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1. Introduction

Algebraic reasoning about programming language constructs has been a popular research topic for
many years. At the propositional level, the theory of flowchart programs and linear recursion are well
handled by such systems as Kleene algebra [1] and iteration theories [2], systems that characterize the
equational theory of the regular sets. To handle more general forms of recursion including procedures
with recursive calls, one must extend to the context-free languages, and here the situation is less well
understood. One reason for this is that, unlike the equational theory of the regular sets, the equational
theory of the context-free languages is not recursively enumerable. This has led some researchers to
declare its complete axiomatization an insurmountable task [3].

Whereas linear recursion can be characterized with the star operator * of Kleene algebra or the
dagger operation T of iteration theories, the theory of context-free languages requires a more general
fixpoint operator p. The characterization of the context-free languages as least solutions of algebraic
inequalities involving . goes back to a 1971 paper of Gruska [4]. More recently, several researchers
have given equational axioms for semirings with x and have developed fragments of the equational
theory of context-free languages [3, 5, 6, 7, 8, 9].

In this paper we consider another class of models satisfying a condition called p-continuity anal-
ogous to the star-continuity condition of Kleene algebra:

a(ux.p)b = Z a(nx.p)b,

n>0

where the summation symbol denotes supremum with respect to the natural order in the semiring, and
Oz.p=0 (n+1)x.p = plx/nx.p].

This infinitary axiom combines the assertions that px.p is the supremum of its finite approximants
nx.p and that multiplication in the semiring is continuous with respect to these suprema. Analogous
to a similar result for star-continuous Kleene algebra, we show that all context-free languages over a
p-continuous idempotent semiring have suprema. Our main result is that the p-continuity condition,
along with the axioms of idempotent semirings, completely axiomatize the equational theory of the
context-free languages. This is the first completeness result for the equational theory of the context-
free languages, answering a question of Leif3 [3].

1.1. Related work

Courcelle [5] investigates regular systems, finite systems of fixpoint equations involving first-order
terms over a ranked alphabet with a designated symbol + denoting set union, thereby restricting alge-
bras to power set algebras. He stages their interpretation by first interpreting recursion over first-order
terms as infinite trees, essentially as the final object in the corresponding coalgebra, then interpret-
ing the signature symbols in w-complete algebras. He proves soundness and completeness results for
transforming regular systems that preserve all solutions. He also proves soundness (but not complete-
ness) results for preserving their least solutions. Courcelle’s approach is syntactic, since it employs
unfolding of terms in fixpoint equations.
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LeiB [3] investigates three classes of idempotent semirings with a syntactic least fixpoint operator
. The three classes are called KAF, KAR, and KAG in increasing order of specificity. All these
classes are assumed to satisfy the fundamental Park axioms

plz/pr.p] < pa.p p<z = prp<uz,

which say that px.p is the least solution of the inequality p < x. The classes KAR and KAG further
assume

px.(b+azx) = (pz.(1+za)) - b px.(b+za) =b- pr.(1+ ax)
and

px.(s +rz) = pr.(uy.(1+yr) - s) ux.(s+xr) = px.(s - py.(1+ry)),

respectively. These axioms can be viewed as imposing continuity properties of the semiring operators
with respect to . All standard interpretations, including the context-free languages over an alphabet
X, are continuous and satisfy the KAG axioms. Esik and Leif [6, 7] show that conversion to Greibach
normal form can be performed purely algebraically under these assumptions.

Esik and Kuich [10] introduce continuous semirings, which are required to have suprema for all
directed sets, and they employ domain theory to solve polynomial fixpoint equations. Idempotent
continuous semirings are p-continuous Chomsky algebras as defined here, but not conversely. As
we shall prove, the family of context-free languages over any alphabet constitutes a p-continuous
Chomsky algebra. It is not a continuous semiring, however, since the union of context-free languages
is not necessarily context-free.

1.2. Outline of the paper

In §2 we lay the foundations of our completeness result. In §§2.1-2.4 we introduce Chomsky algebras,
our name for algebraically closed idempotent semirings, and develop a few of their basic properties.
In §§2.5-2.6 we review p-notation, a well-known syntax for describing least solutions of systems
of polynomial inequalities explicitly, and recall Beki¢’s theorem, which states that the p operator is
sufficient to describe the least solution of a finite system of simultaneous inequalities. In §2.7 we
define the notion of u-continuity, which is the cornerstone of our axiomatization. We also give an
example of a Chomsky algebra that is not y-continuous. In §2.8 we give several results establishing the
relationship of our axiomatization to others in the literature. Our main result, that our axiomatization
exactly characterizes the equational theory of the context-free languages, is presented in §3. Finally,
84 contains discussion and conclusions.

2. Chomsky algebras

In this section we introduce Chomsky algebras and the notion of u-continuity and develop some of
their properties. Intuitively, a Chomsky algebra is an idempotent semiring in which all systems of
polynomial inequalities have unique least solutions. This is close in spirit to the idea of an algebraically
closed field.
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2.1. Idempotent semirings

An idempotent semiring is an algebraic structure with binary operations + and - and constants 0 and
1 satistying the following equations:

a+(b+c)=(a+b)+c a(bc) = (ab)c
a+b=b+a la=al =a
a+0=a+a=a a0 =0a =0
a(b+c) =ab+ac (a+b)c = ac+ be.

The adjective idempotent refers to the axiom a + a = a. Every idempotent semiring has a natural
partial ordera < b < a4+ b =b.

2.2. Polynomials

Let (C, +, -, 0, 1) be an idempotent semiring and X a fixed set of variables. A polynomial over
indeterminates X with coefficients in C'is an element of C[X], where C[X] is the coproduct (direct
sum) of C' and the free idempotent semiring on generators X in the category of idempotent semirings.
For example, if a, b, ¢ € C and x,y € X, then the following are polynomials:

0 a axbycr + 1 azx’byx + byxc 1+z+22+23

The elements of C'| X | are not purely syntactic, as they satisfy all the equations of idempotent semirings
and identities of C. For example, if a> = b2 = 1in C, then

(aza + byb)* = az’a + axabyb + bybaza + by?b.
Every polynomial can be written as a finite sum of monomials of the form
ApxT1A1T202 * - - Qp—1Tpanp,
where each a; € C' — {0} and z; € X. The free variables of such an expression p are the elements of
X appearing in it and are denoted FV(p).
2.3. Polynomial functions and evaluation

Let C'[X] be the semiring of polynomials over indeterminates X and let D be an idempotent semiring
containing C as a subalgebra. By general considerations of universal algebra, any valuation o : X —
D extends uniquely to a semiring homomorphism ¢ : C[X] — D preserving C' pointwise. Formally,
the functor X — C[X] is left adjoint to a forgetful functor that takes an idempotent semiring D to its
underlying set:

C[X] D
ol JI-1
X |D|
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Intuitively, & is the evaluation morphism that evaluates a polynomial at the point ¢ € DX . Thus each
polynomial p € C[X] determines a polynomial function [p] : DX — D, where [p](c) = &(p).

The set of all functions DX — D with the pointwise semiring operations is itself an idempotent
semiring with C' as an embedded subalgebra under the embedding ¢ — Ao.c. The map [-] : C[X]| —
(DX — D) is actually 7, where 7(z) = \f.f(z).

For the remainder of the paper, we write ¢ for &, as there is no longer any need to distinguish
them.

2.4. Algebraic closure and Chomsky algebras
A system of polynomial inequalities over C' is a set

p1 < x1, p2 < T2, ..., Pp < Ty (D

where z; € X and p; € C[X], 1 < i < n. A solution of (1) in C'is a valuation o : X — C such that
o(pi) < o(x;), 1 <i < n. The solution o is a least solution if o < T pointwise for any other solution
7. If a least solution exists, then it is unique.

An idempotent semiring C' is said to be algebraically closed if every finite system of polynomial
inequalities over C' has a least solution in C'.

The category of Chomsky algebras consists of algebraically closed idempotent semirings along
with semiring homomorphisms that preserve least solutions of systems of polynomial inequalities.

The canonical example of a Chomsky algebra is the family of context-free languages CF X over an
alphabet X. A system of polynomial inequalities (1) can be regarded as a context-free grammar, and
the least solution of the system is the context-free language generated by the grammar. For example,
the set of strings in {a, b}* with equally many «a’s and b’s is generated by the grammar

S—¢e|aB|bA A —aS | bAA B — bS | aBB, (2)
which corresponds to the system
1+aB+bA<S aS+bAA< A bS+aBB < B, 3)

where the symbols a, b are interpreted as the singleton sets {a}, {b}, the symbols S, A, B are variables
ranging over sets of strings, and the semiring operations +, -, 0, and 1 are interpreted as set union, set
product AB = {zy | x € A, y € B}, 0, and {e}, respectively.

Continuous idempotent semirings are also Chomsky algebras. These include Boolean semirings,
the tropical semiring, the powerset of strings over an alphabet X, and the binary relations Rel X over
X [10, p. 44]. Specifically, Rel X consists of all binary relations R C X x X, where + is set union, -
relational composition, 0 the empty set, and 1 the identity relation {(z,z) | x € X }.

Consider for example the relation P = (J,,», R"S", where R" = R--- R,

n

R”“ BT S _”S"

P
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Then P is the least solution in Rel X to the system RzS + 1 < =z.

2.5. p-expressions

Let X be a set of indeterminates. LeiB [3] and Esik and LeiB [6, 7] consider u-expressions defined by
the grammar

to=x|t+t|t-t|0|1]|pxt

where x € X. These expressions provide a syntax with which least solutions of polynomial systems
can be named. Scope, bound and free occurrences of variables, a-conversion, and safe substitution
are defined as usual (see e.g. [11]). We denote by t[z/u] the result of substituting u for all free
occurrences of x in ¢, renaming bound variables as necessary to avoid capture. Let T X denote the set
of p-expressions over indeterminates X .

Let C be a Chomsky algebra and X a set of indeterminates. An interpretation over C' is a map
o : T X — C that is a homomorphism with respect to the semiring operations and such that

o(ux.t) = the least a € C such that o[z/al(t) < a, 4)

where o|x/a] denotes o with x rebound to a. The element a exists and is unique: Informally, each p-
expression ¢ can be associated with a system of polynomial inequalities such that o () is a designated
component of its least solution, which exists by algebraic closure.

Every set map o0 : X — C extends uniquely to such a homomorphism. An interpretation o
satisfies the equation s = t if o(s) = o(t) and satisfies the inequality s < ¢ if o(s) < o(t). All
interpretations over Chomsky algebras satisfy the axioms of idempotent semirings, a-conversion (re-
naming of bound variables), and the Park axioms [12, 13]

tle/px.t] < px.t t<z = pxt <. (5)

The Park axioms say intuitively that pz.¢ is the least solution of the single inequality ¢ < z. It follows
easily that

tlr/px.t] = px.t. (6)

Thus Chomsky algebras are essentially the ordered Park p-semirings of [7] with the additional
restriction that + is idempotent and the order is the natural order z < y < x +y = v.

2.6. Bekié¢’s theorem

It is well known that the ability to name least solutions of single inequalities with u gives the ability to
name least solutions of all finite systems of inequalities. This is known as Beki¢’s theorem [14]. The
construction is analogous to the definition of M™* for a matrix M over a Kleene algebra.

Bekié’s theorem can be proved by regarding a system of inequalities as a single inequality on a
Cartesian product, partitioning into two systems of smaller dimension, then applying the result for the
2 x 2 case inductively. See also [7] or [15] for a comprehensive treatment.



N.B.B. Grathwohl et al. | Inf. Axiomatization of the Equational Theory of CFL 247

Proposition 2.1. (Bekic)
The 2 x 2 system

p(z,y) <z q(z,y) <y
has least solution ag, by, where
a(y) = pz.p(,y) bo = py-q(a(y),y) ap = a(bo).

Proof:
From (6) we have

a(y) = pla(y),y)  bo = q(a(bo),bo) = q(ao,bo) ao = a(bo) = p(a(bo),bo) = p(ao, bo).
Thus ag, by is a solution of the system. To show it is the least solution, suppose
p(e,d) <c q(e,d) < d.
By definition of a,
p(c,d) <c¢ = a(d) <c.

By monotonicity, assumptions on ¢, d and definition of b,

q(a(d),d) < gq(e,d) <d = by < d.
Again by monotonicity and assumptions on ¢, d and definition of a,

p(c,bo) <ple,d) <c = ap <c 0

For example, in the context-free languages, the set of strings in {a, b}* with equally many a’s and
b’s is represented by the term

uS.(14+a-uB.(bS+aBB) +b- uA.(aS + bAA)) (7)

obtained from the system (2) by this construction.

2.7. p-continuity

In this section we define the notion of u-continuity. Intuitively, a Chomsky algebra is p-continuous
if the least solution of a polynomial inequality is the supremum of a certain countable set of finite
approximants, and if multiplication commutes with this supremum. The p-continuity condition is the
cornerstone of our complete axiomatization.

Let nx.t be an abbreviation for the n-fold composition of ¢ applied to 0, defined inductively by

0z.t=0 (n+1)z.t = tlx/nx.t].
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A Chomsky algebra is called p-continuous if it satisfies the p-continuity axiom:

a(pz.t)b = Z a(nz.t)b, (8)

n>0

where the summation symbol denotes supremum with respect to the natural order z < y & x+y = y.
Note that the supremum of a and b is @ + b. Suprema of infinite sets need not exist in general, but the
condition (8) asserts that the supremum on the right-hand side exists and is equal to the expression on
the left-hand side.

The family CF X of context-free languages over an alphabet X forms a p-continuous Chomsky
algebra. The canonical interpretation over this algebrais Lx : T X — CF X, where

LX(x):{x} Lx(t—i-u):Lx(t)ULx(u)
Lx(0)=10 Lx(tu) ={ay |z € Lx(t), y € Lx(u)} )
Lx(1) = {e} Lx(pa.t) = | ) Lx(na.t).

n>0

Under Lx, every term in T X represents a context-free language over its free variables (note that
is not free in nx.t). In the example (7) of §2.6, the free variables are a, b and the bound variables are
S, A, B, corresponding to the terminal and nonterminal symbols, respectively, of the grammar (2) of
62.4.

All continuous idempotent semirings are p-continuous Chomsky algebras, but not all Chomsky
algebras are p-continuous. As with Kleene algebra [16], we can construct a Chomsky algebra that
is not u-continuous. Consider the set of ordered pairs of natural numbers ordered lexicographically,
extended with least and greatest elements | and T. Define + as supremum and

r-l=1-x=_1
x-T=T-z=T (z#1)
(a,b) - (¢,d) = (a+c,b+d).

This is a Chomsky algebra, but it is not u-continuous. To wit,
px.(0,1) -+ (0,1) =T
since (0,1)- T 4 (0,1) < T and neither L nor any (k, {) satisfies the inequality (0,1)-x+ (0,1) < :

0,1)- L+(0,1) = L+(0,1) = (0,1) Z 1
0,1) (&, )+ (0,1) = (kI+1)+(0,1) = (ki+1) £ (k1.

—

On the other hand, }_, ~(nz.(0,1) - 2 + (0,1)) = sup{(0,n) | n > 1} = (1,0). We have pz.t #
> nsona.tfort=(0,1) -z + (0,1), which shows that this Chomsky algebra is not u-continuous.



N.B.B. Grathwohl et al. | Inf. Axiomatization of the Equational Theory of CFL 249

2.8. Relation to other axiomatizations

In this section we show that the axiomatizations considered in [3, 6, 7] are valid in all y-continuous
Chomsky algebras.

A p-semiring [7] is a semiring (A, +, -, 0, 1) satisfying the p-congruence and substitution proper-
ties:

t=u= pzx.t=pru o(tly/u]) = oly/o(uw)](t).

Idempotence is not assumed.
Lemma 2.2. Every Chomsky algebra is a y-semiring.

Proof:

The p-congruence property is immediate from the definition of the p operation (4). The substitution
property is a general property of systems with variable bindings; see [11, Lemma 5.1.5]. It can be
proved by induction. For the case of pz.t, we assume without loss of generality that iy # x (otherwise
there is nothing to prove) and that z is not free in u.

o((pa-t)ly/u]) = o(p.(tly/ul))
= least a such that o[z /a](tly/u]) < a

= least a such that o[z /a][y/o(u)](t) < a
= least a such that o[y /o (u)|[z/a](t) < a
— oly/o(w)(ua-t). 0

We now consider the various axioms proposed in [3].
Lemma 2.3. In all g-continuous Chomsky algebras,
pr.(1+ax) = px.(1 4+ za), = ¢FV(a).
Proof:
By p-continuity, it suffices to show that nz.(1 + ax) = nz.(1 + xa) for all n. We show by induction

that for all n, nz.(1 4+ az) = nx.(1 + za) = Y. a'. The basis n = 0 is trivial. For the inductive
case,

(n+1)z.(1 4 az) = 1+ a(nz.(1 +ax)) = 1+ a(3X 1, a') = S0 o,
and this is equal to (n+1)z.(1 4+ za) by a symmetric argument. O
Lemma 2.4. The following two equations hold in all u-continuous Chomsky algebras:

a(pz.(1+ xb)) = pz.(a + xb) (pz.(1+bz))a = px.(a + bx).
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Proof:
We show the first equation only; the second follows from a symmetric argument. By p-continuity, we
need only show that the equation holds for any n. The basis n = 0 is trivial. For the inductive case,
a((n+1)z.(1 + b)) = a + a(nz.(1 + xb))b
=a+ (nz.(a + xb))b
= (n+1)z.(a + zb),

where the induction hypothesis has been used in the second step. a

These properties also show that p-continuous Chomsky algebras are algebraically complete semirings,
and therefore also algebraic Conway semirings in the sense of [6, 7].

Lemma 2.5. The Greibach inequalities

pa.s(py-(1+ry)) < pa.(s + xr) pa-(py-(L+yr))s < pa.(s + rx)
of KAG [3] hold in all u-continuous Chomsky algebras.

Proof:
For the left-hand inequality, let u = pz.(s + xr). By the Park axioms, it suffices to show that
s(py.(1+7y))[z/u] < u. But

s(uy-(1 + ry))[z/u] = slz/u](py.(1 + r[z/uly))
= slz/u)(py.(1 + yr(z/ul))
= py-(slz/u] + yrlz/u])
= px.(s + ar),

where Lemmas 2.3 and 2.4 have been used.
The right-hand inequality can be proved by a symmetric argument. a
Various other axioms of [3, 6, 7] follow from the Park axioms.

The p-continuity condition (8) implies the Park axioms (5), but we must defer the proof of this
fact until §3. For now we just observe a related property of the canonical interpretation L x.

Lemma 2.6. Forany s,t € T X andy € X,

Lx (sly/py-1]) = | Lx(sly/ny.1]).

n>0

Proof:
We proceed by induction on the structure of s, that is, by induction on the subexpression relation
t+u-t,t+u>=ut-u>=tt -u>u,pxt > net, whichis well-founded [17].
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The cases for + and - are quite easy, using the facts that for chains of sets of strings A9 C A; C
Ay C---and By C B C By C---,

UAmUUBn:UAnUBn UAm.UBn:UAan.

The base cases are also straightforward. For pz.s, assume without loss of generality that y # x and x
is not free in ¢.

Lx ((na.s)[y/pyt]) = | Lx ((ma.s)[y/py 1))
= 6 U Zx((ma.s)ly/ny.))
= 6 LnJ Lx((maz.s)[y/ny.t])
= ng((wﬁ)[y/nyﬂ)- O

n

3. Main result
In this section we prove our main results, Theorem 3.4 and Corollary 3.5 below, stating that our
axiomatization exactly characterizes the equational theory of the context-free languages.

These results depends on an analog of a result of [18] (see [16]). It asserts that the supremum
of a context-free language over a p-continuous Chomsky algebra K exists, interpreting strings over
K as products in K. Moreover, multiplication is continuous with respect to suprema of context-free
languages.

Lemma 3.1. Let o0 : T X — K be any interpretation over a y-continuous Chomsky algebra K. Let
7: T X — CF X be any interpretation over the context-free languages CF X such that forall z € X
and s,u € T X,

o(szu) = Z o(syu).
yeT(x)
Then for any s,t,u € T X,
o(stu) = Z o(syu).
yeT(t)
In particular,
o(stu) = Z o(syu), (10)
yELx(t)

where L x is the canonical interpretation defined in §2.7.
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Remark 3.2. Note carefully that the lemma does not assume a priori knowledge of the existence of
the suprema. The equations should be interpreted as asserting that the supremum on the right-hand
side exists and is equal to the expression on the left-hand side.

Proof:
The proof is by induction on the structure of ¢. All cases are similar to the proof in [16, Lemma 7.1]
for star-continuous Kleene algebra, with the exception of the case ¢t = px.p.

For variables t = ¢ € X, the desired property holds by assumption. For the constants ¢ = 0 and
t=1,

o(s0u) =0 = Z 0= Z o(syu) = Z o(syu)

yeD yeT(0)
o(slu) = o(su) = Z o(syu) = Z o(syu).
ye{e} yer(1)

For sumst =p+q,

o(s(p+q)u) = o(spu) + o(squ)

= Z o(szu) + Z o(syu) (11)

z€T(p) y€T(q)

= Z o(szu) (12)

zeT(p)Ut(q)

q
= Z o(szu). (13)

z€T7(ptq)

Equation (11) is by two applications of the induction hypothesis. Equation (12) is by the properties of
supremum. Equation (13) is by the definition of sum in CF X.

For products t = pq,

o(spqu) = o (szyu) (14)

= Z o(szu) (15)
= o(szu). (16)
ze7(pq)

Equation (14) is by two applications of the induction hypothesis. Equations (15) and (16) are by the
definition of product in CF X.
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Finally, for t = px.p,

o(s(pr.p)u) = Z o(s(nz.p)u) (17)
=3 S osyw) (18)

n yer(nz.p)

= Z o(syu) (19)

y €U, (nz.p)

= Y o(syu). (20)

y € 7(pz.p)

Equation (17) is just the p-continuity property (8). Equation (18) is by the induction hypothesis,
observing that puz.p > nx.p. Equation (19) is a basic property of suprema. Finally, equation (20) is
by the definition of 7(pz.p) in CF X.

The result (10) for the special case of 7 = Lx is immediate, observing that Ly satisfies the
assumption of the lemma: for r € X,

o(sxu) = Z o(syu) = Z o(syu).

yE{x} yeLX (l‘) O

At this point we can show that the p-continuity condition implies the Park axioms.
Theorem 3.3. The p-continuity condition (8) implies the Park axioms (5).

Proof:

We first show p < 2 = px.p < z in any idempotent semiring satisfying the p-continuity condition.
Let o be a valuation such that o(ux.p) = > o(nx.p). Suppose that o(p) < o(x). We show by
induction that for all n > 0, o(nx.p) < o(x). This is certainly true for 0z.p = 0. Now suppose it is
true for nx.p. Using monotonicity,

o((n+1)z.p) = o(plz/nz.p]) < o(plz/z]) = o(p) < o(2).

By p-continuity, o(px.p) = >, o(nx.p) < o(x).

Now we show that p[z/px.p] < px.p. This requires the stronger property that a u-expression is
chain-continuous with respect to suprema of context-free languages as a function of its free variables.
Using Lemmas 2.6 and 3.1,
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o(pl/pz.pl) = {o) | v € Lx(pl/pz.p))}

=3 {U(y) |y € ULx(p[x/nx-p])}
_Z Z {o(y) |y € Lx(plz/nz.p])}

—Z plz/nz.p))
—Z ((n+1)z.p)

= U(MUC-P)- O

The following is our main theorem.

Theorem 3.4. Let X be a setand let s,¢ € T X. The following are equivalent:

(i) The equation s = ¢ holds in all p-continuous Chomsky algebras; that is, s = ¢ is a logical
consequence of the axioms of idempotent semirings and the u-continuity condition

a(px.t)b = Z a(nw.t)b, (21)
n>0

or equivalently, the universal formulas

a(nz.t)b < a(pz.t)b, n>0 (22)

/\ (a(nx.t)b <w) | = a(px.t)b <w. (23)

n>0

(i) The equation s = ¢ holds in the semiring of context-free languages CF Y over any set Y.

(iii) Lx(s) = Lx(t), where Lx : TX — CFX is the standard interpretation mapping a -
expression to a context-free language of strings over its free variables.

Thus the axioms of idempotent semirings and p-continuity are sound and complete for the equational
theory of the context-free languages.

Proof:

The implication (i) = (ii) holds since CF Y is a u-continuous Chomsky algebra, and (iii) is a special
case of (ii). Finally, if (iii) holds, then by two applications of Lemma 3.1, for any interpretation
o : TX — K over a y-continuous Chomsky algebra K,

o)=Y o= 3 ol@)=ol),
2€LK(s) 2€Lk (t)

which proves (i). a
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Corollary 3.5. The context-free languages over the alphabet X form the free p-continuous Chomsky
algebra on generators X.

Proof:
Let K be a u-continuous Chomsky algebra. Any map o : X — K extends uniquely to an interpreta-
tiono : T X — K. By Lemma 3.1, this decomposes as

og=Y 0CFoolLy,

where Ly : TX — CF X is the canonical interpretation in the context-free languages over X,
CFo : CFX — CFK is the map CFo(A) = {o(z) |z € A}, and ) : CFK — K takes the
supremum of a context-free language over K, which is guaranteed to exist by Lemma 3.1. The unique
morphism CF X — K corresponding to o is » , o CF 0. Thus CF is left adjoint to the forgetful functor
from p-continuous Chomsky algebras to Set. The maps x — {z} : X - CF X and > : CFK — K
are the unit and counit, respectively, of the adjunction. a

4. Conclusion

We have given a natural complete infinitary axiomatization of the equational theory of the context-free
languages consisting of the axioms of idempotent semirings listed in §2.1 along with the p-continuity
condition (21), which is equivalent to the equations (22) and the infinitary Horn formula (23).

Leif3 [3] states as an open problem:

Are there natural equations between p-regular expressions that are valid in all continuous
models of KAF, but go beyond KAG?

We have identified such a system in this paper, thereby answering Leif3’s question. He does not
state axiomatization as an open problem, but observes that the set of pairs of equivalent context-free
grammars is not recursively enumerable, then goes on to state:

Since there is an effective translation between context-free grammars and p—regular ex-
pressions. .., the equational theory of context-free languages in terms of y-regular ex-
pressions is not axiomatizable at all.

Nevertheless, we have given an axiomatization. How do we reconcile these two views? LeiB is
apparently using “axiomatization” in the sense of “recursive axiomatization.” But observe that the
axiom (23) is an infinitary Horn formula. To use it as a rule of inference, one needs to establish
infinitely many premises of the form z(ny.p)z < w. But this in itself is a I1{-complete problem. It
is well known that it is TIY-complete to determine whether a given context-free grammar G' over a
two-letter alphabet generates all strings [19].
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