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Abstract. This paper studies the problem of simulating a coin of arbi-
trary real bias q with a coin of arbitrary real bias p with minimum loss
of entropy. We establish a lower bound that is strictly greater than the
information-theoretic bound. We show that as a function of q, it is an
everywhere-discontinuous self-similar fractal. We provide efficient pro-
tocols that achieve the lower bound to within any desired accuracy for
(3−

√
5)/2 < p < 1/2 and achieve it exactly for p = 1/2.
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1 Introduction

A discrete simulation protocol is any procedure that maps a stream of digits
from one alphabet to a stream of digits from another alphabet. If the input
sequence comes from a random process, then the statistical properties of the
input stream impart statistical properties to the output stream, and we can
think of the protocol as a reduction from one random source to another.

The efficiency of the simulation is the rate of entropy produced per unit of
entropy consumed [4,7]. The efficiency measures the amount of randomness lost
in the conversion. By general information-theoretic considerations, this value
cannot exceed unity [1,6]. In general, the efficiency may not exist, or it may
exist but vary with time.

A paradigmatic example is the simulation of a coin of arbitrary real bias q
with a coin of arbitrary real bias p. Here, both the input and output alphabets
are binary, the input is a sequence of i.i.d. bias-p coin flips, 0 < p < 1, and
the output is a sequence of i.i.d. bias-q coin flips, 0 ≤ q ≤ 1. We call this a
p, q-simulation protocol. For such protocols, the efficiency is

H(q) ·Eprod

H(p) · Econs
,

where H is the Shannon entropy

H(p) = −p log p− (1− p) log(1− p)
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and Eprod and Econs are, respectively, the expected number of output digits
produced and the expected number of input digits consumed in one round of the
protocol. If Eprod = 1, this gives an information-theoretic lower bound

Econs ≥
H(q)

H(p)

on the number of bias-p coin flips required by the protocol to produce one output
digit. To maximize the efficiency of the simulation, we should minimize this
quantity.

A classical example of a p, 1
2 -simulation protocol is the von Neumann trick

[9]. The bias-p coin is flipped twice. If the outcome is ht, the protocol halts
and declares h for the fair coin. If the outcome is th, the protocol halts and
declares t. On any other outcome, the process is repeated. This protocol has the
advantage that it is oblivious to the bias of the input coin, but its efficiency is
quite poor even for p close to 1/2. For example, for p = 1/3, the von Neumann
trick consumes 4.5 input digits per output digit, whereas the Shannon bound is
only 1/(log 3− 2/3) ≈ 1.083 · · · .

More efficient simulations and enhancements have been studied in [4,7,13]. It
is known that any discrete i.i.d. process can simulate any other discrete i.i.d.
process with efficiency asymptotically approaching 1, provided the protocol is
allowed unbounded latency; that is, it may wait and produce arbitrarily long
strings of output digits at once. Unbounded latency is exploited in [7] to sim-
ulate a fair coin with an arbitrary coin with asymptotically optimal efficiency.
The technique is a generalization of the von Neumann trick. In the other direc-
tion, [6, Theorem 5.12.3] shows that a fair coin can in principle generate one
output digit of an arbitrary coin with expected consumption at most two more
than the entropy. In conjunction with [6, Theorem 5.4.2], this yields a method
for generating a sequence of i.i.d. bias-q coins from a fair coin with efficiency
asymptotically approaching 1, again allowing unbounded latency.

In this paper we consider non-oblivious, one-bit output protocols: those that
output exactly one output digit in each round but take advantage of the knowl-
edge of p. For fixed 0 < p < 1, let Eopt(q) be the infimum of Econs over all
one-bit output p, q-simulation protocols. We show:

– The function Eopt(q) is an everywhere-discontinuous self-similar fractal. For
all but finitely many points, it is strictly larger than the Shannon bound
H(q)/H(p). A graph of Eopt compared to the Shannon bound for p = 1/3 is
shown in Fig. 1.

– For all 0 ≤ q ≤ 1, there exists a p, q-simulation protocol that achieves
Eopt(q). Previously, this was known only for p = 1/2 [6].

– There exists a single residual probability protocol that is optimal for all q. A
residual probability protocol is a protocol whose state set is the closed unit
interval [0, 1] and the probability of halting and reporting heads (respec-
tively, tails) starting from state q is q (respectively, 1 − q). It is optimal for
all q in the sense that Econs(q) = Eopt(q). The protocol is nondeterministic,
and it is not known whether it can be made deterministic in general, even
for rational p and q.
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Fig. 1. Comparison of Eopt(q) and the Shannon bound H(q)/H(p) for p = 1/3

– For (3 −
√
5)/2 < p ≤ 1/2, we exhibit a family of deterministic, efficiently

computable1 residual probability protocols that achieve Eopt(q) + ε for any
desired degree of accuracy ε > 0 and all q.

– For a fair input coin (p = 1/2), we show that the optimal residual probabil-
ity protocol is computable, and determine the values of Eopt(q) exactly. A
similar protocol for p = 1/2 was proposed in [6] but without proof, and the
values of Eopt were not established.

Some of the proof techniques we use are somewhat nonstandard. One partic-
ular innovation is the coalgebraic formulation of stochastic simulation protocols
introduced in Section 2. In contrast to the usual formulation of stochastic pro-
cesses as sequences of random variables, this approach gives a powerful technique
for reasoning about various functions defined as fixpoints of recursive equations.

1.1 Other Related Work

There is a large body of interesting work on extracting randomness from weak
random sources (e.g. [10,11,14,15]). These models typically work with imperfect
knowledge of the input source and provide only approximate guarantees on the
quality of the output. In this paper, however, we assume that the statistical
properties of the input and output are known completely, and simulations must
be exact.

1 As we are computing with real numbers, we assume unit-time real arithmetic and
comparison of real numbers. These assumptions are not necessary if computation is
restricted to the rationals.
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The fractal nature of certain residual probability protocols was observed in
[8], but the existence of optimal protocols was left unresolved.

2 Simulation Protocols

Let 0 < p ≤ 1/2 and 0 ≤ q ≤ 1. To simulate a bias-q coin with a bias-p
coin, we would ordinarily define the input to the simulation to be a Bernoulli
process consisting of a sequence of i.i.d. random variablesX0, X1, . . . with success
probability p. The simulation would be specified by a function that decides, given
a finite history X0, X1, . . . , Xn−1 of previous bias-p coin flips, whether to halt
and declare heads, halt and declare tails, or flip again. The process must halt
with probability 1 and must declare heads with probability q and tails with
probability 1− q.

However, it is technically convenient to specify protocols in terms of more
general state sets. We thus define a protocol to be a triple (S,β, s0) consisting
of a coalgebra (S,β), where

β : S → {h,t}+ ({0, 1}→ S), (1)

and a distinguished start state s0 ∈ S.2 Intuitively, depending on the current
state, the protocol decides either

– to halt immediately and return h or t, thereby declaring the result of the
bias-q coin flip to be heads or tails, respectively; or

– to consume a random bias-p coin flip (0 or 1), and based on that information,
enter a new state.

A protocol is a p, q-simulation protocol if, when it is started in its start state
s0 with the input stream generated by a Bernoulli process with success proba-
bility p, it halts with probability 1, declaring h with probability q and t with
probability 1− q.

The protocol is computable if the function β is.

Example 1. A traditional choice for the state set would be {0, 1}∗, the history
of outcomes of previous bias-p coin flips. The transition function would be

β : {0, 1}∗ → {h,t}+ ({0, 1}→ {0, 1}∗),

and the start state would be the empty history ε ∈ {0, 1}∗. The next step of
the protocol is determined by the previous history. If this history isX0, . . . , Xn−1

and the protocol decides to halt and declare heads or tails, then β(X0, . . . , Xn−1)
would be h or t, respectively. If on the other hand the protocol decides not to
halt, and the result of the next bias-p coin flip isXn, then β(X0, . . . , Xn−1)(Xn) =
X0, . . . , Xn.

2 For clarity, we are using different symbols to distinguish the input coin (heads = 0,
tails = 1) from the output coin (heads = h, tails = t).
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Example 2. The following example is a slight modification of one from [8]. The
state set is the closed real interval [0, 1]. If q ∈ {0, 1}, then β(q) ∈ {h,t},
otherwise β(q) ∈ {0, 1}→ [0, 1]. The values are

β(q) =

{
h if q = 1

t if q = 0

β(q)X =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 < q ≤ p and X = 1

q

p
if 0 < q ≤ p and X = 0

q − p

1− p
if p < q < 1 and X = 1

1 if p < q < 1 and X = 0.

Intuitively, if p < q < 1 and the bias-p coin flip returns heads (0), which occurs
with probability p, then we halt and output heads; this gives a fraction p/q of
the desired probability q of heads of the simulated bias-q coin. If the bias-p coin
returns tails (1), which occurs with probability 1− p, we rescale the problem to
condition on that outcome, setting the state to (q − p)/(1 − p) because that is
the residual probability of heads, and repeat. Similarly, if 0 < q ≤ p and the
bias-p coin returns tails, then we halt and output tails; and if not, we rescale
appropriately and repeat.

Example 3. The final coalgebra (C, δ) of the type (1) is the set of binary prefix
codes for the two-element alphabet {h,t}. Each such code consists of a pair
of disjoint sets H,T ⊆ {0, 1}∗ such that the elements of H ∪ T are pairwise
prefix-incomparable. The operation δ is defined by

δ(H,T ) =

⎧
⎪⎨

⎪⎩

h if ε ∈ H

t if ε ∈ T

λa ∈ {0, 1}.(Da(H), Da(T )) otherwise,

where Da is the Brzozowski derivative Da(A) = {x | ax ∈ A}.
The coalgebra (C, δ) is final in the sense that from any other coalgebra (S,β),

there is a unique coalgebra homomorphism code : (S,β) → (C, δ), defined by:
code(s) = (Hs, Ts), where Hs (respectively, Ts) is the set of strings x ∈ {0, 1}∗
such that running the protocol starting from s results in output h (respectively,
t) after consuming input digits x. The function code is a coalgebra homomor-
phism in that δ(code(s)) = β(s) if β(s) ∈ {h,t}, otherwise β(s) : {0, 1} → S
and δ(code(s)) = code ◦ (β(s)) : {0, 1}→ C.

In the definition of C, the sets H,T must be disjoint to ensure that δ is well-
defined. They need not be nonempty; in fact, if β(s) = h, then h(s) = ({ε},∅).
There is no other possible choice for h(s) due to the requirement that H,T be
disjoint and elements of H ∪T be pairwise prefix-incomparable. The single-state
subcoalgebra (∅,∅) represents protocols that never halt.
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2.1 Residual Probability Protocols

Intuitively, the residual probability of a state s of a p, q-simulation protocol is
the probability r that the protocol halts and declare heads when started in state
s. In order to halt with probability 1 from that state, it should also halt and
declare tails with probability 1− r. It is conceivable that a protocol might want
to take different actions in two different states, even if the residual probabilities
are the same.

Formally, a residual probability protocol is a protocol whose state space is the
closed unit interval [0, 1] and whose probability of halting and declaring heads
(resp., tails) when started in state q is q (resp., 1−q). Thus the next action of the
protocol depends only on the residual probability. Example 2 is an example of a
residual probability protocol. Theorem 4 below says that when searching for an
optimal protocol, we can restrict our attention to residual probability protocols
without loss of generality.

2.2 Impatient Protocols

A protocol (S,β) is impatient if in every state s, the probability of halting in
at most one step is nonzero; that is, either β(s), β(β(s)0), or β(β(s)1 ∈ {h,t}).
Assuming computable real arithmetic and comparison of real numbers3, every
p, q has a computable impatient protocol; for example, the protocol of Example 2,
as well as others described in [8], are computable and impatient. Every impatient
protocol has at most one infinite computation path starting from any state, which
occurs with probability 0.

Impatient strategies are not necessarily optimal. Example 2 is not: in that
example, β(1 − p)0 = 1 and β(1− p)1 = (1 − 2p)/(1 − p), whereas a better
choice would be β(1− p)0 = 0 and β(1 − p)1 = 1.

2.3 Greedy Protocols

Greedy protocols are a special class of impatient residual probability protocols.
Intuitively, a protocol is locally greedy at a state if it attempts to optimize in the
next step by halting as early as possible with the maximum allowable probability.
To define this formally, we start with the special case

(1− p)2 ≤ p ≤ 1− p; (2)

equivalently, (3 −
√
5)/2 ≤ p ≤ 1/2. In this case, let us define the ambiguous

region as the open interval (p, 1− p). A greedy protocol must halt immediately
when q ∈ {0, 1}, declaring heads for the q-coin if q = 1 and tails if q = 0.
Otherwise, if q is not in the ambiguous region, it must flip the p-coin and halt if
the outcome is tails, which occurs with probability 1−p, declaring either tails or
heads for the q-coin, depending on whether q ≤ p or q ≥ 1−p, respectively. If q is
in the ambiguous region, it must flip the p-coin and halt if the outcome is heads,

3 If p and q are rational, this assumption is not needed.
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which occurs with probability p, but there is a choice whether to declare heads or
tails for the q-coin, leading to two possible greedy strategies. If it declares heads
when the p-coin returns heads, then it must rescale to (q − p)/(1− p) when the
p-coin returns tails. If it declares tails when the p-coin returns heads, then it
must rescale to q/(1 − p) when the p-coin returns tails. It is not immediately
clear which action will ultimately be better.

The significance of the restriction (2) is that the protocol exits the ambiguous
region after only one step, and that is the case that we will focus on in this
paper. More generally, let k = ⌊−1/ log2(1 − p)⌋, the least positive integer such
that (1−p)k+1 < 1/2. The ambiguous region for p is the open interval (b, 1− b),
where b is either 1−(1−p)k or (1−p)k+1, depending on which interval is smaller.
Under the restriction (2), k = 1. In this more general situation, a protocol is
greedy if it moves so as to enter one of the regions q ≤ p or q ≥ 1− p as quickly
as possible; this is determined except when q is in the ambiguous region.

Greedy strategies are not necessarily optimal. For example, let p be a tran-
scendental number satisfying (2). There is an uncountable nowhere-dense set of
points on which the greedy strategy achieves its best running time 1/(1 − p);
that is, the protocol never enters the ambiguous region. It can be shown that
these are exactly finite and infinite alternating sums of increasing integer powers
of p:

J = {pk0 − pk1 + pk2 − pk3 + · · · | ki ∈ Z, 0 ≤ k0 < k1 < · · · }.

Consider q = 2p(1−p). Then p < q < 1−p, so q is in the ambiguous region. After
one greedy step in either direction, it is easily checked that the resulting image
of q is not in J . Moreover, there must subsequently be an infinite computation
path, because otherwise p would be algebraic. Thus the expectation of any greedy
protocol is strictly larger than p+(1−p)(1+1/(1−p)) = 2. A better strategy is
to flip the p-coin twice, declaring heads if the outcome is 10 or 01, tails otherwise.
The expectation is 2, and this is optimal.

3 Coalgebras and Fixpoint Induction

Technically, coalgebras of type (1) are F -coalgebras, where F : Set → Set is
the polynomial functor FX = + +X2. Given an F -coalgebra (S,β), many
interesting functions can be specified by providing an F -algebra (A,α) with some
extra order structure allowing for the existence of least fixpoints. The function
defined is the least fixpoint of the map

f )→ α ◦ Ff ◦ β, (3)

that is, the least f such that the following diagram commutes:

S

FS

A

FA

f

β
Ff

α
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Intuitively, the destructor β : S → FS computes the arguments to a recursive
call, the map Ff : FS → FA is the recursive call, and the constructor α : FA→
A is the construction applied to the returned element. This general scheme for
recursively defined functions has been previously studied in [2,3,5].

If A is a chain-complete partially ordered set and α order-continuous, then
the map (3) is monotone and order-continuous on functions S → A under the
pointwise order, therefore by the Knaster–Tarski theorem has a unique least
fixpoint.

Example 4. The outcome O(s) of the simulation starting from state s is a random
variable defined on the probability space {0, 1}ω taking values in {h,t,⊥}. The
value ⊥ signifies nonhalting. Formally,

O : S → {0, 1}ω → {h,t,⊥}

is the least fixpoint of the equation

O(s)(X · σ) =
{
β(s) if β(s) ∈ {h,t}
O(β(s)X)(σ) if β(s) ∈ {0, 1}→ S.

This would be specified by the F -algebra (A,α), where

A = {0, 1}ω → {h,t,⊥}

α(f) =

{
λσ ∈ {0, 1}ω.f if f ∈ {h,t}
λσ ∈ {0, 1}ω.f(headσ)(tailσ) if f ∈ {0, 1}→ A

under the pointwise ordering on A induced by ⊥ < h and ⊥ < t.

Example 5. Define P (s) = Pr(O(s) = h), the probability that the outcome
is heads starting in state s. This is specified by the F -algebra on [0, 1] with
constructor

X )→

⎧
⎪⎨

⎪⎩

1 if X = h

0 if X = t

p ·X(0) + (1 − p) ·X(1) if X ∈ {0, 1}→ [0, 1]

and the natural order on [0, 1].

Example 6. The expected consumption of input digits starting from state s sat-
isfies the equation

E(s) =

{
0 if β(s) ∈ {h,t}
1 + p ·E(β(s)0) + (1− p) ·E(β(s)1) if β(s) ∈ {0, 1}→ S.

The function E is specified by the F -algebra on R+ = {x ∈ R | x ≥ 0} ∪ {∞}
with constructor

X )→
{
0 if X ∈ {h,t}
1 + p ·X(0) + (1− p) ·X(1) if X ∈ {0, 1}→ R+

and the natural order on R+.
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An important property for our purposes, due to Adámek, Milius, and Velebil
[3], is that the least fixpoint construction is natural in S the sense that if f and
f ′ are the least solutions of (3) in the F -coalgebras S and S′, respectively, and
if h : S → S′ is an F -coalgebra morphism, then f = f ′ ◦ h (Theorem 1 below).
The significance of this property is that a function defined by (3), such as the
probability of heads or the expected comsumption of input digits, is the same
whether measured in S or any quotient of S by a bisimulation. In particular,
if s ∈ S is a start state of a protocol and code(s) ∈ C is its image in the final
coalgebra, then the expected consumption of input digits starting in state s is
just the expected codeword length

∑
x∈code(s) Pr(x) · |x| if P (s) = 1, or ∞ if

P (s) < 1.4

Theorem 1 ([3], Proposition 3.5). Let (A,α) be an ordered F -algebra such
that A is a chain-complete and α order-continuous. The construction of the least
fixpoint of (3) is natural in S; that is, if h : S → S′ is an F -coalgebra morphism,
then fS = fS′ ◦ h.

Proof. Let τS be the map (3) on functions S → A. The assumptions on A
and α imply that τS is monotone and order-continuous under the pointwise
order on S → A. Let ⊥ be the bottom element of A. The map λs ∈ S.⊥ is
the bottom element of S → A. If h : S → S′ is an F -coalgebra morphism,
then clearly λs ∈ S.⊥ = (λs ∈ S′.⊥) ◦ h, therefore the selection of λs ∈ S.⊥
is natural in S. Moreover, it is easily argued that τS is also natural in S. By
induction, τnS (λs ∈ S.⊥) is natural in S for all n. By continuity, the least fixpoint
is supn τ

n
S (λs ∈ S.⊥), and the result follows from the observation that suprema

are preserved by composition with h on the right. ⊓0

3.1 Fixpoint Induction

The construction of the least fixpoint of the monotone map τS admits the use
of the following fixpoint induction rule [12]: If f : S → A is the least fixpoint of
τS , and if τS(g) ≤ g, then f ≤ g.

3.2 Two Metrics

A popular metric on streams defines the distance between two streams to be 2−n

if n is the length of their maximal common prefix, or 0 if the streams are equal.
There is an analogous metric on codes. We say that binary codes s = (H,T ) and
t = (H ′, T ′) agree to length n if for all words x ∈ {0, 1}∗ of length n or less, x ∈ H
iff x ∈ H ′ and x ∈ T iff x ∈ T ′. We define d′(s, t) = pn if n is the maximum
number such that s and t agree to length n, or 0 if they are equal. We use pn

4 Here Pr(x) = p#0(x)(1 − p)#1(x), where #a(x) is the number of occurrences of a
in x for a ∈ {0, 1} and x ∈ {0, 1}∗. We write x ∈ code(s) for x ∈ H ∪ T , where
code(s) = (H,T ) is the image of state s under the unique F -coalgebra morphism to
the final F -coalgebra C.
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instead of 2−n for technical reasons, but the difference is of no consequence, as
the same topology is generated. The metric d′ satisfies the recurrence

d′(s, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if either δ(s), δ(t) ∈ {h,t} and δ(s) ̸= δ(t)

0 if both δ(s), δ(t) ∈ {h,t} and δ(s) = δ(t)

p ·max(d′(δ(s)0, δ(t)0), d
′(δ(s)1, δ(t)1))

if δ(s), δ(t) ∈ {0, 1}→ C,

and in fact this can be taken as a formal definition according to (3). A similar
map d′ is induced on the states of any protocol by d′(s, t) = d′(code(s), code(t)),
where code is the unique F -coalgebra morphism to C. On arbitrary protocols,
the map d′ is not a metric in general, but only a pseudometric.

Alternatively, we might consider two protocols similar if, when run simulta-
neously, they halt at the same time and produce the same output with high
probability. Thus we define d : S × T → [0, 1] to be the least solution of the
equation

d(s, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if either β(s),β(t) ∈ {h,t} and β(s) ̸= β(t)

0 if both β(s),β(t) ∈ {h,t} and β(s) = β(t)

p · d(β(s)0,β(t)0) + (1 − p) · d(β(s)1,β(t)1)
if β(s),β(t) ∈ {0, 1}→ S.

Formally, d can be specified in curried form d(s, t) = d(s)(t) by an F -algebra on
T → [0, 1] as above. We could also define an F -coalgebra on S × T with

(s, t) !→

⎧
⎪⎨

⎪⎩

h if either β(s),β(t) ∈ {h,t} and β(s) ̸= β(t)

t if both β(s),β(t) ∈ {h,t} and β(s) = β(t)

λa ∈ {0, 1}.(β(s)a,β(t)a) if β(s),β(t) ∈ {0, 1} → S

and take d(s, t) = Pr(O(s, t) = h).
Symmetry and the triangle inequality are easy to verify, thus any protocol S

is a pseudometric space under the distance functions d and d′.

Lemma 1. Let S and T be F -coalgebras, s ∈ S, and t ∈ T . The following are
equivalent:

1. d(s, t) = 0
2. d′(s, t) = 0
3. s and t are bisimilar.

Proof. The states s and t are bisimilar iff they have the same image in the final
coalgebra, and d and d′ are also preserved. Thus if s and t are bisimilar, then
d(s, t) = d′(s, t) = 0. Conversely, any two distinct prefix codes must differ on
some codeword x ∈ {0, 1}∗, in which case both d(s, t), d′(s, t) ≥ p|x|. ⊓0

Lemma 2. Every d′-open set is d-open. If E(s) <∞, then every d-open neigh-
borhood of s is d′-open.
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Proof. If s and t disagree on x, then the probability of disagreement is at least
p|x|, thus d(s, t) ≥ d′(s, t), so every basic d′-open set {t | d′(s, t) < ε} contains
the basic d-open set {t | d(s, t) < ε}, thus is also d-open.

Conversely, suppose E(s) < ∞. If d′(s, t) ≤ pn, then the codes s and t agree
to length n, thus s and t differ with probability at most Pr(|x| > n) ≤ E(s)/n
by the Markov inequality. Thus d(s, t) ≤ E(s)/n. We conclude that d(s, t) ≤
E(s)/ logp d

′(s, t). ⊓0

Lemma 2 says that d generates a finer topology than d′ on C. They are not the
same: an example of a d-open set that is not d′-open is the ε-neighborhood of
s = (∅,∅) in the d-metric for any 0 < ε < 1. For sn = ({0, 1}n,∅), d(s, sn) = 1
but d′(s, sn) = pn.

In the final F -coalgebra C, d(s, t) = 0 implies s = t, since bisimilar states of C
are equal. Thus C is a metric space under d. However, it is not complete, even re-
stricted to points with finite expectation. For example, the sequence ({0, 1}n,∅)
has no limit point. However, the subspace of points with expected running time
bounded by any constant b is compact, thus complete, as we will now show.

Theorem 2. Let Cb be the subspace of points s ∈ C such that E(s) ≤ b. Then
Cb is a compact, hence complete, metric space under d.

Proof. We have argued that Cb is a metric space, thus it remains to show com-
pactness. Certainly Cb is compact under d′. By Lemma 2, d and d′ generate the
same topology on Cb, therefore Cb is also compact under d. ⊓0

Recall that P (s) = Pr(O(s) = h).

Lemma 3. The map P is continuous with respect to d on C.

Proof.

|P (s)− P (t)| = |Pr(O(s) = h ∧O(t) ̸= h)− Pr(O(t) = h ∧O(s) ̸= h) |
≤ Pr(O(s) = h ∧O(t) ̸= h) + Pr(O(t) = h ∧O(s) ̸= h)

≤ Pr(O(s) ̸= O(t))

= d(s, t).

⊓0

The map E is not continuous at any point in either metric, not even restricted
to Cb. However, we have the following.

Lemma 4. Let A ⊆ C and let cl′(A) denote the closure of A under the d′

metric. Then sup{E(s) | s ∈ cl′(A)} ≤ sup{E(t) | t ∈ A}.

Proof. Recall that for points s in the final coalgebra, E(s) =
∑

x∈s Pr(x) · |x| if∑
x∈sPr(x) = 1, and ∞ if

∑
x∈s Pr(x) < 1. Let s ∈ cl′(A). If

∑
x∈sPr(x) < 1,

then that is also true for some t ∈ A, so in that case both suprema are ∞; so
assume that

∑
x∈s Pr(x) < 1.
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For ε > 0, let n be large enough that

∑

x∈s
|x|≤n

Pr(x) · |x| ≥
{
E(s)− ε if E(s) <∞,

1/ε if E(s) =∞

and choose a point t ∈ A such that s and t agree to length n. Then

E(t) ≥
∑

x∈t
|x|≤n

Pr(x) · |x| =
∑

x∈s
|x|≤n

Pr(x) · |x| ≥
{
E(s)− ε if E(s) <∞,

1/ε if E(s) =∞,

thus sup{E(t) | t ∈ A} ≥ E(s). As s was arbitrary, the conclusion follows. ⊓0

4 Residual Probability Protocols Are Optimal

Let Eopt(q) be the infimum of expectations of all p, q-simulation protocols. There
exist protocols with expectation at most 1/p (e.g., Example 2), so Eopt(q) ≤ 1/p.
A p, q-simulation protocol with start state s is optimal if Econs(s) = Eopt(q).

Theorem 3. For every p, q such that 0 < p ≤ 1/2 and 0 ≤ q ≤ 1, there exists
an optimal p, q-simulation protocol.

Proof. We show that Eopt(q) is attained at a state in the final F -coalgebra C.
Let s0, s1, . . . be a sequence of start states of p, q-protocols such that E(sn) is
decreasing and limn E(sn) = Eopt(q). Since E(s) and P (s) are preserved under
morphisms, the images of these states in C are also start states of p, q-protocols
in C and their expectations are the same, thus we can assume without loss of
generality that the sn are states of C1/p. Since C1/p is compact, there exists
a convergent subsequence with limit uq ∈ C1/p ∈ C1/p. Since P is continuous
(Lemma 3), P (uq) = q, thus uq is the start state of a p, q-protocol. By Lemma
4, E(uq) = Eopt(q). ⊓0

Theorem 4. For every p, there is a residual probability protocol Up that is op-
timal for every q.

Proof. Let uq be the optimal p, q-protocol constructed in Theorem 3. Consider
the coalgebra Up = ([0, 1], υ), where

υ(q) =

{
δ(uq) if δ(uq) ∈ {h,t}
λX ∈ {0, 1}.Pr(O(δ(uq)X) = h) if δ(uq) ∈ {0, 1}→ C.

We claim that for all q,

EU (q) = Eopt(q) Pr(O(q) = h) = q Pr(O(q) = t) = 1− q, (4)
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thus Up with start state q is an optimal p, q-simulation protocol. We first show
that

EU (q) ≤ Eopt(q) Pr(O(q) = h) ≤ q Pr(O(q) = t) ≤ 1− q (5)

by fixpoint induction.
For the first inequality of (5), define a property ϕ on S to be hereditary if

ϕ(β(s)0) and ϕ(β(s)1) whenever β(s) ∈ {0, 1}→ S and ϕ(s). The property

E(s) = Eopt(P (s)) (6)

is hereditary, because it says that s is an optimal protocol for its residual prob-
ability. But if s is, then so must be its successors; if not, then we could replace
them by a better protocol and thereby improve E(s) as well.

Now we proceed by fixpoint induction to show that EU (q) ≤ Eopt(q). It
suffices to show that Eopt is a fixpoint of the defining equation τ for EU .

τ(Eopt)(q)

=

{
0 if υ(q) ∈ {h,t}
1 + p · Eopt(υ(q)0) + (1− p) · Eopt(υ(q)1) if υ(q) ∈ [0, 1]2

(7)

=

{
0 if δ(uq) ∈ {h,t}
1 + p · Eopt(P (δ(uq)0)) + (1 − p) · Eopt(P (δ(uq)1)) if δ(uq) ∈ C2

(8)

=

{
0 if δ(uq) ∈ {h,t}
1 + p · EC(uP (δ(uq)0)

) + (1− p) ·EC(uP (δ(uq)1)
) if δ(uq) ∈ C2

(9)

=

{
0 if δ(uq) ∈ {h,t}
1 + p · EC(δ(uq)0) + (1− p) ·EC(δ(uq)1) if δ(uq) ∈ C2

(10)

= EC(uq) (11)

= Eopt(q). (12)

Inference (7) is by the definition of τ . Inference (8) is by the definition of υ(q).
Inference (9) is from the construction of Theorem 3. Inference (10) is by the fact
that δ(uq)1 and δ(uq)0 satisfy property (6), since uq does and the property is
hereditary, therefore

EC(δ(uq)X) = Eopt(P (δ(uq)X)) = EC(uP (δ(uq)X ))

for X ∈ {0, 1}. Inference (11) is by the definition of EC . Inference (12) is by
Theorem 3.

For the second inequality of (5), writing P (q) for Pr(O(q) = h), it suffices to
show that the identity function on [0, 1] is a fixpoint of the defining equation τ
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for P .

τ(λq.q)(q) =

⎧
⎪⎨

⎪⎩

1 if υ(q) = h

0 if υ(q) = t

p · (λq.q)(υ(q)0) + (1− p) · (λq.q)(υ(q)1) if υ(q) ∈ [0, 1]2

(13)

=

⎧
⎪⎨

⎪⎩

1 if υ(q) = h

0 if υ(q) = t

p · υ(q)0 + (1− p) · υ(q)1 if υ(q) ∈ [0, 1]2
(14)

=

⎧
⎪⎨

⎪⎩

1 if δ(uq) = h

0 if δ(uq) = t

p · P (δ(uq)0) + (1− p) · P (δ(uq)1) if δ(uq) ∈ C2

(15)

= P (uq) (16)

= q. (17)

Inference (13) is by definition of τ . Inference (14) is by the application of the
identity function. Inference (15) is by definition of υ. Inference (16) is by def-
inition of P (uq). Inference (17) is by the fact that uq is the start state of a
p, q-protocol.

The proof of the third inequality of (5) is symmetric.
Now we argue that all the inequalities (5) are actually equalities (4). By the

first inequality, the probability of halting is 1, since EU is finite. Since the last
two inequalities hold and the left-hand sides sum to 1, the last two inequalities
must be equalities. Then U with start state q is a p, q-simulation protocol, thus
Eopt(q) ≤ EU (q), therefore the first inequality of (5) is an equality as well. ⊓0

5 Properties of Eopt

We assume throughout this section and the next that (3 −
√
5)/2 ≤ p ≤ 1/2;

equivalently, (1− p)2 ≤ p ≤ 1− p.
For fixed p, a real number q ∈ [0, 1] is exceptional of degree d if it has a finite

binary prefix code with probabilities p, 1−p whose longest codeword is of length
d. The number q is exceptional if it is exceptional of some finite degree.

If q is exceptional of degree d, then so is 1 − q, and the pair of codes form a
finite loop-free p, q-protocol with maximum running time d. In this case q and
1− q are polynomial functions of p of degree d. The twelve exceptional values of
degree at most 2 are shown in Table 1.

Some rows of Table 1 collapse for certain degenerate values of p. For p = 1/2,
rows (iii), (iv), and (v) collapse and rows (ii) and (vi) collapse. For p = (3−

√
5)/2,

rows (ii) and (v) collapse. These are the only two degenerate values that cause
collapse. Rows (v) and (vii) would collapse for p = 1/3, but this case is ruled
out by the assumption p ≥ (3 −

√
5)/2 ≈ .382.
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Table 1. Exceptional values of degree at most 2

q 1− q degree Eopt

(i) 0 1 0 = 0
(ii) p 1− p 1 = 1
(iii) p(1− p) 1− p+ p2 2 = 1 + p
(iv) p2 1− p2 2 = 1 + p
(v) (1− p)2 p+ p(1− p) 2 = 2− p
(vi) 2p(1− p) p2 + (1− p)2 2 ≤ 2

The exceptional points form a countable dense subset of the unit interval. The
set is countable because there are countably many polynomials in p with integer
coefficients. It is dense because for any 0 ≤ a < b ≤ 1, for sufficiently large n
(viz., n > log1−p b−a), Pr(x) ≤ (1−p)n < b−a for all binary strings x of length
n, therefore a ≤

∑
x∈A Pr(x) ≤ b for some A ⊆ {0, 1}n.

Lemma 5. Let ([0, 1],β) be a greedy residual probability protocol with expecta-
tion E. If (3−

√
5)/2 ≤ p < 1/2, then

1. For q ≤ p or 1− p ≤ q, E(q) < 2.
2. For p < q < 1− p, E(q) < (2 − p)/(1− p+ p2).

If p = 1/2, then E(q) ≤ 2.

Proof. For q ∈ [0, p]∪[1−p, 1], either β(q) ∈ {h,t} or β(q)1 ∈ {h,t}, thus the
protocol takes at most one step with probability at least 1−p. For q ∈ (p, 1−p),
either β(q)0 = h and β(q)1 = (q−p)/(1−p) or β(q)0 = t and β(q)1 = q/(1−p).
In the former case, q < 1 − p ≤ 1 − (1 − p)2 so β(q)1 = (q − p)/(1 − p) < p. In
the latter case, (1 − p)2 ≤ p < q so β(q)1 = q/(1 − p) > 1 − p. In either case,
the protocol reenters the region [0, p] ∪ [1 − p, 1] in the next step. Thus E(q)
is bounded by M for q ∈ [0, p] ∪ [1 − p, 1] and by N for (p, 1 − p), where M
and N satisfy the system of recurrences

M = (1− p) + p(1 +N) = 1 + pN
N = p+ (1− p)(1 +M) = 1 + (1− p)M.

(18)

The unique bounded solution is

M =
1 + p

1− p+ p2
N =

2− p

1− p+ p2
,

thus

E(q) ≤

⎧
⎪⎪⎨

⎪⎪⎩

1 + p

1− p+ p2
if q ≤ p or 1− p ≤ q

2− p

1− p+ p2
if p < q < 1− p.

In the case q ≤ p or 1 − p ≤ q, the value is 2 for p = 1/2 and strictly less than
2 if p < 1/2. The inequality is also strict in the case p < q < 1 − p if p < 1/2,
since it is governed by the system (18). ⊓0
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We show that for p < 1/2, the function Eopt has a dense set of discontinuities
on the unit interval, and the function is self-similar but for a discrete set of
exceptions.

Lemma 6. For all non-exceptional q, Eopt(q) ≥ 1/(1−p), and for p < q < 1−p,
Eopt ≥ 2.

Proof. We will show in Lemma 8 that greedy is optimal on non-exceptional q,
and non-exceptionality is preserved by greedy steps. Thus the optimal protocol
is purely greedy on non-exceptional q. The remainder of the proof is similar to
the proof of the corresponding inequalities (3.14) and (3.15) of [8].

The first inequality follows from the observation that a greedy protocol can
do no better than to halt with probability 1 − p in every step, giving the same
expectation as a Bernoulli process with success probability 1− p.

For the second, if p < q < 1 − p, then after one greedy step, the residual
probability is either q′ = q/(1− p) > 1− p or q′ = (q − p)/(1− p) < p. In either
case, by the previous argument, Eopt(q′) ≥ 1/(1− p). Thus

Eopt(q) = 1 + (1− p)Eopt(q
′) ≥ 1 + (1− p)

1

1− p
= 2.

⊓0
Theorem 5. For p < 1/2, the function Eopt is everywhere discontinuous; that
is, every open subinterval of the closed unit interval contains a discontinuity.

Proof. The argument is very similar to one given in [8], with minor modifications
to account for exceptional points.

It follows from Lemmas 5 and 6 that Eopt has discontinuities at p and 1− p.
By Lemma 6, all non-exceptional q approaching p from above have Eopt(q) ≥ 2;
by Lemma 5, all non-exceptional q approaching p from below have Eopt(q) ≤
(1 + p)/(1− p+ p2) < 2; and Eopt(p) = 1.

Now we show that every nonempty open interval (a, b) contains a discontinu-
ity. If the interval (a, b) is entirely contained in one of the three regions (0, p),
(p, 1−p), or (1−p, 1), then a greedy step maps the non-exceptional elements of
(a, b) conformally to a larger subinterval. For example, if (a, b) ⊆ (0, p), then

Eopt(q) = 1 + pEopt(q/p)

for non-exceptional a < q < b, thus

Eopt(q/p) = (Eopt(q)− 1)/p

for a/p < q/p < b/p, so the non-exceptional elements of (a, b) are mapped
conformally onto the interval (a/p, b/p). But the length of this interval is (b −
a)/p, thus we have produced a longer interval.

A similar argument holds if (a, b) is contained in one of the intervals (p, 1−p)
or (1−p, 1). In each of these three cases, we can produce an interval of continuity
that is longer than (a, b) by a factor of at least 1/(1− p). This process can be
repeated at most log1−p(b− a) steps before the interval must contain one of the
discontinuities p or 1 − p. As the mappings were conformal on non-exceptional
points, the original interval (a, b) must have contained a discontinuity. ⊓0
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6 Algorithms

Throughout this section, as in the last, we assume that (3−
√
5)/2 ≤ p ≤ 1/2.

Lemma 7. For residual probability protocols, a greedy step is optimal at all but
finitely many exceptional q.

Proof. Suppose first that p < 1/2. By Lemma 5, Eopt ≤ 2 − ε for some ε > 0.
Suppose we have a residual probability protocol that is not greedy at q for some
0 < q ≤ p or 1 − p ≤ q < 1. If the protocol generates an infinite computation
path from q, then

E(q) ≥ p+ (1− p)(1 +
1

1− p
) = 2.

This is the minimum possible expectation with at least one an infinite path if the
protocol does not halt with probability at least 1−p in the first step. Truncating
at depth k, the running time would be

2− pk−1(1 − p)(k +
1

1− p
) = 2− pk−1(k(1− p) + 1),

and this is greater than any 2 − ε for sufficiently large k. By Lemma 5, any
protocol that is not greedy in the first step and generates a computation path
of length at least k cannot be optimal. But the only q that can generate com-
putation trees of depth k or less are the exceptional q of degree at most k, and
there are only finitely many of these.

If p = 1/2, the situation is even simpler. By Lemma 5, Eopt ≤ 2. In this case,
however, any impatient protocol is greedy. If the protocol is not impatient at q,
then all computation paths are of length at least 2. The only way this can be
optimal is if q is exceptional of degree 2, and all computation paths are of length
exactly 2. But according to Table 1, this is impossible: row (vi) collapses to row
(ii) for p = 1/2, so there is no such optimal computation.

Now let us consider the case p < q < 1 − p. Any strategy that is not greedy
in the first step must take at least 2 steps in all instances; it cannot halt in one
step with probability 1 − p, because that probability is too big to assign either
h or t. If the protocol generates an infinite computation path from q, then it
takes time at least

2 + p2(2 +
1

1− p
).

But N is less than this for p ≥ (3−
√
5)/2:

2− p

1− p+ p2
≤ 2 + p2(2 +

1

1− p
).

This can be shown by comparing derivatives. The derivative of the left-hand side
is negative for all points greater than 2 −

√
3, and 2 −

√
3 < (3 −

√
5)/2 ≤ p.
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The derivative of the right-hand side is positive for all p. The inequality holds
at 3/8, where the values are 104/49 and 401/160, respectively, and 2 −

√
3 <

3/8 < (3−
√
5)/2.

As above, by Lemma 5, any protocol that is not greedy but generates a com-
putation path of sufficient length k cannot be optimal. So if the optimal protocol
is not greedy at q, then q must be exceptional of degree at most k. ⊓0

Lemma 8. Assume (3−
√
5)/2 ≤ p ≤ 1/2. At all non-exceptional points, greedy

is globally optimal.

Proof. By Lemma 7, the optimal local strategy at all but finitely many excep-
tional points is greedy. But it is not difficult to show that a greedy step preserves
non-exceptionality, therefore for non-exceptional points, greedy is globally opti-
mal as well. ⊓0

Theorem 6. For p = 1/2, Eopt(q) = 2 but for the following exceptional values:
Eopt(k/2n) = (2n − 1)/2n−1, k ≤ 2n odd. Greedy is optimal for all q.

Proof. Lemmas 5 and 7 establish that Eopt(q) ≤ 2 for all q and that Eopt(q) = 2
for all nonexceptional q. Any non-greedy strategy takes at least two steps on all
computation paths, thus greedy is optimal for all q. For the exceptional points
mentioned in the statement of the theorem, it is easily checked inductively that
the greedy strategy behaves as stated. Moreover, all exceptional points are of
this form. ⊓0

6.1 An Approximation Algorithm

Were it not for the ambiguous region (p, 1 − p), we would be done. We could
check in each step whether q is one of finitely many exceptional values; if so,
obtain the optimal strategy by table lookup, and if not, take a greedy step.
Note that this gives an optimal protocol for p = 1/2, as the ambiguous region is
empty.

Unfortunately, for q in the ambiguous region (p, 1− p), there are always two
choices, and we do not know which will ultimately be the better choice. To
approximate the globally optimal expectation Eopt to within any desired ε > 0,
we will simulate all possible greedy choices down to a fixed depth k depending
on ε.

Let d be a bound on the degree of those exceptional points for which a local
greedy step is not optimal, as guaranteed by Lemma 7. Let G be the set of
exceptional points of degree at most d+ k. As G is a finite set, whenever q ∈ G
during the execution of the protocol, we can obtain the optimal local action by
table lookup and take that action.

Otherwise, on input q ̸∈ G, if q is not in the ambiguous region (p, 1 − p),
we take the unique possible greedy step. This is optimal, by Lemma 7. If q ∈
(p, 1−p), we have two greedy choices. We know that one of them is optimal, but
we do not know which. In this case we simulate all possible greedy paths down to
depth k. This involves branching when q is in the ambiguous region (p, 1−p) to
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simulate the two possible greedy steps. No greedy path ever encounters a q ∈ G
by choice of G, so we know that some greedy path is optimal down to depth k.

At depth k, we have several paths x that are currently being simulated. One
of them is optimal. For each such x, let Ex be the expected time to halt before
reaching the end of x, given that the path x is taken; that is, Ex is the expected
length of a shortest path prefix-incomparable to x. Let fx(q) ∈ [0, 1] be the
residual probability after following path x if the computation has not halted by
then. Then

Eopt(q) = min
x

(Ex + Pr(x) · (k + Eopt(fx(q))))

≥ min
x

(Ex + Pr(x) · k).

But for any such x, continuing from x with a purely greedy strategy yields an
expectation no worse than

Ex + Pr(x) · (k + 2) (19)

by Lemma 5, and

min
x

(Ex + Pr(x) · (k + 2)) ≤ min
x

(Ex + Pr(x) · k) + 2(1− p)k

≤ Eopt(q) + ε,

provided k is large enough that (1 − p)k ≤ ε/2, that is, k ≥ log1−p(ε/2). Thus
the greedy strategy x that minimizes (19) will be within ε of optimal.

6.2 Analysis

The algorithm constructs a tree with 2k/2 nodes in the worst case, where k =
log1−p(ε/2). It is 2

k/2 and not 2k because branching occurs at most once every

two steps. The algorithm thus runs in time bounded by 2k/2 ≤ (ε/2)1/ log(1−p)2 .
The exponent 1/ log(1 − p)2 ranges between −.72 and −.5 for p in the range
(3−

√
5)/2 ≤ p ≤ 1/2, thus the algorithm is better than linear in 1/ε.

7 Conclusion

Several questions present themselves for further investigation.
Our analysis gives a worst-case time bound less than linear in 1/ε, but em-

pirical evidence suggests that the true time bound is exponentially better and
that we actually achieve the optimal on all but a very sparse set. In the many
experiments we have tried, the size of the set of candidate greedy paths x does
not grow beyond two if demonstrably suboptimal paths are pruned along the
way, and the algorithm invariably exits the loop with one candidate, which must
be optimal.

The restriction p ≥ (3−
√
5)/2 was made to simplify many of the proofs, but

it should be possible to eliminate it.
Most importantly, it would be nice to know whether the optimal protocol is

computable for all rational p and q.
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