we set tail(ε) := ε.
– For every node u of Te, we define tail on its children by a case distinction

on the main connective mc of u:
• if mc = ·, let u1 and u2 be, respectively, the first and second child of u.
We set tail(u1) := u2, tail(u) and tail(u2) := tail(u).

• if mc = +b, let u1 and u2 again be its first and second child. We set
tail(u1) := tail(u2) := tail(u).

• if mc = (b), let v be the single child of u. We set tail(v) := u, tail(u).



A cyclic proof system for Guarded Kleene Algebra with Tests 13

An e-cedent is called tail-generated if it is empty or of the form u, tail(u) for
some node u in the syntax tree of e.

Example 5. Below is the syntax tree of (p(p+b1))
(b) and a calculation of tail(u3).

u1

u2

u3 u4

u5 u6

l(u1) = (p(p+b 1))
(b)

l(u2) = p(p+b 1)

l(u3) = p

l(u4) = p+b 1

l(u5) = p

l(u6) = 1

tail(u3) = u4, tail(u2)

= u4, u1, tail(u1)

= u4, u1

The following lemma embodies the key idea for establishing finite-stateness.

Lemma 8. Let π be an SGKAT∞-derivation of a sequent of the form e ⇒A f .
Then every antecedent in π is the realisation of a tail-generated e-sequent, and
every succedent is the realisation of a tail-generated f -sequent or 0-sequent.

The number of realisations of tail-generated e-sequents is clearly linear in the
size of the syntax tree of e, for every expression e. Hence we obtain:

Corollary 1. The number of distinct sequents in an SGKAT∞-proof of e⇒A f
is polynomial in |Te|+ |Tf |.

Note that the above lemma and corollary can easily be generalised to arbitrary
(rather than singleton) cedents, by rewriting each cedent e1, . . . , en as e1 · · · en.
The following corollary follows by a standard argument in the literature.

Corollary 2. If Γ ⇒A ∆ has an SGKAT∞-proof, then it has a regular one.

We define a cyclic SGKAT-proof as a regular SGKAT∞-proof. Cyclic proofs can
be equivalently described using finite trees with back edges, but this is not needed
for the purposes of the present paper.

6 Completeness and complexity

In this section we prove the completeness of SGKAT∞. Our argument uses a proof
search procedure, which we will show to induce a coNP decision procedure. The
material in this section is again inspired by [7], but requires several modifications
to treat the tests present in GKAT. We first verify:

Lemma 9. Any valid sequent is the conclusion of some rule application.

Note that in the following lemma A and B may be distinct.



14 J.M.W. Rooduijn et al.

Lemma 10. Let π be a derivation using only right logical rules and containing
a branch of the form:

Γ ⇒B e(b), ∆

... (b)-r
Γ ⇒A e(b), ∆

(*)

such that (1) Γ ⇒A e(b), ∆ is valid, and (2) every succedent on the branch has
e(b), ∆ as a final segment. Then Γ ⇒B 0 is valid.

Lemma 11. Let (Γn ⇒An
∆n)n∈ω be an infinite branch of some SGKAT∞-

derivation on which the rule (b)-r is applied infinitely often. Then there are n,m
with n < m such that the following hold:
(i) the sequents Γn ⇒An

∆n and Γm ⇒Am
∆m are equal;

(ii) the sequent Γn ⇒An ∆n is the conclusion of (b)-r in π;
(iii) for every i ∈ [n,m) it holds that ∆n is a final segment of ∆i.

With the above lemmas in place, we are ready for the completeness proof.
Theorem 2 (Completeness). Every valid sequent is provable in SGKAT∞.

Proof (sketch). Given a valid sequent, we apply the following bottom-up proof
search procedure. At each step we apply the rule that has priority. By Lemma
9 such a rule exists, and by Lemma 5 it is unique. Moreover, by Lemma 1,
the rule application is invertible, whence every sequent encountered throughout
our procedure is valid. There is one exception: if at some point Lemma 10 is
applicable, and k0 is as well, then we apply k0. Note that k0 does not have
priority at this point, because (b)-r is applicable as well. However, by Lemma 10
the premiss of this application of k0 is nonetheless valid. Now suppose that our
procedure creates an infinite branch. We claim that this branch must be fair for
(b)-l. Suppose, towards a contradiction, that it is not. Since every rule, except
for the axioms and the right logical rules, shortens the antecedent, there is some
point on the branch at which only right logical rules are applied. From Lemma
11 it follows that Lemma 10 is at some point applicable, at which point we apply
k0. But after that the succedent is 0, contradicting the assumption that infinitely
many right logical rules are applied.

By Corollary 2 we obtain that the subset of cyclic SGKAT-proofs is also complete.
Corollary 3. Every valid sequent has a regular SGKAT∞-proof.

Proposition 2. The proof search procedure of Theorem 2 induces a coNP deci-
sion procedure for the language inclusion problem for GKAT-expressions.

Proof (sketch). The idea is that if some branch of the proof search fails, then
there is a failing branch which is polynomial in the size of the endsequent. Note
first that any failing branch must be finite, for every infinite branch constructed
by the proof search is fair for (b)-l. Given such a branch, we delete all segments
between identical sequents, except possibly for the segment that together with
Lemma 10 justifies an application of k0 that does not have priority (note there
is at most one such application of k0). The resulting branch still fails but, by
Corollary 1, it is also of length polynomial in the size of the endsequent.



A cyclic proof system for Guarded Kleene Algebra with Tests 15

7 Conclusion and future work

In this paper we have presented a non-well-founded proof system SGKAT∞ for
GKAT. We have shown that the system is sound and complete with respect to
the language model. In fact, the fragment of regular proofs is already complete,
which means one can view SGKAT as a cyclic proof system. Our system is similar
to the system for Kleene Algebra in [7], but the deterministic nature of GKAT
allows us to use ordinary sequents rather than hypersequents. To deal with the
tests of GKAT every sequent is annotated by a set of atoms. Like in [7], our
completeness argument makes use of a proof search procedure. Here again the
relative simplicity of GKAT pays off: the proof search procedure induces a coNP
decision procedure, whereas that of Kleene Algebra is in PSPACE.

Perhaps the most interesting question for future work is whether our system
could be used to prove the completeness of some (ordered)-algebraic axiomati-
sation of GKAT. We envision using the original GKAT axioms (see Figure 2 above),
but basing it on inequational logic rather than equational logic. This would allow
one to use a least fixed point rule of the form

eg +b f ≤ g
e(b)f ≤ g

eliminating the need for a Salomaa-style side condition. We hope to be able
to prove the completeness of such an inequational system by translating cyclic
SGKAT-proofs into well-founded proofs in the inequational system. This is in-
spired by the paper [6], where the same strategy is used to give an alternative
proof of the left-handed completeness of Kleene Algebra.

Another relevant question is the exact complexity of the language inclusion
problem for GKAT-expressions. We have obtained an upper-bound of coNP, but
this is unlikely to be optimal. This can probably be improved to at least P, by
regarding proofs as graphs (more specifically as parity games), rather than trees.
Another, related, approach would be to turn GKAT-expressions into automata and
to try to construct a simulation between them (cf. the decision procedure in [17]).

Finally, it would be interesting to verify the conjecture in Remark 8 above.

Acknowledgments. Jan Rooduijn thanks Anupam Das, Tobias Kappé, Johannes
Marti and Yde Venema for insightful discussions on the topic of this paper. Alexandra
Silva further wants to acknowledge Sonia Marin, who some years ago proposed a similar
master project at UCL. Lastly, Jan Rooduijn is grateful for the inspiring four-week
research visit at the Computer Science department of Cornell in the summer of 2022.



16 J.M.W. Rooduijn et al.

References

1. Afshari, B., Enqvist, S., Leigh, G.E.: Cyclic proofs for the first-order µ-calculus.
Logic Journal of the IGPL (2022)

2. Afshari, B., Wehr, D.: Abstract cyclic proofs. In: 28th International Workshop
on Logic, Language, Information, and Computation, WoLLIC. Lecture Notes in
Computer Science, vol. 13468, pp. 309–325. Springer (2022)

3. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
14th International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods, TABLEAUX. Lecture Notes in Computer Science, vol. 3702,
pp. 78–92. Springer (2005)

4. Burris, S., Sankappanavar, H.P.: A course in universal algebra, Graduate Texts in
Mathematics, vol. 78. Springer (1981)

5. Conway, J.H.: Regular algebra and finite machines. Chapman and Hall (1971)
6. Das, A., Doumane, A., Pous, D.: Left-handed completeness for Kleene algebra,

via cyclic proofs. In: 22nd International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, LPAR. EPiC Series in Computing, vol. 57,
pp. 271–289 (2018)

7. Das, A., Pous, D.: A cut-free cyclic proof system for Kleene algebra. In: 26th
International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, TABLEAUX. Lecture Notes in Computer Science, vol. 10501,
pp. 261–277. Springer (2017)

8. Dekker, M., Kloibhofer, J., Marti, J., Venema, Y.: Proof systems for the modal
µ-calculus obtained by determinizing automata. In: 32nd International Confer-
ence on Automated Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX. pp. 242–259. Springer (2023)

9. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Au-
tomata Studies, pp. 3–41. No. 34 in Annals of Mathematics Studies, Princeton
University Press (1956)

10. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

11. Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Lan-
guages and Systems 19(3), 427–443 (1997)

12. Kozen, D.: Nonlocal flow of control and Kleene algebra with tests. In: 23rd Annual
Symposium on Logic in Computer Science, LICS. pp. 105–117. IEEE (2008)

13. Kozen, D., Tseng, W.D.: The Böhm-Jacopini theorem is false, propositionally. In:
9th International Conference on Mathematics of Program Construction, MPC.
Lecture Notes in Computer Science, vol. 5133, pp. 177–192. Springer (2008)

14. Kuperberg, D., Pinault, L., Pous, D.: Cyclic proofs, system T, and the power of
contraction. 48th Annual Symposium on Principles of Programming Languages,
POPL pp. 1–28 (2021)

15. Salomaa, A.: Two complete axiom systems for the algebra of regular events. Journal
of the ACM 13(1), 158–169 (1966)

16. Schmid, T., Kappé, T., Kozen, D., Silva, A.: Guarded Kleene algebra with tests:
Coequations, coinduction, and completeness. In: 48th International Colloquium
on Automata, Languages, and Programming, ICALP. LIPIcs, vol. 198, pp. 142:1–
142:14. Schloss Dagstuhl (2021)

17. Smolka, S., Foster, N., Hsu, J., Kappé, T., Kozen, D., Silva, A.: Guarded Kleene
algebra with tests: verification of uninterpreted programs in nearly linear time.
47th Annual Symposium on Principles of Programming Languages, POPL pp.
61:1–61:28 (2020)



A cyclic proof system for Guarded Kleene Algebra with Tests 17

A Omitted proofs

A.1 ... of Section 1

A.2 ... of Section 2

Lemma 1. Ln+1 = L � Ln for every language L of guarded strings.

Proof. Since At is the identity element for the fusion operator, we have

Ln+1 = At � L � · · · � L︸ ︷︷ ︸
n + 1 times

= L � At � L � · · · � L︸ ︷︷ ︸
n times

= L � Ln,

as required.

Lemma 2. Let p be a primitive program and let L and K be languages of guarded
strings. Then JpK � L = JpK �K implies L = K.

Proof. Since JpK = {αpβ : α, β ∈ At}, we have

γy ∈ L⇔ γpγy ∈ JpK � L⇔ γpγy ∈ JpK �K ⇔ γy ∈ K,

as required.

A.3 ... of Section 3

Lemma 3. Let Γ and ∆ be exposed lists of expressions. Then:

(i) αx ∈ JΓ K⇔ βx ∈ JΓ K for all α, β ∈ At
(ii) Γ ⇒At ∆ is valid if and only if Γ ⇒A ∆ is valid for some A 6= ∅.

Proof. For item (i), we make a case distinction on whether Γ = ε or Γ = p,Θ for
some list Θ. If Γ = ε, the result follows immediately from the fact that JεK = At.
If Γ = p,Θ, we have

JΓ K = JpK � JΘK = {γpδy : γ ∈ At, δy ∈ JΘK},

which also suffices.
For item (ii), the only non-trivial implication is the one from right to left. So

suppose Γ ⇒A ∆ for some A 6= ∅. Let α ∈ At and let β ∈ A be arbitrary. We
find:

αx ∈ JΓ K⇒ βx ∈ JΓ K (item (i))
⇒ βx ∈ J∆K (β ∈ A, hypothesis)
⇒ αx ∈ J∆K, (item (i))

as required.



18 J.M.W. Rooduijn et al.

A.4 ... of Section 4

Lemma 4. Let A be a set of atoms, let b be a test, and let Θ be a list of expres-
sions. We have:

1. Je+b f,ΘK = (JbK � Je,ΘK) ∪ (JbK � Jf,ΘK);
2. Je(b), ΘK = (JbK � Je, e(b), ΘK) ∪ (JbK � JΘK).

Proof. Both items are shown by simply unfolding the definitions. We will use
the fact � distributes over ∪. Note that ∪ is not the same as guarded union, over
which � is merely right-distributive.

For the first item, we calculate

Je+b f,ΘK = Je+b fK � JΘK (sequent interpretation)

= ((JbK � JeK) ∪ (JbK � JfK)) � JΘK (interpretation of +b)

= (JbK � JeK � JΘK) ∪ (JbK � JfK � JΘK) (� distributes over ∪)

= (JbK � JeK � JΘK) ∪ (JbK � JfK � JΘK) (JbK = JbK)

= (JbK � Je,ΘK) ∪ (JbK � Jf,ΘK). (sequent interpretation)

For the second item, we have

Je(b), ΘK = Je(b)K � JΘK (sequent int.)

=
⋃
n≥0

(JbK � JeK)n � JbK � JΘK (int. −(b))

= (
⋃
n≥1

(JbK � JeK)n ∪ At) � JbK � JΘK (split
⋃

)

= (
⋃
n≥1

(JbK � JeK)n � JbK � JΘK) ∪ (At � JbK � JΘK) (� dist. ∪)

= (
⋃
n≥1

(JbK � JeK)n � JbK � JΘK) ∪ (JbK � JΘK) (JbK = JbK)

= (
⋃
n≥0

JbK � JeK � (JbK � JeK)n � JbK � JΘK) ∪ (JbK � JΘK) (Lem. 1)

= (JbK � JeK �
⋃
n≥0

(JbK � JeK)n � JbK � JΘK) ∪ (JbK � JΘK) (� dist.
⋃

)

= (JbK � JeK � Je(b)K � JΘK) ∪ (JbK � JΘK) (int. −(b))

= (JbK � Je, e(b), ΘK) ∪ (JbK � JΘK), (sequent int.)

as required.

Proposition 2. Every rule of SGKAT is sound. Moreover, every rule is invert-
ible except for k and k0, which are invertible whenever they have priority.

Proof. We will cover the rules of SGKAT one-by-one.



A cyclic proof system for Guarded Kleene Algebra with Tests 19

(b-l) This is immediate by Lemma 4.1.
(b-r) We have:

A � JΓ K ⊆ Jb,∆K⇔ A � JΓ K ⊆ JbK � J∆K (sequent int.)
⇔ A � b � JΓ K ⊆ JbK � J∆K (by (†))
⇔ A � b � JΓ K ⊆ J∆K (A � b ⊆ JbK)
⇔ A � JΓ K ⊆ J∆K (by (†))

(·-l) Immediate, since A � Je · f, Γ K = A � Je, f, Γ K.
(·-r) Likewise, but by Je · f,∆K = Je, f,∆K.

(+b-l) This follows directly from the fact that

A � Je+b f, Γ K = A � Je+b fK � JΓ K (sequent int.)

= A � ((JbK � Je, Γ K) ∪ (JbK � Jf, Γ K)) (Lem. 4.2)

= (A � JbK � Je, Γ K) ∪ (A � JbK � Jf, Γ K) (distrib.)

= (A � b � Je, Γ K) ∪ (A � b � Jf, Γ K) (Lem. 4.1)

(+b-r) We find

A � JΓ K ⊆ Je+b fK � J∆K

⇔ A � JΓ K ⊆ (JbK � Je,∆K) ∪ (JbK � Jf,∆K)

⇔ A � b � JΓ K ⊆ Je,∆K or A � b ⊆ Jf,∆K,

where the first equivalence holds due to Lemma 4.2, and the second due
to A � JΓ K = (JbK �A � JΓ K) ∪ (JbK �A � JΓ K) and Lemma 4.1.

((b)-l) This follows directly from the fact that

A � Je(b), Γ K = A � Je(b)K � JΓ K (sequent int.)

= A � ((JbK � Je, e(b), Γ K) ∪ (JbK � Jf, Γ K)) (Lem. 4.3)

= (A � JbK � Je, e(b), Γ K) ∪ (A � JbK � Jf, Γ K) (distrib.)

= (A � b � Je, e(b), Γ K) ∪ (A � b � Jf, Γ K) (Lem. 4.1)

((b)-r) We find

A � JΓ K ⊆ Je(b), ∆K

⇔ A � JΓ K ⊆ (JbK � Je, e(b), ∆K) ∪ (JbK � J∆K)

⇔ A � b � JΓ K ⊆ JbK � Je, e(b), ∆K and A � b ⊆ JbK � J∆K,

where the first equivalence holds due to Lemma 4.3, and the second due
to A � JΓ K = (JbK �A � JΓ K) ∪ (JbK �A � JΓ K) and Lemma 4.1.

(id) This follows from A � J1K = A � At = A ⊆ At = J1K.
(⊥) We have ∅ � JΓ K = ∅ ⊆ J∆K.



20 J.M.W. Rooduijn et al.

(k) Suppose first that some application of k does not have priority. The
only rule of higher priority than k which can have a conclusion of the
form p, Γ ⇒A p,∆ is ⊥, whence we must have A = ∅. As shown in the
previous case, this conclusion must be valid. Hence under this restriction
the rule application is vacuously sound. It is, however, not invertible, as
the following rule instance demonstrates

1⇒At 0
k
p, 1⇒∅ p, 0

Next, suppose that some application of k does have priority. This means
that the set A of atoms in the conclusion p, Γ ⇒A p,∆ is not empty. We
will show that under this restriction the rule is both sound and invertible.
Let α ∈ A. We have

A � Jp, Γ K ⊆ Jp,∆K⇔ A � JpK � JΓ K ⊆ JpK � J∆K (seq. int.)
⇔ α � JpK � JΓ K ⊆ JpK � J∆K (α ∈ A, Lem. 3)
⇔ JpK � JΓ K ⊆ JpK � J∆K (Lem. 3)
⇔ JΓ K ⊆ J∆K, (Lem. 2)

as required.
(k0) For the final rule k0, we will first show the soundness of all instances,

and then the invertibility of those instances which have priority. For
soundness, suppose that the premiss is valid. Since

JΓ K = At � JΓ K ⊆ J0K = ∅,

it follows that JΓ K = ∅. Hence

A � Jp, Γ K = A � JpK � JΓ K = A � JpK � ∅ = ∅ ⊆ J∆K,

as required.
For invertibility, suppose that some instance of k0 has priority. Then
the conclusion p, Γ ⇒A ∆ cannot be the conclusion of any other rule
application.
Suppose that p, Γ ⇒A ∆ is valid. We wish to show that Γ ⇒At 0 is valid,
or, in other words, that JΓ K = ∅.
First note that, as in the previous case, from the assumption that our
instance of k0 has priority, it follows that A 6= ∅.
We now make a case distinction on the shape of ∆. Suppose first that
∆ = ε. Then

A � Jp, Γ K ⊆ J∆K = JεK = At.

As A � Jp, Γ K = {αpβx : α ∈ A and βx ∈ JΓ K}, we must have JΓ K = ∅.
Next, suppose that ∆ has a leftmost expression e. By the assumption
that the rule instance has priority, we know that e is not of the form
e0 ·e1, e0+b e1, or e(b), for otherwise a right logical rule could be applied.
Hence, the expression e must either be a test or a primitive program.



A cyclic proof system for Guarded Kleene Algebra with Tests 21

If e is a test, say b, we know that A � b 6= A, for otherwise b-r could
be applied. Recall that it suffices to show that JΓ K = ∅. So suppose,
towards a contradiction, that there is some βx ∈ JΓ K. Let α ∈ A such
that α 6≤ b. Then αpβx ∈ Jp, Γ K ⊆ J∆K. But this contradicts the fact
that J∆K ⊆ {αy : α ≤ b}.
Finally, suppose that e is a primitive program, say q. Write ∆ = q,Θ.
First note that assumption that the rule instance has priority implies
p 6= q, for otherwise the rule k could be applied. We have:

A � Jp, Γ K ⊆ J∆K = {αqβx : βx ∈ JΘK},

As A � Jp, Γ K = {αpβx : α ∈ A and βx ∈ JΓ K} and p 6= q, we again find
that JΓ K = ∅.

This finishes the proof.

Lemma 6. For every n ∈ N: if we have SGKAT `∞ e(b), Γ ⇒A ∆, then we also
have SGKAT `∞ [e(b)]n, Γ ⇒A ∆.

Proof. We assume that A 6= ∅, for otherwise the lemma is trivial. Let π be
the assumed SGKAT∞-proof of e(b), Γ ⇒A ∆. Note that, since all succedents
referred to in the lemma are equal to ∆, it suffices to prove the lemma under the
assumption that the last rule applied in π is not a right logical rule. Hence, we
may assume that the last rule applied in π is (b)-l, for that is the only remaining
rule with a sequent of this shape as conclusion. This means that π is of the form:

π1

e, e(b), Γ ⇒A�b ∆

π2
Γ ⇒A�b ∆

(b)-l
e(b), Γ ⇒A ∆

We show the lemma by induction on n. For the induction base, we take the
following proof:

π2
Γ ⇒A�b ∆

b-l
[e(b)]0, Γ ⇒A ∆

For the inductive step n+1, we construct from π1 a proof τ of e, [e(b)]n, Γ ⇒A�b

∆. To that end, we first replace in π1 every occurrence of e(b), Γ as a final
segment of the antecedent by e(b)

n

, Γ and cut off all branches at sequents of the
form [e(b)]n, Γ ⇒B Θ. This may be depicted as follows, where to the left of the
arrow  we have a branch of π1, and to right the resulting branch of τ .

...
e(b), Γ ⇒B Θ

...
e, e(b), Γ ⇒A�b ∆

 
[e(b)]n, Γ ⇒B Θ

...
e, [e(b)]n, Γ ⇒A�b ∆



22 J.M.W. Rooduijn et al.

Note that every remaining infinite branch in the resulting derivation τ satisfies
the fairness condition. Therefore, to turn τ into a proper SGKAT∞-proof, we only
need to close each open leaf, which by construction is of the form [e(b)]n, Γ ⇒B ∆.
Note that π1 must contain a proof of e(b), Γ ⇒B ∆, whence by the induction
hypothesis the sequent [e(b)]n, Γ ⇒B ∆ is provable. We can thus close the leaf
by simply appending the witnessing proof.

Letting τ be the resulting proof, we finish the induction step by taking:

τ

e, [e(b)]n, Γ ⇒A�b ∆
b-l

[e(b)]n+1, Γ ⇒A ∆

which gives us the required SGKAT∞-proof.

Lemma 7. wwh([e(b)]n, Γ ) < wwh(e(b), Γ ) for every n ∈ N.

Proof. Let k := wh(e(b)). Note that the maximum while-height in [e(b)]n is that
of e. Hence, we have wwh([e(b)]n)(k) = 0 < 1 = wwh(e(b))(k). Therefore:

wwh([e(b)]n, Γ )(k) = wwh([e(b)]n)(k) + wwh(Γ )(k)

< wwh(e(b))(k) + wwh(Γ )(k) = wwh(e(b), Γ )(k).

Hence wwh([e(b)]n, Γ ) 6= wwh(e(b), Γ ). Now suppose that for some l ∈ N we have
wwh([e(b)]n, Γ )(l) > wwh(e(b), Γ )(l). We leave it to the reader to verify that in
this case we must have l < k. As wwh([e(b)]n, Γ )(k) < wwh(e(b), Γ )(k), we find
wwh([e(b)]n, Γ ) < wwh(e(b), Γ ).

Theorem 1. If SGKAT `∞ Γ ⇒A ∆, then A � JΓ K ⊆ J∆K.

Proof. We prove this by induction on wwh(Γ ). Given a proof π of Γ ⇒A ∆, let
B contain for each infinite branch of π the node of least depth to which a rule
(b)-l is applied. Note that B must be finite, for otherwise, by Kőnig’s Lemma,
the proof π cut off along B would have an infinite branch that does not satisfy
the fairness condition.

Note that Proposition 1 entails that of every finite derivation with valid leaves
the conclusion is valid. Hence, it suffices to show that each of the nodes in B is
valid. To that end, consider an arbitrary such node labelled e(b), Γ ′ ⇒A′ ∆′ and
the subproof π′ it generates. By Lemma 6, we have that [e(b)]n, Γ ′ ⇒A′ ∆′ is
provable for every n. Lemma 7 gives wwh([e(b)]n, Γ ′) < wwh(e(b), Γ ′) ≤ wwh(Γ ),
and thus we may apply the induction hypothesis to obtain

A′ � J[e(b)]nK � JΓ K ⊆ J∆K

for every n ∈ N. Then by⋃
n

(A′ � J[e(b)]nK � JΓ K) = A′ �
⋃
n

(J[e(b)]nK) � JΓ K = A′ � JeKJbK � JΓ K,

we obtain that e(b), Γ ′ ⇒A′ ∆′ is valid, as required.



A cyclic proof system for Guarded Kleene Algebra with Tests 23

A.5 ... of Section 5

Lemma 8. Let π be an SGKAT∞-derivation of a sequent of the form e ⇒A f .
Then every antecedent in π is the realisation of a tail-generated e-sequent, and
every succedent is the realisation of a tail-generated f -sequent or 0-sequent.

Proof. We first prove the following claim.

Let e be an expression and let u be a node in its syntax tree. Then tail(u)
is a tail-generated e-sequent.

Proof (of claim). We prove this by induction on the syntax tree of e. For the
root ε, we have tail(ε) = ε, which is tail-generated by definition. Now suppose
that the thesis holds for some arbitrary node u in the syntax tree of e. We will
show that the thesis holds for the children of u by a case distinction on the main
connective mc of u.

– mc = ·. Let u1 and u2 be the first and second child of u, respectively. We
have tail(u1) = u2, tail(u) = u2, tail(u2), which is tail-generated by definition.
Moreover, we have that tail(u2) = tail(u) is tail-generated by the induction
hypothesis.

– mc = +b. Then for each child v of u, we have tail(v) = tail(u) and thus we
can again invoke the induction hypothesis.

– mc = (b). Then for the single child v of u, it holds that tail(v) = u, tail(u),
which is tail-generated by definition.

Using this claim, the lemma follows by direct inspection of the rules.

A.6 ... of Section 6

Lemma 9. Any valid sequent is the conclusion of some rule application.

Proof. We prove this lemma by contraposition. So suppose Γ ⇒A ∆ is not the
conclusion of any rule application. We make a few observations:

– Both Γ and ∆ are exposed, for otherwise Γ ⇒A ∆ would be the conclusion
of an application of a left, respectively right, logical rule.

– A is non-empty, for otherwise Γ ⇒A ∆ would be the conclusion of an appli-
cation of ⊥.

– The leftmost expression of Γ is not a primitive program, for otherwise our
sequent Γ ⇒A ∆ would be the conclusion of an application of k0.

– The leftmost expression of ∆ is a primitive program, for otherwise, by the
previous items, the sequent Γ ⇒A ∆ would be the conclusion of an applica-
tion of id.

Hence Γ ⇒A ∆ is of the form ε⇒A p,Θ. Let α ∈ A. Then α ∈ A� JεK. However,
since α is not of the form βpγy, we have α /∈ Jp,ΘK. This shows that Γ ⇒A ∆
is not valid, as required.



24 J.M.W. Rooduijn et al.

Lemma 10. Let π be a derivation using only right logical rules and containing
a branch of the form:

Γ ⇒B e(b), ∆

... (b)-r
Γ ⇒A e(b), ∆

(*)

such that (1) Γ ⇒A e(b), ∆ is valid, and (2) every succedent on the branch has
e(b), ∆ as a final segment. Then Γ ⇒B 0 is valid.

Proof. We claim that e(b) ⇒B 0 is provable. We will show this by exploiting the
symmetry of the left and right logical rules of SGKAT (cf. Remark 7). Since on the
branch (*) every rule is a right logical rule, and e(b), ∆ is preserved throughout,
we can construct a derivation π′ of e(b) ⇒B 0 from π by applying the analogous
left logical rules to e(b). Note that the set of atoms B precisely determines the
branch (*), in the sense that for every leaf Γ ⇒C Θ of π it holds that C∩B = ∅.
Hence, as the root of π′ is e(b) ⇒B 0, every branch of π′ except for the one
corresponding to (*) can be closed directly by an application of ⊥. The branch
corresponding to (*) is of the form

e(b) ⇒B 0

... (b)-l
e(b) ⇒B 0

(*)

and can thus be closed by a back edge. The resulting finite tree with back edges
clearly represents an SGKAT∞-proof.

Now by soundness, we have B � Je(b)K = ∅. Moreover, by the invertibility of
the right logical rules and hypothesis (1), we get

B � JΓ K ⊆ B � Je(b)K � J∆K = ∅,

as required.

Lemma 11. Let (Γn ⇒An
∆n)n∈ω be an infinite branch of some SGKAT∞-

derivation on which the rule (b)-r is applied infinitely often. Then there are n,m
with n < m such that the following hold:

(i) the sequents Γn ⇒An
∆n and Γm ⇒Am

∆m are equal;
(ii) the sequent Γn ⇒An

∆n is the conclusion of (b)-r in π;
(iii) for every i ∈ [n,m) it holds that ∆n is a final segment of ∆i.

Proof. First note that k0 is not applied on this branch, because if it were then
there could not be infinitely many applications of (b)-r.

By finite-stateness (cf. Corollary 1), there must be a k ≥ 0 be such that every
∆i with i ≥ k occurs infinitely often on the branch above. Denote by |∆| the
length of a given list ∆ and let l be minimum of {|∆i| : i ≥ k}. In other words,
l is the minimal length of the ∆i with i ≥ k.



A cyclic proof system for Guarded Kleene Algebra with Tests 25

To prove the lemma, we first claim that there is an n ≥ k such that |∆n| = l
and the leftmost expression in∆n is of the form e(b) for some e. Suppose, towards
a contradiction, that this is not the case. Then there must be a u ≥ k such that
|∆u| = l and the leftmost expression in ∆u is not of the form e(b) for any e.
Note that (b)-r is the only rule apart from k0 that can increase the length of
the succedent (when read bottom-up). It follows that for no w ≥ u the leftmost
expression in ∆w is of the form e(b), contradicting the fact that (b)-r is applied
infinitely often.

Now let n ≥ k be such that |∆n| = l and the leftmost expression of ∆n

is e(b). Since the rule (b)-r must at some point after ∆n be applied to e(b), we
may assume without loss of generality that Γn ⇒An ∆n is the conclusion of an
application of (b)-r. By the pigeonhole principle, there must be an m > n such
that Γn ⇒An

∆n and Γm ⇒Am
∆m are the same sequents. We claim that these

sequents satisfy the three properties above. Properties (i) and (ii) directly hold
by construction. Property (iii) follows from the fact that ∆n is of minimal length
and has e(b) as leftmost expression.

Theorem 2. Every valid sequent is provable in SGKAT∞.

Proof. Given a valid sequent, we do a bottom-up proof search with the following
strategy. Throughout the procedure all leaves remain valid, in most cases by an
appeal to invertibility.

1. Apply left logical rules as long as possible. If this stage terminates, it will be
at a leaf of the form Γ ⇒A ∆, where Γ is exposed. We then go to stage (2).
If left logical rules remain applicable, we stay in this stage (1) forever and
create an infinite branch.

2. Apply right logical rules until one of the following happens:
(a) We reach a leaf at which no right logical rule can be applied. This means

that the leaf must be a valid sequent of the form Γ ⇒A ∆ such that Γ is
exposed, and ∆ is either exposed or begins with a test b such A � b 6= A.
We go to stage (4).

(b) If (a) does not happen, then at some point we must reach a valid sequent
of the Γ ⇒A e(b), ∆ which together with an ancestor satisfies properties
(i) - (iii) of Lemma 11. In this case Lemma 10 is applicable. Hence we
must be at a leaf of the form Γ ⇒A e(b), ∆ such that e(b) ⇒A 0 is valid.
We then go to stage (3).

Since at some point either (a) or (b) must be the case, stage (2) always
terminates.

3. We are at a valid leaf of the form Γ ⇒A e(b), ∆, where Γ is exposed. If
A = ∅, we apply ⊥. Otherwise, if A 6= ∅, we use the validity of Γ ⇒A e(b), ∆
and e(b) ⇒A 0 to find:

A � JΓ K ⊆ A � Je(b)K � J∆K = ∅.

We claim that JΓ K = ∅. Indeed, suppose towards a contradiction that αx ∈
JΓ K. By the exposedness of Γ and item (i) of Lemma 3, we would have



26 J.M.W. Rooduijn et al.

βx ∈ JΓ K for some β ∈ A, contradicting the statement above. Therefore, the
sequent Γ ⇒At 0 is valid. We apply the rule k0 and loop back to stage (1).
Stage (3) only comprises a single step and thus always terminates.

4. Let Γ ⇒A ∆ be the current leaf. By construction Γ ⇒A ∆ is valid, Γ is
exposed, and ∆ is either exposed or begins with a test b such that A � b 6= A.
Note that only rules id, ⊥, k, and k0 can be applicable. By Lemma 9, at least
one of them must be applicable. If id is applicable, apply id. If ⊥ is applicable,
apply ⊥. If k is applicable, apply k and loop back to stage (1). Note that
this application of k will have priority (cf. Definition 7), and is therefore
invertible.
Finally, suppose that only k0 is applicable. We claim that, by validity, the
list Γ is not ε. Indeed, since A is non-empty, and ∆ either begins with a
primitive program p or a test b such that A � b 6= A, the sequent

ε⇒A ∆

must be invalid. Hence Γ must be of the form p,Θ. We apply k0, which has
priority and thus is invertible, and loop back to stage (1).
Like stage (3), stage (4) only comprises a single step and thus always termi-
nates.

We claim that the constructed derivation is fair. Indeed, every stage except
stage (1) terminates. Therefore, every infinite branch must either eventually
remain in stage (1), or pass through stages (3) or (4) infinitely often. Since k
and k0 shorten the antecedent, and no left logical rule other than (b)-l lengthens
it, such branches must be fair.

Proposition 3. The proof search procedure of Theorem 2 induces a coNP deci-
sion procedure for the language inclusion problem for GKAT-expressions.

Proof. Given an invalid sequent, we will give a polynomial size certificate for its
invalidity, which can be verified in polynomial time.

First note that applying the proof search procedure of Theorem 2 to an
invalid sequent yields at least one branch which neither ends in an axiom, nor
is fair for (b)-l. It is shown in the proof of Theorem 2 that every infinite branch
constructed by the proof search procedure is fair for (b)-l, which means that this
failing branch is finite.

Now we make a case distinction on whether our branch contains an applica-
tion of k0 which does not have priority, i.e. on whether it passes through stage
2(b) of the proof search procedure.

We first consider the more easy case, where it does not pass this stage. Define
an extended sequent to be a sequent annotated by one of the four stages of of
the proof search procedure, i.e. one of the form Γ ⇒s

A ∆ where s ∈ {1, 2, 3, 4}.
By Corollary 1 there are polynomially many extended sequents. We can now
represent the failing branch of the proof search procedure as a list of extended
sequents

Γ0 ⇒s0
A0

∆0, . . . , Γn ⇒sn
An

∆n.



A cyclic proof system for Guarded Kleene Algebra with Tests 27

We will shrink this branch by deleting all segments between two identical ex-
tended sequents. More formally, we inductively define the following indices. First,
k0 is maximal such that Γk0 ⇒

sk0

Ak0
∆k0 = Γ0 ⇒s0

A0
∆0. Second, if ki < n, then

ki+1 is maximal such that Γki+1
⇒

ski+1

Aki+1
∆ki+1

= Γki+1 ⇒
ski+1

Aki+1
∆ki+1.

Clearly there must be some m such that Γkm
⇒skm

Akm
∆km

= Γn ⇒sn
An

∆n. We
consider the branch

Γk0
⇒sk0

Ak0
∆k0

. . . , Γkm
⇒skm

Akm
∆km

.

By construction this branch also arises in the proof search procedure applied to
Γ0 ⇒A0

∆0. Moreover, every extended sequent in this branch is distinct, whence
it is of polynomial size. It is also failing, because the original branch is failing.
Hence it is a polynomially-sized certificate for the invalidity of Γ0 ⇒A0

∆0. This
can be checked in polynomial time simply by checking that it indeed arises from
the proof search procedure.

In case the original branch does pass stage 2(b), the argument is very similar,
but we have to take care not to break the the justification for applying Lemma
10. Suppose that k0 is applied without priority to the sequent Γl ⇒Al

∆l (note
that there is at most one such application of k0), then there is some q < l such
that ∆q = ∆l and for every q ≤ i ≤ l it holds that Γi = Γl and that ∆l is a final
segment of ∆i. The idea is now to apply the same shrinking procedure as before,
but keeping both Γq ⇒Aq

∆q and Γl ⇒Al
∆l. Again, the resulting branch will

be a polynomially-sized certificate for the invalidity of Γ0 ⇒A0
∆0. We leave it

to the reader to work out the details.


