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Abstract

We introduce a sequent system for basic category-theoretic reasoning
suitable for computer implementation. We illustrate its use by giving
a complete formal proof that the functor categories Fun[C× D, E] and
Fun[C, Fun[D, E]] are naturally isomorphic.

1 Introduction

Since its invention in 1945 by Samuel Eilenberg and Saunders Mac Lane [7],
category theory has had a profound impact in many areas of mathematics and
computer science; see for example [8, 9, 11, 13, 16].

Unfortunately, many basic category-theoretic facts, although easy to state,
can be quite tedious to verify formally. For example, consider the well-known
fact that Cat, the category of (small) categories, is cartesian-closed [10, Ex. 1,
p. 45], or more generally, that there exists a natural isomorphism of functor
categories

Fun[C× D,E] ∼= Fun[C,Fun[D,E]] (1)

[10, Ex. 2, p. 45]. This statement is deceptively concise in that it contains
a large amount of compressed information. A complete formal verification by
hand would be quite onerous due to the enormous number of low-level details
that must be checked. This task is uninteresting, and one would like to automate
as much of it as possible.

In print, authors often do not bother to provide formal details of the con-
structions that establish such basic facts, let alone proofs of correctness. Those
arguments that are explicitly given are typically expressed in terms of com-
muting diagrams, and verification amounts to visual arrow chasing. This is
adequate for humans, but does not lend itself well to automation. Eklund et al.
[8] present a graphical technique aimed at simplifying the verification of such



category-theoretic constructions, but again this is meant for human consump-
tion and not for computers.

There have been a few attempts at automating parts of category theory
[3, 5, 14, 15]. The closest in spirit to the present work is the system of Cáccamo
and Winskel [5], which we denote here by CW. Their system is a second-order
sequent calculus in which types denote categories and expressions denote func-
tors. Equational judgements are interpreted as natural isomorphisms between
functors. The system can prove that a certain expressions are functorial in their
free variables or that two expressions are naturally isomorphic. In addition, it
is able to handle arguments involving limits and more general ends, thereby
supporting algebraic manipulation of universal constructions. They suggest an
approach to implementation of the calculus in the theorem prover Isabelle/HOL
[12].

One omission in the work of Cáccamo and Winskel is machinery for reason-
ing about the more primitive building blocks on which the theory is based. In
this paper we attempt to fill this gap. We present a first-order sequent calculus
in the style of CW that captures the basic properties of categories, functors, and
natural transformations. As with CW, our system is a mix of typing judgements
and equational reasoning, but unlike CW, types are sets of objects and homsets
of (small) categories, expressions represent objects and arrows, and the equa-
tions are interpreted as equality of objects and arrows, not isomorphisms. We
have used the system to prove the natural isomorphism (1) mentioned above,
among other basic category-theoretic facts. The system is thus complementary
to CW and might coexist with it in a supporting role.

The chief differences between the two systems are:

(i) Our system is strictly first-order, whereas CW is primarily second-order. It
is noteworthy that many basic category-theoretic facts can be established
without resorting to any second-order constructs. This is important from
both a complexity-theoretic and proof-theoretic standpoint.

(ii) CW contains no pure equality construct. Equations are interpreted as iso-
morphisms. In contrast, our system can reason about equality of expres-
sions representing objects, arrows, functors, and natural transformations.

(iii) CW assumes several high-level theorems such as the Yoneda embedding as
axioms in the form of proof rules, whereas our system operates at a more
primitive level. It captures the fundamental definitions of functors and
natural transformations in a few symmetric first-order introduction and
elimination rules. It is quite concise compared to CW, and it is interesting
to see just how far one can go with so little machinery.

(iv) The implementation as envisioned by Cáccamo and Winskel would be in
the form of a proof assistant, where an expert user would direct the evo-
lution of the proof. In contrast, after working out several examples in our
system, it is apparent that a large part of the reasoning, if not all, can
be fully automated. One observes that the application of rules is largely
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syntax-directed and deterministic. Modulo equational reasoning, argu-
ments tend to break down into the application of analysis (elimination)
rules followed by the application of synthesis (introduction) rules, sug-
gesting a normal form for proofs. Equational reasoning involves primarily
substitution of equals for equals and extensionality rules. The extension-
ality rules are not the general extensionality (η-) rules of the typed lambda
calculus, but rather rules of a more limited first-order form (rules (18)-(21)
below), and their use again tends to exhibit a discernable normal form.

As with CW, our system is quite amenable to computer implementation.
This might be done in an existing framework such as Isabelle/HOL [12] or NuPrl
[6], however the higher-order facilities of these systems would not be required.

2 Notational Conventions

We assume familiarity with the basic definitions and notation of category theory
[2, 10]. To simplify notation, we will adhere to the following conventions.

• Symbols in sans-serif, such as C, always denote categories. The categories
Set and Cat are the categories of sets and set functions and of (small)
categories and functors, respectively.

• If C is a category, we use the symbol C to denote both the category C and
the set of objects of C.

• We write A : C to indicate that A is an object of C. Composition is
denoted by the symbol ◦ and the identity on object A : C is denoted 1A.
The use of a symbol in sans serif, such as C, implicitly carries the type
assertion C : Cat.

• We write h : C(A,B) to indicate that h is an arrow of the category C with
domain A and codomain B.

• Fun[C,D] denotes the functor category whose objects are functors from
C to D and whose arrows are natural transformations on such functors.
This is the same as the category denoted DC in [10]. Thus F : Fun[C,D]
indicates that F is a functor from C to D and ϕ : Fun[C,D](F,G) indicates
that ϕ is a natural transformation with domain F and codomain G, where
F,G : Fun[C,D].

• Cop denotes the opposite category of C.

• f : X → Y indicates that f : Set(X,Y ), that is, f is a set function from
set X to set Y . We use the symbol → only in this context. Function
application is written as juxtaposition and associates to the left.

• F 1 and F 2 denote the object and arrow components, respectively, of a
functor F . Thus if F : Fun[C,D], A,B : C, and h : C(A,B), then
F 1A,F 1B : D and F 2h : D(F 1A,F 1B).
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• Function application binds tighter than the operators 1 and 2. Thus the
expression F 1A2 should be parsed (F 1A)2.

• C× D denotes the product of categories C and D. Its objects are pairs
(A,X) : C× D, where A : C and X : D, and its arrows are pairs (f, h) :
(C× D)((A,X), (B, Y )), where f : C(A,B) and h : D(X,Y ). Composition
and identities are defined componentwise; that is,

(g, k) ◦ (f, h) def= (g ◦ f, k ◦ h) (2)

1(A,X)
def= (1A, 1X). (3)

• We sometimes omit the commas in triples, e.g.

(CDE) def= (C,D,E)

(PQR) def= (P,Q,R).

3 Rules

The rules involve sequents Γ ` α, where Γ is a type environment (set of type
judgements on atomic symbols) and α is either a type judgement or an equation.
There is a set of rules for functors and a set for natural transformations, as well as
some rules covering the basic properties of categories and equational reasoning.

The rules for functors and natural transformations are the most interesting.
They are divided into symmetric sets of rules for analysis (elimination) and
synthesis (introduction).

Categories

There is a collection of rules covering the basic properties of categories, which
are essentially the rules of typed monoids. These rules include typing rules for
composition and identities

Γ ` A,B,C : C, Γ ` f : C(A,B), Γ ` g : C(B,C)
Γ ` g ◦ f : C(A,C)

(4)

Γ ` A : C

Γ ` 1A : C(A,A)
, (5)

as well as equational rules for associativity and two-sided identity.

Functors

A functor F from C to D is determined by its object and arrow components
F 1 and F 2. The components must be of the correct type and must preserve
composition and identities. These properties are captured in the following rules.
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Analysis

Γ ` F : Fun[C,D], Γ ` A : C

Γ ` F 1A : D
(6)

Γ ` F : Fun[C,D], Γ ` A,B : C, Γ ` f : C(A,B)
Γ ` F 2f : D(F 1A,F 1B)

(7)

Γ ` F : Fun[C,D], Γ ` A,B,C : C, Γ ` f : C(A,B), Γ ` g : C(B,C)
Γ ` F 2(g ◦ f) = F 2g ◦ F 2f

(8)

Γ ` F : Fun[C,D], Γ ` A : C

Γ ` F 21A = 1F 1A
(9)

Synthesis

Γ, A : C ` F 1A : D
Γ, A,B : C, g : C(A,B) ` F 2g : D(F 1A,F 1B)
Γ, A,B,C : C, f : C(A,B), g : C(B,C) ` F 2(g ◦ f) = F 2g ◦ F 2f
Γ, A : C ` F 21A = 1F 1A

Γ ` F : Fun[C,D]
(10)

Natural Transformations

A natural transformation ϕ : Fun[C,D](F,G) is a function that for each object
A : C gives an arrow ϕA : D(F 1A,G1A), called the component of ϕ at A, such
that for all arrows g : C(A,B), the following diagram commutes:

F 1A
F 2g- F 1B

G1A

ϕA

?
G2g- G1B

ϕB

?

(11)

Composition and identities are defined by

(ϕ ◦ ψ)A def= ϕA ◦ ψA (12)

1FA
def= 1F 1A. (13)

The property (11), along with the typing of ϕ, are captured in the following
rules.
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Analysis

Γ ` ϕ : Fun[C,D](F,G)
Γ ` F,G : Fun[C,D]

(14)

Γ ` ϕ : Fun[C,D](F,G), Γ ` A : C

Γ ` ϕA : D(F 1A,G1A)
(15)

Γ ` ϕ : Fun[C,D](F,G), Γ ` A,B : C, Γ ` g : C(A,B)
Γ ` ϕB ◦ F 2g = G2g ◦ ϕA

(16)

Synthesis

Γ ` F,G : Fun[C,D]
Γ, A : C ` ϕA : D(F 1A,G1A)
Γ, A,B : C, g : C(A,B) ` ϕB ◦ F 2g = G2g ◦ ϕA

Γ ` ϕ : Fun[C,D](F,G)
(17)

Equational Reasoning

The chief tool for equational reasoning is substitution of equals for equals. We
also provide extensionality rules for objects of functional type:

Γ ` F,G : Fun[C,D], Γ, A : C ` F 1A = G1A

Γ ` F 1 = G1
(18)

Γ ` F,G : Fun[C,D], Γ, A,B : C, g : C(A,B) ` F 2g = G2g

Γ ` F 2 = G2
(19)

Γ ` F,G : Fun[C,D], Γ ` F 1 = G1, Γ ` F 2 = G2

Γ ` F = G
(20)

Γ ` F,G : Fun[C,D]
Γ ` ϕ,ψ : Fun[C,D](F,G)
Γ, A : C ` ϕA = ψA

Γ ` ϕ = ψ
(21)

Certain equations on objects and arrows are assumed as axioms, including
the associativity of composition and two-sided identity rules for arrows, the
equations (2) and (3) for products, and the equations (12) and (13) for natural
transformations.

We also allow equations on types and substitution of equals for equals in
type expressions. Any such equation α = β takes the form of a rule

Γ ` A : α
Γ ` A : β

. (22)

We postulate as axioms the type equations

Cat(C,D) = Fun[C,D] (23)
C = Cop (24)

C(A,B) = Cop(B,A). (25)
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Other Rules

There are also various rules for products, weakening, and other structural rules;
see [5]. These are quite standard and do not bear explicit mention.

4 An Application

We illustrate the system by giving a formal proof of the following fact.

Theorem 4.1 ([10, Ex. 2, p. 45]) Let C,D,E be categories. Then

Fun[C× D,E] ∼= Fun[C,Fun[D,E]],

where ∼= denotes isomorphism of categories. The isomorphism is natural in
C,D, and E.

Proof. The proof will be broken into four steps:

1. the construction of a functor

θ(CDE) : Fun[Fun[C× D,E],Fun[C,Fun[D,E]]];

2. the construction of a functor

η(CDE) : Fun[Fun[C,Fun[D,E]],Fun[C× D,E]];

3. the demonstration that θ(CDE) and η(CDE) are inverses;

4. establishing naturality.

In step 4, we show that the functors θ(CDE) and η(CDE) are natural in the
parameters C,D,E; that is, θ and η are natural transformations with components
θ(CDE) and η(CDE). However, we will not need to make the dependence on
(CDE) explicit until step 4, so to save notation, we will write θ for θ(CDE) and
η for η(CDE) in steps 1–3.

Step 1 For this step, we will work in the following type environment:

F,G,H : Fun[C× D,E]

A,B,C : C

X,Y, Z : D

f : C(A,B)
g : C(B,C)
h : D(X,Y )
k : D(Y, Z)
ϕ : Fun[C× D,E](F,G)
ψ : Fun[C× D,E](G,H).
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Under these assumptions, define

θ1F 1A1X
def= F 1(A,X) : E (26)

θ1F 1A2h
def= F 2(1A, h) : E(F 1(A,X), F 1(A, Y )) (27)

θ1F 2fX
def= F 2(f, 1X) : E(F 1(A,X), F 1(B,X)) (28)

θ2ϕAX
def= ϕ(A,X) : E(F 1(A,X), G1(A,X)). (29)

The type judgement in (26) follows from (6); in (27) and (28), from (5) and (7);
and in (29), from (15). We must verify that the definitions (26)–(29) define a
functor θ of the correct type.

It follows from (26)–(29) that

θ1F 1A2h : E(θ1F 1A1X, θ1F 1A1Y ) (30)
θ1F 2fX : E(θ1F 1A1X, θ1F 1B1X) (31)
θ2ϕAX : E(θ1F 1A1X, θ1G1A1X). (32)

Also, using (27) and the basic equational properties of functors and composition,

θ1F 1A2(g ◦ h) = F 2(1A, g ◦ h) = F 2(1A, g) ◦ F 2(1A, h)
= θ1F 1A2g ◦ θ1F 1A2h (33)

θ1F 1A21X = F 2(1A, 1X) = F 2(1(A,X))
= 1F 1(A,X) = 1θ1F 1A1X . (34)

Applying the rule (10) with premises (26), (30), (33), and (34), we have

θ1F 1A : Fun[D,E]. (35)

Since A : C was arbitrary, the conclusion (35) essentially says that the object
component θ1F 1 of θ1F is a function of type C → Fun[D,E]. We cannot express
this, since the type constructor → is not part of the language. Nevertheless, it
is enough to show what we have shown in order to establish a premise in the
application below of the synthesis rules (10) and (17).

For the arrow component θ1F 2 of θ1F , using (27) and (28),

θ1F 2fY ◦ θ1F 1A2h = F 2(f, 1Y ) ◦ F 2(1A, h) = F 2(f, h)
= F 2(1B , h) ◦ F 2(f, 1X)
= θ1F 1B2h ◦ θ1F 2fX. (36)

Applying the rule (17) with premises (35), (31), and (36),

θ1F 2f : Fun[D,E](θ1F 1A, θ1F 1B). (37)

Again, since f : C(A,B) was arbitrary, we have essentially shown that θ1F 2 is
a function whose type in a higher-order system would be expressed

∀A : C . ∀B : C . C(A,B) → Fun[D,E](θ1F 1A, θ1F 1B),
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but our first-order language cannot express this.
By (28), (8), and (12),

θ1F 2(g ◦ f)X = F 2(g ◦ f, 1X) = F 2(g, 1X) ◦ F 2(f, 1X)
= θ1F 2gX ◦ θ1F 2fX = (θ1F 2g ◦ θ1F 2f)X,

and by (28), (9), (26), and (13),

θ1F 21AX = F 2(1A, 1X) = F 21(A,X)

= 1F 1(A,X) = 1θ1F 1A1X = 1θ1F 1AX,

therefore by extensionality (21),

θ1F 2(g ◦ f) = θ1F 2g ◦ θ1F 2f, (38)
θ1F 21A = 1θ1F 1A. (39)

Now applying the rule (10) with premises (35), (37), (38), and (39),

θ1F : Fun[C,Fun[D,E]]. (40)

Since F : Fun[C× D,E] was arbitrary, this will imply that the object component
θ1 of θ is of the correct type.

For the arrow component θ2, by (29), (27), and (16),

θ2ϕAY ◦ θ1F 1A2h = ϕ(A, Y ) ◦ F 2(1A, h)
= G2(1A, h) ◦ ϕ(A,X)
= θ1G1A2h ◦ θ2ϕAX. (41)

Using rule (17) with premises (35), (32), and (41),

θ2ϕA : Fun[D,E](θ1F 1A, θ1G1A). (42)

In addition, using (29), (28), and (16),

(θ2ϕB ◦ θ1F 2f)X = θ2ϕBX ◦ θ1F 2fX = ϕ(B,X) ◦ F 2(f, 1X)
= G2(f, 1X) ◦ ϕ(A,X) = θ1G2fX ◦ θ2ϕAX
= (θ1G2f ◦ θ2ϕA)X. (43)

Since X : D was arbitrary, by (21),

θ2ϕB ◦ θ1F 2f = θ1G2f ◦ θ2ϕA. (44)

It follows from rule (17) with (40), (42), and (44) as premises that

θ2ϕ : Fun[C,Fun[D,E]](θ1F, θ1G). (45)
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Using (29), (26), and the basic properties of natural transformations (12)
and (13),

θ2(ψ ◦ ϕ)AX = (ψ ◦ ϕ)(A,X) = ψ(A,X) ◦ ϕ(A,X)
= θ2ψAX ◦ θ2ϕAX = (θ2ψ ◦ θ2ϕ)AX,

θ21FAX = 1F (A,X) = 1F 1(A,X) = 1θ1F 1A1X

= 1θ1F 1AX = 1θ1FAX.

Since A : C and X : D were arbitrary, by two applications of extensionality (21),
we have

θ2(ψ ◦ ϕ) = θ2ψ ◦ θ2ϕ (46)
θ21F = 1θ1F . (47)

It follows from rule (10) with (40), (45), (46), and (47) as premises that

θ : Fun[Fun[C× D,E],Fun[C,Fun[D,E]]].

This establishes that θ is a functor of the correct type.

Step 2 For this step, we will work in the following type environment:

F,G,H : Fun[C,Fun[D,E]]

A,B,C : C

X,Y, Z : D

f : C(A,B)
g : C(B,C)
h : D(X,Y )
k : D(Y,Z)
ϕ : Fun[C,Fun[D,E]](F,G)
ψ : Fun[C,Fun[D,E]](G,H).

Under these assumptions, define

η1F 1(A,X) def= F 1A1X : E (48)

η1F 2(f, h) def= F 2fY ◦ F 1A2h = F 1B2h ◦ F 2fX (49)

η2ϕ(A,X) def= ϕAX : E(F 1A1X,G1A1X) (50)

(we will argue that the two terms on the right-hand side of (49) are equal
and discuss their typing below). The type judgement in (48) follows from two
applications of (6); and in (50), from two applications of (15). It follows from
(48) and (50) that

η2ϕ(A,X) : E(η1F 1(A,X), η1G1(A,X)). (51)
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First we show that the types of η1F 1 and η1F 2 are correct. For η1F 1, since
A : C and X : D were arbitrary, (48) will imply that η1F 1 is of the correct type.

For η1F 2, by (6), (7), and (48), we have

F 1A2h : E(η1F 1(A,X), η1F 1(A, Y ))
F 1B2h : E(η1F 1(B,X), η1F 1(B, Y )).

Also, by (7), (15), and (48), we have

F 2fX : E(η1F 1(A,X), η1F 1(B,X))
F 2fY : E(η1F 1(A, Y ), η1F 1(B, Y )).

Thus for (f, h) : (C× D)((A,X), (B, Y )),

F 2fY ◦ F 1A2h, F 1B2h ◦ F 2fX : E(η1F 1(A,X), η1F 1(B, Y )).

Since F 2f : Fun[D,E](F 1A,F 1B) by (7),

F 2fY ◦ F 1A2h = F 1B2h ◦ F 2fX

by (16), therefore η1F 2(f, h) is well defined by (49), and

η1F 2(f, h) : E(η1F 1(A,X), η1F 1(B, Y )). (52)

To show that η1F 2 respects composition and identities, we reason equation-
ally.

η1F 2(g, k) ◦ η1F 2(f, h) = F 1C2k ◦ F 2gY ◦ F 2fY ◦ F 1A2h by (49)
= F 1C2k ◦ (F 2g ◦ F 2f)Y ◦ F 1A2h by (12)
= F 1C2k ◦ F 2(g ◦ f)Y ◦ F 1A2h

= F 1C2k ◦ F 1C2h ◦ F 2(g ◦ f)X by (16)
= F 1C2(k ◦ h) ◦ F 2(g ◦ f)X
= η1F 2(g ◦ f, k ◦ h) by (49)
= η1F 2((g, k) ◦ (f, h)) (53)

η1F 21(A,X) = η1F 2(1A, 1X)

= F 21AX ◦ F 1A21X by (49)
= 1F 1AX ◦ 1F 1A1X by (9)
= 1F 1A1X ◦ 1F 1A1X by (13)
= 1η1F 1(A,X) by (48). (54)

By rule (10) with (48), (52), (53), and (54) as premises,

η1F : Fun[C× D,E]. (55)
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Now we wish to show using (17) that η2ϕ : Fun[C× D,E](η1F, η1G). For
the typing, from (7) and (15), we have

F 2f : Fun[D,E](F 1A,F 1B)
G2f : Fun[D,E](G1A,G1B)
ϕA : Fun[D,E](F 1A,G1A)
ϕB : Fun[D,E](F 1B,G1B),

therefore by (16),

ϕB ◦ F 2f = G2f ◦ ϕA : Fun[D,E](F 1A,G1B). (56)

Reasoning equationally to establish the third premise of (17),

η2ϕ(B, Y ) ◦ η1F 2(f, h) = ϕBY ◦ F 2fY ◦ F 1A2h by (49) and (50)
= (ϕB ◦ F 2f)Y ◦ F 1A2h by (12)
= G1B2h ◦ (ϕB ◦ F 2f)X by (16)
= G1B2h ◦ (G2f ◦ ϕA)X by (56)
= G1B2h ◦G2fX ◦ ϕAX by (12)
= η1G2(f, h) ◦ η2ϕ(A,X) by (49) and (50).

This fact together with (55) and (51) establish all the premises of (17), therefore

η2ϕ : Fun[C× D,E](η1F, η1G). (57)

Finally, reasoning equationally, we have

η2(ψ ◦ ϕ)(A,X) = (ψ ◦ ϕ)AX by (50)
= ψAX ◦ ϕAX by (12) twice
= η2ψ(A,X) ◦ η2ϕ(A,X) by (50)
= (η2ψ ◦ η2ϕ)(A,X) by (12),

η21F (A,X) = 1FAX by (50)
= 1F 1A1X by (13) twice
= 1η1F 1(A,X) by (48)
= 1η1F (A,X) by (13).

Since A : C and X : D were arbitrary,

η2(ψ ◦ ϕ) = η2ψ ◦ η2ϕ (58)
η21F = 1η1F . (59)

By (10) using (55), (57), (58), and (59) as premises,

η : Fun[Fun[C,Fun[D,E]],Fun[C× D,E]].

This establishes that η is a functor of the correct type.
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Step 3 For this step, we work in the following type environment:

F,G : Fun[C× D,E]

H,K : Fun[C,Fun[D,E]]

A,B : C

X,Y : D

f : C(A,B)
h : D(X,Y )
ϕ : Fun[C× D,E](F,G)
ψ : Fun[C,Fun[D,E]](H,K).

To show that θ1 and η1 are inverses, by (26)–(28) and (48)–(49),

η1(θ1F )1(A,X) = θ1F 1A1X = F 1(A,X),
η1(θ1F )2(f, h) = θ1F 2fY ◦ θ1F 1A2h = F 2(f, h).

By extensionality, η1(θ1F ) = F .
Also, by (26) and (48),

θ1(η1H)1A1X = η1H1(A,X) = H1A1X,

and by (27), (49), (9), and (13),

θ1(η1H)1A2h = η1H2(1A, h) = H1A2h ◦H21AX

= H1A2h ◦ 1H1AX = H1A2h ◦ 1H1A1X = H1A2h.

Since X : D and h : D(X,Y ) were arbitrary, θ1(η1H)1A = H1A, and since A : C
was arbitrary, θ1(η1H)1 = H1. In addition, using (28), (49), and (9),

θ1(η1H)2fX = η1H2(f, 1X) = H2fX ◦H1A21X

= H2fX ◦ 1H1A1X = H2fX,

and since X : D and f : C(A,B) were arbitrary, θ1(η1H)2 = H2, therefore
θ1(η1H) = H.

To show that θ2 and η2 are inverses, by (29) and (50),

θ2(η2ψ)AX = η2ψ(A,X) = ψAX

η2(θ2ϕ)(A,X) = θ2ϕAX = ϕ(A,X).

Since A : C and X : D were arbitrary, θ2(η2ψ) = ψ and η2(θ2ϕ) = ϕ.

Step 4 This step turns out to be the most involved of the four steps. For the
remainder of the proof we will suppress detail in equational arguments, concen-
trating on the overall structure of the proof. All of the equational arguments
are of the same flavor as those in steps 1–3 and are no more difficult.
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Let Cat3 abbreviate Catop × Catop × Cat.
Recall that the symbols θ and η were used as abbreviations for θ(CDE) and

η(CDE) in steps 1–3 above. Although the constructions and proofs of steps 1–3
depended on the parameters C, D, and E, they did so in a uniform way, so it
was not necessary to mention the dependence explicitly. In a sense, the very
fact that we were able to carry out steps 1–3 without reference to the particular
nature of the categories C, D, and E is an indication that the construction was
natural.

We would like to prove this formally. In this step, therefore, we will write
θ(CDE) and η(CDE) for what was abbreviated as θ and η, respectively, in steps
1–3. The symbols θ and η will now take on their true meaning as natural
transformations

θ : Fun[Cat3,Cat](U, V )
η : Fun[Cat3,Cat](V,U),

of which θ(CDE) and η(CDE) are the components, for suitably defined functors
U, V : Fun[Cat3,Cat]. We must derive this typing of θ and η to establish
naturality.

For the first part of this step, we work in the following type environment:

P : Fun[L,C] = Cat(L,C) = Catop(C, L)
Q : Fun[M,D] = Cat(M,D) = Catop(D,M)
R : Fun[E,N] = Cat(E,N)
I : Fun[P, L] = Cat(P, L) = Catop(L,P)
J : Fun[Q,M] = Cat(Q,M) = Catop(M,Q)
K : Fun[N,R] = Cat(N,R)

F,G,H : Fun[C× D,E]

ϕ : Fun[C× D,E](F,G)
ψ : Fun[C× D,E](G,H)

L,M,N : Fun[C,Fun[D,E]]

σ : Fun[C,Fun[D,E]](L,M)
τ : Fun[C,Fun[D,E]](M,N)

A,B,C : L

X,Y, Z : M

f : L(A,B)
g : L(B,C)
h : M(X,Y )
k : M(Y,Z).

First we define U and V and establish that they are of the correct type.

14



Define

U1(CDE) def= Fun[C× D,E] : Cat (60)

U2(PQR)1F 1(A,X) def= R1(F 1(P 1A,Q1X)) : N (61)

U2(PQR)1F 2(f, h) def= R2(F 2(P 2f,Q2h))
: N(R1(F 1(P 1A,Q1X)), R1(F 1(P 1B,Q1Y )))
: N(U2(PQR)1F 1(A,X), U2(PQR)1F 1(B, Y )) (62)

U2(PQR)2ϕ(A,X) def= R2(ϕ(P 1A,Q1X))
: N(R1(F 1(P 1A,Q1X)), R1(G1(P 1A,Q1X)))
: N(U2(PQR)1F 1(A,X), U2(PQR)1G1(A,X)) (63)

The typing of the expressions on the right-hand sides of these equations fol-
lows from the analysis rules for functors and natural transformations and from
substitution of (61).

By equational reasoning using (62), (2) and (8) for the first equation and
(61), (62), (3), and (9) for the second,

U2(PQR)1F 2((g, k) ◦ (f, h))
= U2(PQR)1F 2(g, k) ◦ U2(PQR)1F 2(f, h) (64)

U2(PQR)1F 21(A,X) = 1U2(PQR)1F 1(A,X). (65)

We can conclude from (10) using (61), (62), (64), and (65) as premises that

U2(PQR)1F : Fun[L×M,N] (66)

and similarly

U2(PQR)1G : Fun[L×M,N] (67)

From (16), we have

ϕ(P 1B,Q1Y ) ◦ F 2(P 2f,Q2h) = G2(P 2f,Q2h) ◦ ϕ(P 1A,Q1X).

By equational reasoning using this, (62), and (63),

U2(PQR)2ϕ(B, Y ) ◦ U2(PQR)1F 2(f, h)
= U2(PQR)1G2(f, h) ◦ U2(PQR)2ϕ(A,X) (68)

By (17) with (66), (67), (63), and (68) as premises,

U2(PQR)2ϕ : Fun[L×M,N](U2(PQR)1F,U2(PQR)1G). (69)

Equational reasoning using (63), (61), (12), and (13) yields

U2(PQR)2(ψ ◦ ϕ)(A,X) = (U2(PQR)2ψ ◦ U2(PQR)2ϕ)(A,X)
U2(PQR)21F (A,X) = 1U2(PQR)1F (A,X),
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and since A : L and X : M were arbitrary,

U2(PQR)2(ψ ◦ ϕ) = U2(PQR)2ψ ◦ U2(PQR)2ϕ (70)
U2(PQR)21F = 1U2(PQR)1F . (71)

By (10) using (66), (69), (70), and (71) as premises,

U2(PQR) : Fun[Fun[C× D,E],Fun[L×M,N]],

thus by (23) and (60),

U2(PQR) : Cat(U1(CDE), U1(LMN)). (72)

The following equations can be established by purely equational reasoning:

U2((IJK ) ◦ (PQR))1F 1(A,X) = (U2(IJK ) ◦ U2(PQR))1F 1(A,X)
U2((IJK ) ◦ (PQR))1F 2(f, h) = (U2(IJK ) ◦ U2(PQR))1F 2(f, h)
U2((IJK ) ◦ (PQR))2ϕ(A,X) = (U2(IJK ) ◦ U2(PQR))2ϕ(A,X)

U211
(CDE)F

1(A,X) = 11
U1(CDE)F

1(A,X)

U211
(CDE)F

2(f, h) = 11
U1(CDE)F

2(f, h)

U212
(CDE)ϕ(A,X) = 12

U1(CDE)ϕ(A,X).

Since A,X, f , and h were arbitrary, by the extensionality rules,

U2((IJK ) ◦ (PQR))1F 1 = (U2(IJK ) ◦ U2(PQR))1F 1

U2((IJK ) ◦ (PQR))1F 2 = (U2(IJK ) ◦ U2(PQR))1F 2

U2((IJK ) ◦ (PQR))2ϕ = (U2(IJK ) ◦ U2(PQR))2ϕ
U211

(CDE)F
1 = 11

U1(CDE)F
1

U211
(CDE)F

2 = 11
U1(CDE)F

2

U212
(CDE)ϕ = 12

U1(CDE)ϕ.

By extensionality (20),

U2((IJK ) ◦ (PQR))1F = (U2(IJK ) ◦ U2(PQR))1F
U211

(CDE)F = 11
U1(CDE)F,

and since F and ϕ were arbitrary,

U2((IJK ) ◦ (PQR))1 = (U2(IJK ) ◦ U2(PQR))1

U2((IJK ) ◦ (PQR))2 = (U2(IJK ) ◦ U2(PQR))2

U211
(CDE) = 11

U1(CDE)

U212
(CDE) = 12

U1(CDE).

Again by (20),

U2((IJK ) ◦ (PQR)) = U2(IJK ) ◦ U2(PQR) (73)
U21(CDE) = 1U1(CDE). (74)

16



By (10) using (60), (72), (73), and (74) as premises,

U : Fun[Cat3,Cat]. (75)

This establishes the type of U .
The argument for V is similar, using the definitions

V 1(CDE) def= Fun[C,Fun[D,E]] : Cat (76)

V 2(PQR)1L1A1X
def= R1(L1(P 1A)1(Q1X)) : N (77)

V 2(PQR)1L1A2h
def= R2(L1(P 1A)2(Q2h))

: N(R1(L1(P 1A)1(Q1X)), R1(L1(P 1A)1(Q1Y )))
: N(V 2(PQR)1L1A1X,V 2(PQR)1L1A1Y ) (78)

V 2(PQR)1L2fX
def= R2(L2(P 2f)(Q1X))

: N(R1(L1(P 1A)1(Q1X)), R1(L1(P 1B)1(Q1X)))
: N(V 2(PQR)1L1A1X,V 2(PQR)1L1B1X) (79)

V 2(PQR)2σAX def= R2(σ(P 1A)(Q1X))
: N(R1(L1(P 1A)1(Q1X)), R1(M1(P 1A)1(Q1X)))
: N(V 2(PQR)1L1A1X,V 2(PQR)1M1A1X). (80)

Again, the typing of the expressions on the right-hand sides of these equations
follows from the analysis rules for functors and natural transformations.

By three applications of (17), it follows from (77)–(80) that

V 2(PQR)2σA : Fun[M,N](V 2(PQR)1L1A, V 2(PQR)1M1A)
V 2(PQR)2σ : Fun[L,Fun[M,N]](V 2(PQR)1L, V 2(PQR)1M) (81)

V 2(PQR)1L2f : Fun[M,N](V 2(PQR)1L1A, V 2(PQR)1L1B) (82)

From (10), using (77), (78), and the equations

V 2(PQR)1L1A2(k ◦ h) = V 2(PQR)1L1A2k ◦ V 2(PQR)1L1A2h

V 2(PQR)1L1A21X = 1V 2(PQR)1L1A1X

as premises, we obtain

V 2(PQR)1L1A : Fun[M,N]. (83)

Again from (10), using (83), (82), and the equations

V 2(PQR)1L2(g ◦ f) = V 2(PQR)1L2g ◦ V 2(PQR)1L2f

V 2(PQR)1L21A = 1V 2(PQR)1L1A

as premises, we get

V 2(PQR)1L : Fun[L,Fun[M,N]]. (84)
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Still again from (10), using (84), (81), and the equations

V 2(PQR)2(τ ◦ σ) = V 2(PQR)2τ ◦ V 2(PQR)2σ
V 2(PQR)21L = 1V 2(PQR)1L

as premises, we have

V 2(PQR) : Fun[Fun[C,Fun[D,E]],Fun[L,Fun[M,N]]].

By (23) and (76),

V 2(PQR) : Cat(V 1(CDE), V 1(LMN)). (85)

One concludes from (76) and (85) and the equations

V 2((IJK ) ◦ (PQR)) = V 2(IJK ) ◦ V 2(PQR)
V 21(CDE) = 1V 1(CDE)

using (10) that

V : Fun[Cat3,Cat]. (86)

This establishes the type of V .
For the last part of the proof, we wish to show that θ and η are natural

transformations of the correct type. We have already shown in step 3 that they
are inverses. For this part of the proof, we work in the type environment

P : Fun[L,C] = Cat(L,C) = Catop(C, L)
Q : Fun[M,D] = Cat(M,D) = Catop(D,M)
R : Fun[E,N] = Cat(E,N)

F,G : Fun[C× D,E]

ϕ : Fun[C× D,E](F,G)
A,B : C

X,Y : D

g : C(A,B)
h : D(X,Y ).

We showed in step 1 that

θ(CDE) : Fun[Fun[C× D,E],Fun[C,Fun[D,E]]].

It follows from (23), (60), and (76) that

θ(CDE) : Cat(U1(CDE), V 1(CDE)), (87)

and similarly

θ(LMN) : Cat(U1(LMN), V 1(LMN)).
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Combining these facts with (72) and (85) using (4),

θ(LMN) ◦ U2(PQR) : Cat(U1(CDE), V 1(LMN))
V 2(PQR) ◦ θ(CDE) : Cat(U1(CDE), V 1(LMN)).

As part of the proof that θ is a natural transformation, we wish to show that
these expression are equal.

By equational reasoning using the definitions (26)–(26), we can derive

(θ(LMN) ◦ U2(PQR))1F 1A1X = (V 2(PQR) ◦ θ(CDE))1F 1A1X

(θ(LMN) ◦ U2(PQR))1F 1A2h = (V 2(PQR) ◦ θ(CDE))1F 1A2h

(θ(LMN) ◦ U2(PQR))1F 2gX = (V 2(PQR) ◦ θ(CDE))1F 2gX

(θ(LMN) ◦ U2(PQR))2ϕAX = (V 2(PQR) ◦ θ(CDE))2ϕAX.

Since h, g,X, and A were arbitrary,

(θ(LMN) ◦ U2(PQR))1 = (V 2(PQR) ◦ θ(CDE))1

(θ(LMN) ◦ U2(PQR))2 = (V 2(PQR) ◦ θ(CDE))2,

thus by (20),

θ(LMN) ◦ U2(PQR) = V 2(PQR) ◦ θ(CDE). (88)

Now using (17) with (75), (86), (87), and (88) as premises,

θ : Fun[Cat3,Cat](U, V ).

This establishes that θ is a natural transformation of the appropriate type.
The proof that η : Fun[Cat3,Cat](V,U) is similar. 2

5 Conclusions and Future Work

In addition to Theorem 4.1, we have also developed a direct proof that Cat
is cartesian closed. This involves establishing a particular adjunction, as illus-
trated in the following two diagrams:

C× D
F 2H- Fun[D,E]× D

ε - E

C

F 1

6

H - Fun[D,E]

F 1

6

1- Fun[D,E]

G1

?

C× D
1 - C× D

K - E

C

F 1

6

η- Fun[D,C× D]

G1

? G2K- Fun[D,E]

G1

?
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Like Theorem 4.1, the proof breaks into several steps:

1. the definition and typing of the unit η of the adjuction,

2. the definition and typing of the counit ε of the adjuction,

3. the definition and typing of the left adjoint F ,

4. the definition and typing of the right adjoint G,

5. the definition of a bijection between the two homsets Cat(C× D,E) and
Cat(C,Fun[D,E]) consisting of a pair of inverse maps H 7→ ε ◦ F 2H and
K 7→ G2K ◦ η, and a proof that they are inverses.

The arguments are very similar to those in the proof of Theorem 4.1.
Several intriguing problems present themselves for future work. Of course,

the most interesting prospect is the automation of the system. As one works
with the system, it becomes quickly apparent that, as notationally complex as
the proofs are, they can for the most part be developed in a purely mechanical
fashion. Using backwards subgoaling starting from the desired conclusion and
working backwards, the application of rules is largely syntax-directed and deter-
ministic. Except for the equational arguments, very little thought is required;
most of the work involves merely matching and substitution. The typing con-
siderations alone dictate the overall structure of the proof, even determining
to a large extent the definitions at the beginning of each step (e.g. (26)–(29)
and (48)–(50)). Even the equational proofs tend to exhibit a nearly determin-
istic structure. This indicates strongly that most of the process can be fully
automated, and the proof search can be made quite efficient.

We are currently investigating the possibility of implementing this system in
the NuPrl automated deduction system [6]. NuPrl not only provides a general
formalism for encoding proof rules, but it also provides a programming language
for specifying tactics for automatic proof development.

Proofs in our system, as mentioned, tend to exhibit a discernable structure,
at least for the verification of type judgements and to a lesser extent for the
equations. Arguments tend to break down into the application of analysis rules
followed by the application of synthesis rules, suggesting a normal form. Even
the equational arguments tend to follow a certain structure, with the applica-
tion of analysis rules followed by application of the extensionality rules. These
observations point toward a normal form theorem.

Another interesting question is the computational complexity of the system.
As mentioned, proofs tend to be largely syntax-directed and deterministic. This
seems to indicate that the complexity of the system is low.
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[4] M. J. Cáccamo, J. M. E. Hyland, and G. Winskel. Lecture notes in category
theory. Technical Report LS-02-catnotes, BRICS, University of Aarhus,
June 2002.
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