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Kozen has shown that propositional Hoare logic �PHL� is PSPACE �complete
�Kozen ����� Theorem ��	
� The proof of PSPACE �hardness is by a direct encoding
of a polynomial�space Turing machine� In this note we provide a simpler proof
encoding the universality problem for nondeterministic �nite automata� a well�
known PSPACE �complete problem �Garey and Johnson 	�
�
� This construction is
particularly interesting because it can be used to turn a symbolic model checker such
as SMV �McMillan 	���
 into an e�cient checker for regular expression equivalence�
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� � E� Cohen and D� Kozen

We follow the notation of �Kozen ����
� The deduction rules of PHL consist of
the usual composition� conditional� while� and weakening rules of Hoare logic� as
well as the and� and or�rule

fcg p fdg� c � C

f
W
Cg p fdg

fbg p fcg� c � C

fbg p f
V
Cg

for any �nite set C of propositions� The and� and or�rule are not part of the
traditional formulation �Apt 	��	
 but are necessary for completeness �Kozen and
Tiuryn ����
� The assignment axiom is meaningless in PHL and is omitted� We
are interested in the validity of rules of the form

fb�g p� fc�g� � � � � fbng pn fcng

fbg p fcg
�	�

interpreted as universal Horn sentences over relational models�
We consider two related decision problems� given a rule of the form �	��

�i� is it relationally valid� That is� is it true in all relational models�

�ii� is it derivable in PHL�

The paper �Kozen ����
 considered problem �i� only� We show that both of these
problems are PSPACE �hard by a single reduction from the universality problem for
nondeterministic �nite automata� given such an automaton M over input alphabet
f�� 	g with states Q� nondeterministic transition function � � Q � f�� 	g � �Q�
start states S � Q� and �nal states F � Q� does M accept all strings�
The reduction to PHL is as follows� Let au be an atomic proposition for each

state u � Q� Let b be another atomic proposition and let p be an atomic program�
Let

start
def
�
�

u�S

au final
def
�
�

u�F

au�

Consider the rule

fau � bg p favg for all v � ��u� 	�� fau � �bg p favg for all v � ��u� ��

fstartgwhile final do p ffalseg
���

Note that this rule is linear in the size of the description of the automaton�
The rule ��� encodes a pebbling algorithm that simulates the subset construction�

Intuitively� au says that there is a pebble on state u� and b �respectively� �b� says
that the next input symbol is 	 �respectively� ��� The program p says to place
pebbles on at least all states reachable from a currently pebbled state under the
next input symbol according to the transition rules of M � The formula start says
that all start states are pebbled� and final says that at least one �nal state is
pebbled� Other subexpressions of ��� have the following intuitive meanings�

fau � bg p favg �If state u is pebbled at time t� and if the next input symbol
is 	� then there must be a pebble on state v at time t� 	��

while final do p �Continue updating the pebble positions as long as there is
a �nal state occupied by a pebble��
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The formula ��� says intuitively that if all start states are initially pebbled� and if
in each step the pebbles are moved such that at least those states that are reachable
under the current input symbol from a currently pebbled state are pebbled in the
next step� then there is always a pebble on a �nal state�
Now we proceed to the formal proof of the correctness of this construction�

Theorem �� The following are equivalent�

�i� The rule ��� is relationally valid�

�ii� The rule ��� is derivable in PHL�

�iii� The automaton M accepts all strings�

Proof� We show �ii� � �i� � �iii� � �ii�� The �rst implication is immediate
from the soundness of PHL over relational models�
For the second implication� let x � f�� 	g� be any input string� Build a relational

model of PHL as follows� the elements are the pre�xes of x� the formula b is true at
y if x � yz and the �rst symbol of z is 	� the formula au is true at y if u � ��S� y��
that is� if the state u is reachable under input string y from a start state of M � and
the program p is the relation consisting of all pairs �y� z� for jzj � jyj� 	� An easy
argument shows that all premises of ��� hold in this model� By �i�� the conclusion
holds� thus x satis�es final� so there is a �nal state reachable from a start state of
M under input string x�
Finally� for the third implication� we prove ��� in PHL� Let

R
def
� f��S� x� j x � f�� 	g�g �

def
�
�

A�R

�

s�A

as�

The set R is just the set of reachable states of the subset automaton� It follows in
a straightforward way from the premises of ��� using the and�� or�� and weakening
rules that � is an invariant of p� or in other words f�g p f�g� Since start � �

and �� final� the latter being a consequence of �iii�� the conclusion of ��� follows
from the while rule and weakening�
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