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Abstract. We give an algorithm to construct a ceU decomposition of
Rd, including adjacency information, defined by any given set of ra­
tional polynomials in d variables. The algorithm runs in single expo­
nential parallel time, and in Ne for fixed d.The algorithm extends a
recent algorithm of Ben-Or, Kazen, and Reif for deciding the theory
of real closed fields.

1. Introduction

The theory of real closed fields, or the first-order theory of the real

numbers with + , ., and - , is one of the most important logical theories

in computer science. It is expressive enough to encode computational

problems in several areas: computational geometry [YY], robotics and

motion-planning [Y,SS], algebraic geometry and algebraic topology

(AM,SS], computer graphics [AJ], etc. Thus, efficient decision proce-

dures for this theory can have significant impact. Beginning with Alfred

Tarski, alternative or increasingly efficient decision procedures have

been proposed by Seidenberg, Cohen, Boge, L. Monk [Mol], Monk

and Solovay [M02],Collins [Co], and Ben-Or, Kozen and Reif [BKR].

The algorithm of [BKR], hereafter referred to as BKR, runs in single-

exponential parallel time or sequential space, and He (polylog time and

polynomiaUy many ·processors) if the number of variables is fixed; this

is the best complexity bound to date. CoBins' procedure runs in

double-exponential time and space, and has been implemented [A2].

Unfortunately, BKR does not provide some critical pieces ·of

topological information that are useful in cert.ain applications. Collins'

algorithm provides some, but not all, of this extra information. Our

purpose in this paper is to describe how to extend BKR to provide aU
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the extra topological information needed for the applications we have

in mind, without any essential increase in complexity over that of BKR

Given a set 1: of polynomials with rational coefficients in d vari-

ables, a sign assignment is a map a:I -. -1, 0 +I}. Each sign assign-

ment a represents an equivalence class

x., - {x E R d Isign(p(x» - a(p), p E I},

caUed the sign class of o. The sign assignment a is said to be consistent

if Xo is nonempty.

BKR's applicability is limited by the fact that it computes only the

consistent sign assignments to a given set I of polynomials, represent-

ing the sign classes Xo• This is sufficient for its purposes. In general,

however, the Xo are disconnected,2 and it may be necessary for certain

applications to distinguish between the connected components.

Collins' algorithm does distinguish between connected compo-

nents. Given I, it decomposes Rd into simply connected regions called

cells (see Section 4 for a formal definition), such that each connected

component of Xo is a union of cells. Unfortunately, Collins' procedure

does not provide the adjacency information necessary to paste the cells

together to give the connected com'ponents of the Xo' and it is nontrivial

to see how to extend it (see Section 2).

In this paper, we extend BKR to provide a ceU decomposition a 1a

Collins, with the extra adjacency information necessary to construct the

2 By a weD-known theorem of Milnor, the number of con­
nected components is at most single exponential in the (gen­
eralized) size of }:.



connected components of Xfl' Moreover, the algorithm is of roughly the

same complexity as BKR, namely single-exponential parallel time on a

standard model of parallel computation, and NC (poly-log time and

polynomiaUy many processors) for fixed dimension d. Our new algo-

rithm contains elements from Collins' algorithm asweU as crucial ideas

from BKR. On the other hand, it constitutes a significant strengthening

of both.

2•. Previous work on adjace~y computations

Several attempts have been made to extend Collins' algorithm to

describe adjacency of cells. Several special cases have appeared in the

literature:

• In the special case where the polynomials 1: are linear, so that the

variety of ~ is a setof hyperplanes inlRd , the adjacency problem be­

comes the so-called hyperplane on-angement problem~ Edelsbrunner,

O'Rourke and Seidel [EOS] have recently provided an optimal O(nd)

time and space algorithm, where n is the number of hyperplanes. The

importance of this special case is underscored by the notion of generic

queries introduced by Yao and Yao [YY], which essentially reduces

many geometric retrieval problems to the case of hyperplane queries.

• Schwartz aod Shari! [8S] provided a relatively efficient method that

computes the adjacency relation only for those pairs of cells of which

one has full dimension and the other has co-dimension 1. For fixed d.

their method takes polynomial time. For general adjacencies, they

present a complicated method whose efficiency is yet to be analyzed.

In fixed dimension, a polynomial time adjacency algorithm for arbitrary

pairs of cells follows from an observation of Arnon (see [Y]); we will

exploit this observation again in this paper.

• In dimensions 2 and 3, adjacency algorithms have been provided by

S. McCallum [McC], and by Arnon, Collins, and McCallum [ACM2].

The latter algorithm has been implemented [A2].
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3. Applications

There are many applications of our algorithm: Hilbert's 16th

problem, which asks for the classification of all topological types of

curves in the real projective plane (see [AM]); computing the singular

homology groups of real algebraic varieties [88]; computer graphics and

display [A3]; geometric retrieval problems [CY,YY]. In the last, our

algorithm reduces the preprocessing C9mplexity to NC.

One particularly important application is in motion planning in

robotics. Motion planning can be reduced to searching a graph whose

nodes represent the connected components of the sign classes Xfl and

whose edges connect adjacent components of distinct sign classes [Y].

In [SS] an efficient but limited adjacency algorithm was given, which

could only be applied to a restricted class of motion planning problems.

Our algorithm can be used to build a search structure of optimal size

(single exponential) for the general motion planning problem.

4. Problem formulation

Let ~ be a set of polynomials in d variables with rational coeffi-

cients. Sign assignments a:~ ...{ -1, 0, + I}, consistent sign

assignments, and sign classes Xfl were defined in Section 1.

A cell complex for ~ is a partition of lRd into finitely many pairwise

disjoint regions RV' v E ~ caDed cells, such that:

(1) each cell R,is homeomorphic to'lR6(,) for some 0 S 8(v) S d;

(2) the closure of R, is a union of cells Ru;

(3)·each R, is contained in some sign claSs X.,; in other words, the sign

of eachp E 1: is invariant on each Ry

8(v) is called the dimension of the ceU R v ' and R v is called a

8(v)-cell.

When d - 1, a ceO complex partitions the real line into an alter­

nating sequence of points (O-cells) and open intervals (l-cells). The

foots of the polynomials in 1: are among the O-cells. .To illustrate the

case d - 2, let us take for example 1: - {x2 + jl- 1, y - x 2}. The



following figure represents a decomposition of R2 into a cell complex

consisting of 17 2-cells, 25 l-cells, and 9 O-cells:

A cell complex is represented graphically by a labeled directed

graph G .. (V,E, 8, T) , where V are the indices of the cells, uEv iff Ru

is contained in the closure of R", 8:V..N gives the dimension of R",

V £ V, and T:~ x V .. { -1,0, +1} gives the sign of each p £ ~ on

each v £ v:

In this paper we address the following problem:

(PI) Given a set ~ of polynomials in d variables, construct a graph

G .. (V,E, 8, T) representing a ceD complex for ~.

Collins' algorithm constructs a cell complex with 8 and T, but does

not determine the full adjacency relation E. Like Collins, the cell com-

plex we compute is cylindric3, and therefore can be used to decide the

theory of real closed fields. PI can then be used to solve the following

problem, which has wide application in motion planning:

(P2) Given }:, construct a graph G .. (V,E, 8, T) such that each R",

V £ y , is a maximal connected component· of Xa for some consistent

sign assignment a to}:, and E ,8, and T give the adjacency, dimension,

and sign information as in PI.

A solution for P2 can be obtained easily from a solution for PI by

collapsing adjacent ce& of a cell complex on which the values of T

3, The definition of ihis term is rather involved and is omitted
from this preliminary version.
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agree. Note that P2 is not a cell comple~ since property (1) of cell

complexes is no longer satisfied.

5. A key idea: naming of cells

Consistent sign assignments a:}:" { -1,0, + I} do not distinguish

the connected components of the sign classes Xa • However, for an

appropriately chosen set of polynomials 1:1 containing ~, but not too

much bigger, each sign class of 1:1 is contained in a connected compo-

nent of some sign class of}:. Moreover, the set of consistent sign as-

signments to 1:1 will determine a cell complex {R y Iv E Y} for}:. A key

step in our algorithm is the use of 1:1 to give quantifier-free formulas

defining the cell R y This will allow us, for example, to test adjacency

of cells Ru and R y by calling BKR to decide a sentence in the language

of real closed fields involving Nu and Ny

The standard representation of the formula Ny (as, say, a Boolean

tree with atomic formulas at the leaves) will be far too large. However,

it will have a sufficiently succinct representation as a Boolean circuit

whose inputs are atomic formulas. We must then argue that BKR suf-

fers no loss of efficiency when inputs are allowed to be of this more

general form.

6. Cen decomposition in one dimension

Let }: be a set of n polynomials in one variable x, all of degree at

most n. By using the simple refinement subroutine of BKR, we may

assume without loss of generality that the polynomials in }: are square-

free and pairwise relatively prime. A description of a cell complex for

the original ~ can be computed easily from a cell complex for the re-

fined }:.

We show how to derive the coarsest one-dimensional cell complex

for ~ decomposing R. This ceUcomplex consists of roots of

polynomials in ~ and open intervals between roots. Let A consist of ~

plus all polynomials in the Euclidean remainder sequence Po - p,



PI - p' , P2' ... , Pn for each P E 1:. These polynomials can be produced

in He using subresultants [BT,Co,vzG]. We caD BKR to generate the

set of consistent sign assignments to the polynomials in 4 (see [BKR],

Section 2).

We first give a Boolean circuit

JI'(a), P E 1:

which takes as input a consistent sign assignment a to 4 and computes

the number of real roots of p less than x E Xli. This number is com-

pletely determined by (1 and is independent of the choice of x E XII.

Each polynomial q in 4 is associated with a pair of Boolean inputs to

W(a), which encode the sign a(q) E { -1,0, +1}. The circuit 00-

plements Sturm's theorem as described in [BKR]. It requires two addi-

lion circuits to sum the number of changes of sign in two sign sequences

of length n, and a subtraction circuit to subtract tbetwo results.

We now construct a circuit

to sum the outputs of the circuits W(a) over all P E 1:, giving a binary

integer k
ll

• By the assumption that the P E: 1: are SQuare-free and

pairwise relatively prime, kll is the number of roots of aU the

polynomials in ~less than any x E XII.

We now incorporate M1:.(a) into a circuit

that ealculates the position J~ ~ 0 of the ceO in the one-dimensional ceO

complex containing the sign class XII :

{

2k1l if A a(q) ~ 0
i _ q€1:.

f1 2kfJ + 1 if V a(q) - O.
q€1:.

We caD the circuit N'T.(a) the naming circuit. This circuit will be

used again later.

518

1
expaDder

A

~

BKR

0'1 flJ a"
l~ ~ t

~

N1{flJ)

'
1 IJ ill

r r I'
araphCODltructor

~

Fig.

We now construct a circuit

H(I)

which takes as input any set I of univariate polynomials, I I I S It, and

outputs a graph G,: representing the coarsest one-dimensiooal ceU

complex for}:. The stages of H are as in Fig. 1. The expander circuit

produces 4 from I as explained above. The BKR-circuit produces all

the consistent sign assignments a to 4. Each a is fed into a separate

copy of the circuit ~(a), which outputs the ceO number ill containing

Xli· Finally, the graph constructor produces an encoding of the graph

representation

~ - (V,E,8,1")



of the cell complex, as follows. The ceD numbers ill take on all values

between 0 and max ill inclusive, so we take V .. {O,I, ... , max iD}. The

dimension oU) of cell i is 0 if i is odd, I if i is even. Adjacency is de-

termined by: iEj iff i is odd and Ii - j I .. 1. Finally, the .sign of

P E: ~ on cell i is given by

T(P,i) .. 0(P)

where 0 is any consistent sign assignment such that ia .. i.

All these' calculations are easily done in Ne.

7. Cell decomposition in higher dimeiNon

As in BKR, the multidimensional algorithm consists of a general-

ized version of the one-dimensional algorithm, modified to call itself

recursively on problems of lower dimension. For this purpose, the input

polynomials "2.d S;; (Q[xl' ... , xd] are considered to be polynomials in the

single variable xd with coefficients in the polynomial ring

CD[xI' •.• , xd-l]· The multidimensional algorithm will attempt to con­

struct a one-dimensional cell complex in the variable xd by running the

one-dimensional algorithm. However, whenever the one-dimensional

algorithm would request information from the coefficients of the input

polynomials, the multidimensional algorithm will have to call itself

recursively to supply this information.

The first step of theone-dimensional algorithm was to expand the

input set "2. to a set a containing the Euclidean remainder sequences

(ERS's) of all the polynomials in~. The elements of a were obtained

as subresultants, and could be constructed in Ne [Co,BT,vzG]. In the

multidimensional algorithm, the ERS of some p E: ~d is not determined,

since the coefficients of p contain indeterminates x .. Xl' ... "xd_l;

different choices of reals if .. aI' ... , 0d-l will cause these coefficients

to vanish or not, as the case may be, leading to different ERS's. How-

ever, there is a small set~ of polynomials in (Q[X][xd] and a small set

~ of polynom.iab in CO[x] with the propeny that all elements of all'l-I

possible ERS's of p are represented by rational functions of the form
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'I(x)'2(x) ... 'n(x)q(x)(xd)

sl(x)s2(x) ... sm(x)

where the 'it Sj E: r~_l and q E: ~. Moreover, a consistent sign assign-

ment 0 to r~_l determines a unique ERS for P that is consistent with

0. In other words, given a real d - I-tuple ii for indeterminates x , the

Euclidean algorithm would give a unique ERS Po::= p(a) (xd)'

PI ::= pea)'(xd)' ... , Pnfa) (Xd) , and all these polynomials are of the form

'1 (0)'2(0) ... 'n(ii)q(a)(xd)

Sl (ii)S2(ii) ... sm(ii)

for some 'i' Sj E: r~_l and q E: /Yd. The signs of the constants rea) for

, E: r~_l determine the ERS uniquely.

The expander circuit of the multidimensional algorithm will there-

fore augment the input "2:d with t:Id and r~_l for all p E: "2:d. This new

set will be called dd. The polynomials in ad can be computed quickly

as subresultants; a more exact description of these polynomials appears

in [vzG].

At this point, the algorithm will call BKR on input ad to determine

the set of consistent sign assignments to ad' Again, the set of consistent

sign assignments to dd is not uniquely determined, because of the inde-

terminates Xl' ••• , xd-l; however, BKR generates a set ~d-l of

polynomials in (Q[xI, ... , xd-l] such that a consistent sign assignment

o to "2:d_ 1 uniquely determines tbe set of consistent sign assignments to

f!d that are consistent with 0. After "2:d- 1 has been generated by BKR,

the multidimensional algorithm is called recursively on "2:d- l , which

generates ad-I' etc. This recursive computation corresponds to the

expander and BKR circuits of the one-dimensional algorithm of Section

6.

When this part of the computation is complete,~ have a sequence

a; S; q)[xl' ... , Xi] , with the following properties.



(1) Any consistent sign assignment (J to ~i-I uniquely determines the

set of consistent sign assignments PI' ... , Pk to 4 i consistent with (J. In

other words, if a - aI' ... , ai-I is any i-I -tuple of real numbers such

that (J gives the signs of the polynomials in ~i-I evaluated at a, then

as x; ranges over aU real numbers ai' the polynomials in 4;, evaluated at

a, a;, take on exactly the sign assignments PI' ... , Pk·

(2) Each consistent sign assignment P to 4; determines a unique ceD

number ip in a one-dimensional ceD decomposition of ~it regarded as a

set of polynomials in x; , according to the one-dimensional algorithm of

Section 6. Thus the set of sign assignments PI' ... , Pk to 4; consistent

with a sign assignment (/ to }:;-t determines a unique one-dimensional

cell complex for }:;.

We may view the output of this part of the computation as a tree

of consistent sign assignments to 41' ... , Ild• At the uppermost level,

the tree contains all consistent sign ~ignments to Ill; and at the ith

level, each consistent sign assignment (J to Ili gives a consistent sign as­

signment to }:i (since ~i S; 4; ), which in turn determines a set of con­

sistent sign assignments to !1i+ I consistent with (J. This tree is computed

explicitly by the above circuit.

We define below a d-dimensional cell complex whose cells are in

one-to-one correspondence with paths in this tree. Such a path gives a

sequence a I' ... , ad of mutually consistent sign assignments to

Ill' ... , Ild• This sequence of sign assignments determines a unique se­

quence of cells iI' ... , id ~ the one-dimensional cell complexes for

~ I' ... , }:d computed by the one-dimensional algorithm. The cell in the

d-dimensional cell complex corresponding to this path is homeomorphic

to the Cartesian product of th~ cells iI' ... , iil"

Formally, ·Iet G -= (V,E, 8, -r) be a d-dimensional cell complex for .

r - }:I U ••• U }:d, defined as follows. For each dimension i ,

1 SiS d, the construction of the circuit N~(a) of Section 6 generalizes

immediately to a circuit ]P.;(al' ... , ai) whicb takes as input a sequence

of mutually consistent sign assignments aI' ••• , ai to 111, ••• , Il; and
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outputs a binary number giving the position of the uniquely-determined

cell in the one-dimensional cell complex for ~;, as described above.

Combining all these circuits for 1 SiS d, we get a circuit

tbat takes as input a sequence of mutually consistent sign assignments

aI' ... , (Jd to Ill' ... , Ild and yields a sequence of integers iI' ••. , id

giving the positions of one-dimensional cells in the sequence of one­

dimensional cell complexes uniquely determined by aI' ... , ait

We take

The cell defined by u € V is the set

where a(a) is the sequence of sign assignments to the polynomials in

!11' ... , l!d obtained by evaluating them at 0.

The dimension 8(u) of Ru is the sum of the component dimensions;

i.e. 8(il , ••• , id) is the number of ~ that are even, 1 S j S d.

The sign -rCp,u) of p € ~; on u € V is given by

-rCp,u) .. aiCp),

where (JI' ... , (/d is any sequence of mutually consistent sign assign­

ments to Ill' ... , 4dsuch that Nf(al' ... , (Jd) - u.

In order to determine the adjacency relation E, we will use the

naming circuit Nf(a) in a sentence of the language of real closed fields.

We combine Nf(a) with a circuit to compare the output to a fIXed bi­

nary d-tuple u to get a new circuit .N.r(a) whose output is true or false.

This circuit can be viewed as a formula in the language of real closed

fields with free variables x - XI' ••• , Xd ' which states, "'x lies in ceO

R,/'. In this connection we write NE(x) instead of N!(ti). The

adjacency relation E is determined by calling BKR on the formula

YX(N~(x) .. (Ye>O:ljN;(Y)A If-xl <e»,



· which states that Ru is contained in the closure of Rv H BKR returns

true, then edge uEv is added to G.

8. Complexity analysis

Except for the call on BKR to determine the adjacency relation E,

the depth and size of the circuit are roughly the same as in BKR. The

depth is 20 (d
2

) 10gO(d)n, which gives an algorithm in NC for fixed d and

exponential-NC for unbounded d (see [BKR]).

The sentence at the end of Section 7, used to determine E, has

2d + 1 variables. Since the complexity of BKR is exponential in d, this

will be the most expensive part of the circuit by far, although for fixed

d the complexity will still be NC. The formulas HE(x) used in this sen-

tence are represented by directed acyclic graphs instead of Boolean

trees, but a straightforward review of [BKR] shows that this more gen-

eral form of input does not affect the complexity of BKR.

9. Ymal remarks and open problems

We have solved the problem of computing a cell complex with

adjacency information. Our result is an improvement of BKR and

Collins' algorithm in that we can give a representation of the cells with

full adjacency information in roughly the same time bound as BKR. It

remains an open problem to improve the depth of the circuit: the depth

of the BKR circuit, and also in ours, is 20 (d
2

) 10gO(d)n where d is the

dimension. It would be a significant improventent to obtain a depth of
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