
Bytecode 2005 Preliminary Version

Kleene Algebra and Bytecode Verification

 Lucja Kot 1 Dexter Kozen 2

Department of Computer Science
Cornell University

Ithaca, New York 14853-7501, USA

Abstract

Most standard approaches to the static analysis of programs, such as the popular
worklist method, are first-order methods that inductively annotate program points
with abstract values. In [6] we introduced a second-order approach based on Kleene
algebra. In this approach, the primary objects of interest are not the abstract data
values, but the transfer functions that manipulate them. These elements form a
left-handed Kleene algebra. The dataflow labeling is not achieved by inductively
labeling the program with abstract values, but rather by computing the star (Kleene
closure) of a matrix of transfer functions. In this paper we show how this general
framework applies to the problem of Java bytecode verification. We show how to
specify transfer functions arising in Java bytecode verification in such a way that
the Kleene algebra operations (join, composition, star) can be computed efficiently.
We also give a hybrid dataflow analysis algorithm that computes the closure of a
matrix on a cutset of the control flow graph, thereby avoiding the recalculation
of dataflow information when there are cycles in the graph. This method could
potentially improve the performance over the standard worklist algorithm when a
small cutset can be found.

Key words: Java, bytecode, verification, static analysis, abstract
interpretation, Kleene algebra

1 Introduction

Dataflow analysis and abstract interpretation are concerned with the static
derivation of information about the execution state at various points in a
program. There is typically a semilattice L of types or abstract values, each
describing a larger set of runtime values. Each instruction has one or more
associated transfer functions f : L → L that describe how the abstract state
is transformed by the instruction.

1 Email: lucja@cs.cornell.edu
2 Email: kozen@cs.cornell.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kot and Kozen

The worklist algorithm for dataflow analysis is a standard method for com-
puting a least fixpoint labeling of the nodes of the control flow graph G with
elements of L [5]. Starting with initial information at the start node, dataflow
information is propagated in a forward direction by applying a transfer func-
tion to the current dataflow information at a node and updating successor
nodes until a fixpoint is achieved.

One disadvantage of the worklist approach is that nodes in the graph may
be analyzed multiple times. For example, if a node s is labeled with ` ∈ L,
then later revisited and relabeled with `′ > `, then any paths out of s may be
traversed again. The running time could be as bad as dn, where n is the size
of the program and d is the depth of the semilattice, although in practice this
worst-case bound is probably rarely attained. Thus the worklist algorithm
remains a popular method for many practical program analysis tasks.

The worklist method is a first-order method in the sense that the primary
objects of interest are the elements of the semilattice L. In [6] we intro-
duced a second-order functional approach based on Kleene algebra. In this
approach, the primary objects of interest are not the abstract data values,
but the transfer functions that manipulate them. These elements form a (left-
handed) Kleene algebra. Kleene algebras are a well-known family of algebraic
structures with a rich theory and many applications in computer science. In
the second-order approach, the least fixpoint labeling is not achieved by in-
ductively labeling the program with abstract values, but rather by computing
the star (Kleene closure) of a matrix of transfer functions.

In this paper we demonstrate how this general framework applies to the
problem of bytecode verification. For concreteness, we focus on Java. The
contributions of this paper are twofold: (i) we give an explicit specification
mechanism for transfer functions that allows the Kleene algebra operations
(join, composition, star) to be computed efficiently (Section 3); and (ii) we
present a dataflow algorithm that computes the closure of a matrix of transfer
functions on a cutset of the control flow graph, thereby avoiding the recal-
culation of dataflow information (Section 4). This method could potentially
improve the performance over the standard worklist algorithm when a small
cutset can be found.

2 Background

2.1 Upper Semilattices

Our abstract data values will form an upper semilattice L with join + and
bottom element ⊥. The operation + is associative, commutative, and idem-
potent (x+x = x). The semilattice is partially ordered by x ≤ y ⇔ x+y = y.
The element ⊥ is the least element of the semilattice and is an identity for
+. We also assume the ascending chain condition (ACC): no infinite ascend-
ing chains in L. This is a standard assumption that ensures that dataflow

2

Kot and Kozen

computations converge. It follows from this assumption that there exists a
maximum element >.

Intuitively, lower elements in the semilattice represent more specific in-
formation, and the join operation represents disjunction of information. For
example, in the Java class hierarchy, the join of String and StringBuffer is
Object, their least common ancestor in the hierarchy.

The element > represents a type error. In practice, any attempt by a
dataflow analysis computation to form a join x + y that does not make sense
indicates a fatal type error, and the analysis will be aborted. We represent
this situation mathematically by x + y = >.

The element ⊥ represents “unlabeled”. For example, the initial labeling
in the worklist algorithm is a map w0 : V → L, where V is the set of vertices
of the control flow graph, such that w0(s0) is the initial dataflow information
available at the start node s0, and w0(u) = ⊥ for all other nodes u ∈ V .

2.2 Kleene Algebra

A Kleene algebra (KA) is a structure (K, +, ·, ∗, 0, 1) such that

(i) (K, +, ·, 0, 1) is an idempotent semiring,

(ii) ba∗ the least x such that b + xa ≤ x, and

(iii) a∗b is the least x such that b + ax ≤ x.

Here “least” refers to the natural partial order a ≤ b ⇔ a + b = b.

For this paper, we use a weaker axiomatization from [6]. We will as-
sume that the algebra is left-distributive, but not necessarily right-distributive.
However, we will assume that it is right-predistributive. That is, we do not
assume that ac + bc = (a + b)c, but only ac + bc ≤ (a + b)c. Moreover, we
will not assume (iii) above, but only (ii). Such algebras are called left-handed
Kleene algebras.

The operation + gives the supremum with respect to≤. One can show that
all the operations are monotone with respect to ≤. The proof of monotonicity
of multiplication does not need distributivity, but only predistributivity.

An important fact is that the n × n matrices over a (left-handed) Kleene
algebra again form a (left-handed) Kleene algebra under the appropriate def-
initions of the operators. We refer the reader to [7,6] for a more complete
treatment.

2.3 Strict Monotone Functions on a Semilattice

In our application, we model transfer functions as strict monotone functions
f : L → L, where L is an upper semilattice satisfying the ascending chain
condition. The maps f must satisfy

x ≤ y⇒ f(x) ≤ f(y) (1)

f(⊥) = ⊥. (2)

3

Kot and Kozen

There are particular strict monotone functions

0 = λx.⊥ 1 = λx.x.

The domain of f is the set

dom f = {x ∈ L | f(x) 6= >}.
The property (1) implies that dom f is closed downward under ≤.

Let K denote the family of strict monotone functions on L. We can impose
a left-handed Kleene algebra structure on K as follows. First, define addition
of functions pointwise:

(f + g)(x) = f(x) + g(x)

f ≤ g⇔ f + g = g.

Under this definition, K forms an upper semilattice with least element 0.

Elements of K can be composed using ordinary functional composition.
The operator is written · and the composition of f followed by g is written fg;
thus (fg)(x) = g(f(x)). Note that x ∈ dom fg iff x ∈ dom f and f(x) ∈ dom g.
The function 1 is a two-sided identity for composition and 0 is a two-sided
annihilator.

Composition distributes over + on the left, but not necessarily on the
right. However, it is right-subdistributive due to monotonicity. Thus K forms
a left-handed idempotent semiring under the operations +, ·, 0, 1.

The element f∗ is defined as the function which on input x gives the least
y such that x + f(y) ≤ y. In symbols,

f∗(x) = µy.(x + f(y) ≤ y),

where µ is the usual least-fixpoint operator. The least fixpoint exists, since f
is monotone and the ACC holds, so the monotone sequence

x, x + f(x), x + f(x + f(x)), . . .

converges after a finite number of steps, but not necessarily uniformly bounded
in x; a counterexample is given by the semilattice consisting of N ∪ {∞} with
min as join and the strict monotone function f that on input x gives ∞ if
x = ∞, x− 1 if x ≥ 1, and 0 if x = 0.

Theorem 2.1 ([6]) The structure (K, +, ·, ∗, 0, 1) is a left-handed Kleene
algebra.

3 Application to Java

The Java bytecode verification algorithm, as described in the Java Virtual
Machine (JVM) specification [9], is a worklist algorithm. The official speci-
fication of the algorithm in [9] is operational, but there have been numerous
attempts at a more mathematical treatment [1,2,3,8,10].

In this application, the elements of L describe the current state of the local
variables and operand stack, which comprise the stack frame of the currently

4

Kot and Kozen

executing method. The top element> and bottom element⊥ of L are artificial
elements representing a type error and an unlabeled state, respectively. Every
other element of L consists of

(i) an assignment of types from a semilattice L0, described below, to a local
variable array, and

(ii) a bounded-depth operand stack containing values from L0.

These assignments must satisfy certain constraints, as described below.

The semilattice L0 describes the types of local variables and operand stack
elements. In the JVM, local variables do not have a fixed type, but are allowed
to contain different types at different points of the program. The semilattice
L0 has top element Useless representing uninitialized or otherwise unusable
values (not to be confused with the top element > of L).

When merging the state of the local variable array and operand stack at
the confluence of two or more control flow paths, the resulting state is the join
in L of the states produced by the different paths. The states must satisfy
certain compatibility conditions, or they cannot be merged; in that case, the
join in L is >, representing a type error. For example, the stack depths must
be the same, and the join in L0 of corresponding stack entries may not be
Useless. However, the join of corresponding local variables may very well be
Useless.

Just below Useless in L0 are several incomparable type hierarchies. The
first is the Java class hierarchy with top element Object representing all refer-
ence values, including interfaces and arrays. Array types below Object consist
of dimension and component type information. There is a least reference type
Null, representing the null reference. The type Null is a subtype of all other
reference types.

Also directly below Useless are the types Int, Float, Long, and Double.
The type Int represents the Java primitive types int, byte, char, short, and
boolean. In the JVM, all these values are represented as integers.

Finally, there is a collection of incomparable type hierarchies representing
return addresses from embedded jsr subroutines used in the implementation
of the Java try-catch-finally construct. These subroutines are well known to
cause special problems for bytecode verification [2,3,8,10]. Given the extent of
the additional complications introduced by jsr/ret, and given that they are
a feature specific to Java rather than to bytecode in general, we have chosen
to forego their treatment in this paper.

For p, q ∈ L, the join p + q is defined iff

• the current stack depths of p and q are the same,

• the join in L0 of corresponding local variable array elements in p and q is
defined,

• the join in L0 of corresponding stack elements in p and q is defined and is
not Useless.

5

Kot and Kozen

If p + q is defined, its value is obtained by taking the join in L0 of the corre-
sponding local variable array elements in p and q and the same stack as in p
and q. If p + q is undefined, we take p + q = >.

3.1 Specification of Transfer Functions

A transfer function f : L → L can be specified in terms of its preconditions
and effects. The preconditions are a set of constraints that specify the domain
of f , and the effects describe how f changes the abstract state.

The preconditions and effects can be encoded by triples

P = (oldD, oldS, oldL)

E = (newD, newS, newL),

where:

• oldS is an array of assertions α ≤ t, where α is a variable and t ∈ L0, or just
an unconstrained variable α. Each α occurs at most once in oldS. These
specify abstract values that are expected to occupy the top few positions on
the stack just before execution, and constitute the precondition for typesafe
execution.

For example, the iadd (integer addition) instruction would have oldS =
[α ≤ Int, β ≤ Int], indicating that the instruction expects two integers on
top of the stack. The astore 3 instruction (store a reference value in local
variable 3) would have oldS = [α ≤ Object], indicating that the instruction
expects a reference value on top of the stack. The swap instruction would
have oldS = [α, β], indicating that the instruction expects two values of
arbitrary type on top of the stack.

The array oldS does not normally specify the entire stack, just a few of
the topmost items. We denote the size of oldS by |oldS|.

• oldD is the maximum allowed depth of the stack below oldS. This specifies
how much free stack space must be available to execute f without stack
overflow. For example, if f requires 5 free stack locations and |oldS| is 3,
then oldD = maxS − 8, indicating that there may be at most maxS − 8
additional elements on the stack below those specified by oldS. The number
oldD may be any number between 0 and maxS, inclusive.

• oldL is an array of assertions α ≤ t, where α is a variable and t ∈ L0, or
just an unconstrained variable α, specifying the type constraints on local
variables that are necessary for typesafe execution of f . Each α occurs at
most once in oldL, and the variables in oldS and oldL must be disjoint. For
example, the oldL array of the aload 3 instruction (load of a reference type
from local variable 3) would contain α ≤ Object for local variable 3.

• newS is an array of expressions involving type values and variables repre-
senting the effect of the execution of f on the stack. For example, the
iadd instruction would have newS = [Int], indicating that the instruc-
tion returns an integer on top of the stack. If the swap instruction had

6

Kot and Kozen

oldS = [α, β], then it would have newS = [β, α]. If the aload 3 instruc-
tion had α ≤ Object for local variable 3, then it would have newS = [α].
We denote the size of newS by |newS|.

• newD is a number that is either the same as oldD or 0. In most cases, it is
the same as oldD, indicating that the stack below oldS is unmodified by the
instruction. One exception to this is the athrow instruction, which empties
the stack before pushing the exception object. For this instruction, or for
any exception thrown by other means, newD will be 0.

• newL describes the explicit effects of f on the local variables. For example,
the newL array of the istore 2 instruction (integer store to local variable
2) would specify that local variable 2 contains α after execution of f , where
oldS = [α ≤ Int]. Equivalently, local variable 2 of newL might just as well
contain the constant Int, since Int is minimal in L0, therefore α ≤ Int⇒
α = Int.

In addition, newL contains the constraints of oldL that are unaffected by
f . For example, for the instruction aload 3, if the oldL array specified
α ≤ Object for local variable 3, then the newL array would contain α for
local variable 3.

The arrays newL and newS may contain the symbolic joins of abstract types
and type variables.

These properties will hold for all transfer functions defined from individual
bytecode instructions, and our definition of join and composition will preserve
them. Thus we can expect them to hold for all functions in our analysis.

3.2 The Transfer Function Specified by P, E

In this section we show how a specification P, E uniquely describes a transfer
function f : L → L.

The domain of f is the set of p ∈ L such that (i)–(iii) below hold:

(i) For each of the topmost |oldS| elements of the stack in p, if the corre-
sponding element of oldS is α ≤ t, then that element must be less than
or equal to t. If the corresponding element of oldS is a variable α, the
type is not constrained.

(ii) For each local variable x, if the xth element of oldL is α ≤ t, then the xth

local variable of p must be less than or equal to t. If the xth element of
oldL is a variable α, then the xth local variable of p is not constrained.

(iii) The stack depth at p is no greater than oldD + |oldS|.
Finally, we specify the value of f(p), where p ∈ dom f . For each local

variable x, if the xth element of oldL is α ≤ t or α, unify α with the xth

element of p. Similarly, for each element of oldS, if that element is either
α ≤ t or α, unify α with the corresponding element of the stack of p. Now for
each local variable x, evaluate the xth element of newL, which is a symbolic

7

Kot and Kozen

join of variables and constants in L0, under this substitution. That will be the
xth element of the local variable array of f(p). The values of the stack of f(p)
corresponding to newS are obtained similarly. If oldD = newD, the remaining
elements on the stack at f(p) are unchanged. Otherwise, if newD = 0, the
stack contents at f(p) will be just newS.

3.3 Operations on Transfer Functions

In this section we describe the Kleene algebra operations on specifications of
transfer functions. Before doing so, however, we present an auxiliary operation
that is of use when comparing two specifications with different oldS or newS
lengths.

3.3.1 Lengthening

Given a specification P, E such that oldD = newD ≥ 1, we can lengthen
the stacks by adding a new unconstrained variable α to both oldS and newS
immediately under the elements already represented there and decrementing
oldD and newD by 1. The resulting specification P ′, E ′ represents the same
transfer function f as P, E with the added restriction that the stacks are
constrained to have at least one additional element below oldS and newS.

In case oldD ≥ 1 but newD = 0, as for example with the athrow instruction,
we can lengthen just oldS by adding a new unconstrained variable α to oldS
immediately under the elements already represented there and decrementing
oldD by 1. The resulting specification P ′, E ′ represents the same transfer
function f as P, E with the added restriction that oldS must have at least one
more element than previously required.

3.3.2 Join

Given specifications Pf , Ef and Pg, Eg defining transfer functions f and g,
respectively, we wish to define Pf+g and Ef+g. Intuitively, we would like Pf+g

to be the weakest set of constraints implying both Pf and Pg, and we would
like Ef+g to be the join of Ef and Eg.

The constraints that Pf and Pg place on stack depth must not be so strong
as to prevent the merging of the stacks. Thus, all of the following properties
must hold:

oldDf + |oldSf | ≥ |oldSg|
oldDg + |oldSg| ≥ |oldSf |

newDf + |newSf | ≥ |newSg|
newDg + |newSg| ≥ |newSf |.

First, if |oldSf | 6= |oldSg|, say |oldSf | < |oldSg|, we lengthen oldSf as de-
scribed in Section 3.3.1 until they are the same length. If this is impossible
because oldDf = 0, it is a type error. Thus we can assume without loss of
generality that |oldSf | = |oldSg|.

8

Kot and Kozen

To define Pf+g, we first set

oldDf+g
def
= min(oldDf , oldDg).

This sets oldDf+g to the stricter of the two constraints imposed by oldDf and
oldDg.

The contents of the array oldSf+g are the weakest constraints that imply
the constraints imposed by both oldSf and oldSg. To define element i in
oldSf+g, locate the corresponding elements in oldSf and oldSg, counting from
the top of the stack. Call these items if and ig. The value of element i in
oldSf+g is defined as follows.

• If one of if , ig is α ≤ s and the other is either β ≤ t with s ≤ t or just β,
then the corresponding constraint in oldSf+g is α ≤ s, since it is the stricter
constraint. Unify α and β in Pf , Ef , Pg, Eg.

• If if is α and ig is β, unify the two variables in Pf , Ef , Pg, Eg. The corre-
sponding element of oldSf+g is just α.

• If if is α ≤ s and ig is β ≤ t with neither s ≤ t nor t ≤ s, it is a type error.

We define oldLf+g similarly from oldLf and oldLg. If the variables in the
two arrays are both constrained, say by s and t with s ≤ t, then unify the
two variables in Pf , Ef , Pg, Eg and constrain it with s in oldLf+g. If one of
the elements is unconstrained, take the other constraint and unify the two
variables.

For Ef+g, we must have |newSf | = |newSg|, otherwise it is a type error.
Set

newDf+g
def
= min(newDf , newDg).

The intuition behind this is the same as for oldDf+g.

Define newLf+g to be the join of newLf and newLg. That is, to obtain
a particular element in newLf+g, take the join in L0 of the corresponding
elements in newLf and newLg. The resulting expression can be simplified if
necessary using associativity, commutativity, and idempotence. If any join of
two type values in this process is Useless, it is not a type error.

Similarly, define newSf+g to be the join of newSf and newSg, except that
a Useless value is a type error.

3.3.3 Composition

Say we are given specifications Pf , Pg, Ef , Eg of transfer functions f and g.
We wish to define Pfg and Efg. For the composition to be legal, the following
conditions must hold:

newDf + |newSf | ≥ |oldSg|
oldDg + |oldSg| ≥ |newSf |.

If |newSf | 6= |oldSg|, we first lengthen the shorter one as described in
Section 3.3.1. If this is not possible because one of oldDg or newDf is 0, it is

9

Kot and Kozen

a type error. Thus we can assume without loss of generality that |newSf | =
|oldSg|.

First we define oldDfg. There are two cases, depending on f :

oldDfg
def
=

 min(newDf , oldDg), if oldDf = newDf

oldDf , otherwise.

To construct oldLfg, we start with oldLf and modify it as follows.

If local variable x of newLf contains an expression e with type constant
s ∈ L0 and one or more type variables, and if local variable x of oldLg is of the
form α ≤ t, we must have s ≤ t, otherwise it is a type error. Intuitively, the
type produced by f in that position can be at least s, thus g must not place
a stronger constraint on that element.

Moreover, for all variables β in e, if the constraint β ≤ u appears in oldLf

or oldSf and t ≤ u, or if β appears unconstrained in oldLf or oldSf , replace the
constraint β ≤ u or the unconstrained occurrence of β in oldLf or oldSf with
β ≤ t. Intuitively, the stronger constraint β ≤ t imposed by oldLg propagates
backward through f . If u ≤ t, we do not alter the constraint β ≤ u. If neither
u ≤ t nor t ≤ u, it is a type error.

When this has been done for all local variables x, the resulting array is
oldLfg.

A similar construction holds for oldSfg. We start with oldSf . If any element
of newSf is an expression e with type constant s ∈ L0 and one or more type
variables, and if the corresponding element of oldSg is of the form α ≤ t, we
must have s ≤ t, otherwise it is a type error. Moreover, as described above,
for all variables β in e, we propagate the constraint β ≤ t backwards through
f if necessary.

Define Efg as follows. Again, there are two cases for newDfg, depending
on f :

newDfg
def
=

 min(newDf , oldDg), if oldDg = newDg

newDg, otherwise.

We compute newLfg and newSfg as follows. Start with newLg and newSg,
respectively. For each local variable with α or α ≤ t in oldLg, unify α with
the expression occurring in the corresponding location in newLf , and apply
this substitution to newLg and newSg, evaluating and simplifying expressions
if necessary. Similarly, for each stack entry α or α ≤ t in oldSg, unify α with
the expression occurring in the corresponding location in newSf , and apply
this substitution to newLg and newSg, evaluating and simplifying if necessary.
A type error is signaled if Useless appears in the evaluation of expressions in
newSg. The resulting arrays are newLfg and newSfg, respectively.

3.3.4 Identity

The identity function 1
def
= λp.p is specified by:

10

Kot and Kozen

P1, E1
def
= (maxS, [], A),

where [] denotes the empty stack and A is an array of maxL distinct uncon-
strained variables.

3.3.5 Star

Given a specification P, E of a transfer function f , a specification of f∗ can
be computed by taking the join of sufficiently many finite powers of f . For
this not to result in a type error, we had better have |oldSf | = |newSf |: if
|oldSf | < |newSf |, then some power of f will result in a stack overflow, and if
|oldSf | > |newSf |, then some power of f will result in a stack underflow.

It suffices to take the join of powers fk up to k = |oldSf |+maxL, since this
is an upper bound on the number of steps needed for any variable or constant
appearing in oldSf or oldLf to propagate to an expression in newSf∗ or newLf∗.
Thus f∗ = (1+f)k for k = |oldSf |+maxL, which we can compute by repeated
squaring in log k steps.

Example 3.1 Consider the Java fragment

if (b) x = y + 1;

else x = z;

(i) The assignment x = z might be compiled to the bytecode sequence

iload 5

istore 3

where the local variables x and z occupy positions 3 and 5 in the local
variable array, respectively. The instruction iload 5 has α < int for
local variable 5 in oldL (or just int, since α ≤ int implies α = int),
oldS = [], and oldD = maxS − 1, indicating that there must be at
least one free stack location. The effect of iload 5 has newS = [int],
indicating that an int has been pushed onto the stack, and int in position
5 of newL. The istore 3 instruction has oldS = [int] and newS = [],
oldD = maxS−1, and int in position 3 of newL. The composition of these
two instructions has int for local variable 5 in oldL and for local variables
3 and 5 in newL, oldS = newS = [], and oldD = newD = maxS− 1.

(ii) The assignment x = y+1 might be compiled to the bytecode sequence

iload 4

iconst 1

iadd

istore 3

where the local variable y occupies position 4 in the local variable array.
The composition of these four instructions has int for local variable 4
in oldL and for local variables 3 and 4 in newL, oldS = newS = [], and
oldD = newD = maxS − 2, since the sequence required two free stack
locations.

11

Kot and Kozen

(iii) The entire conditional statement would involve computing the sum of the
two bytecode sequences in (i) and (ii). The sum of these two sequences
would have int for local variables 4 and 5 in oldL and for local variables
3, 4, and 5 in newL, oldS = newS = [], and oldD = newD = maxS− 2.

4 An Algorithm

In this section we present a hybrid algorithm for dataflow analysis that may
give an improvement in performance over the standard worklist algorithm
when a small cutset can be found. The algorithm exploits the ability to
compute the Kleene algebra operations on transfer functions as defined above.

We are given a program with n instructions, and we wish to label the un-
derlying control flow graph G of the program with elements of the semilattice
L. Let E be the n× n matrix with rows and columns indexed by the vertices
of G such that if (s, t) is an edge of G, then E[s, t] is the transfer function
labeling the edge (s, t), and E[s, t] = 0 if (s, t) is not an edge of G. This
matrix is easily constructed in a single pass through the program.

Recall from Section 2.2 that the n× n matrices over a left-handed Kleene
algebra again form a left-handed Kleene algebra. We can thus speak of the
matrix E∗. The entry E∗[u, v] is the join of the composition of transfer
functions along all paths from u to v. If we can compute E∗, then we can
obtain the desired fixpoint dataflow labeling at any node u of G by evalu-
ating E∗[s0, u](`0), where `0 ∈ L is the initial label of the start node s0.
The label `0 consists of an empty stack, the types of the arguments to the
method (including the object itself if it is an instance method) in the first few
local variables, and Useless for the remaining local variables. The value of a
transfer function given by its specification P, E on an element ` ∈ L can be
computed by unifying the variables in oldS and oldL with the corresponding
values in `, checking that all constraints α ≤ t in oldS and oldL are satisfied,
then evaluating the expressions in newS and newL under this substitution.

It is shown in [6] that an abstracted version of this method and the stan-
dard worklist algorithm produce the same fixpoint labeling on all type-correct
programs.

4.1 Small Cutsets

We do not compute E∗ directly, because it is too big. Instead, we propose
the following hybrid method that uses the preceding ideas in conjunction with
the worklist algorithm to avoid recalculating dataflow information.

Let M be a cutset (also known as a feedback vertex set) in G; that is, a
set of nodes such that every directed cycle of G contains at least one node
in M . We also include the start node s0 in M , even though s0 may not be
a cutpoint. Let m = |M |. Finding a minimum cutset is known to be NP -
complete, but solvable in polynomial time for reducible graphs [4]. Flowgraphs

12

Kot and Kozen

of bytecode programs compiled from Java source would ordinarily be reducible.
In practice, simply taking M to be the set of all targets of back edges should
give a very small cutset.

Let A, B, C, and D be the M × M , M × (V − M), (V − M) × M , and
(V −M)× (V −M) submatrices of E, respectively:

E =

A B

C D

 .

Let F
def
= A + BD∗C and G

def
= D + CA∗B. By left-handed Kleene algebra

(see [6]),

E∗=

F∗ F∗BD∗

G∗CA∗ G∗

 . (3)

The fact that M is a cutset is reflected algebraically by the property
Dn−m = 0. This is because Dn−m describes the labels of paths of length
n−m through V −M ; but by the pigeonhole principle, any such path would
have a repeated node, thus would contain a cycle, which must intersect M .
Therefore no such path can exist.

One can show that if P and Q are matrices such that for all i, j, not both
Pij and Qij are nonzero, then P and Q satisfy right distributivity with respect
to any other matrix R; that is, (P + Q)R = PR + QR. This holds for I and
D, since I has nonzero elements only on the diagonal, and D has only zeros
on the diagonal, otherwise those nodes would be cutpoints. It follows that
(I + D)k =

∑k
i=0 Di. From this fact and the axioms of left-handed Kleene

algebra, we have that D∗ = (I + D)n−m−1, hence

F = A + BD∗C = A + B(I + D)n−m−1C.

The m×m matrix F describes the labels of paths from a cutpoint to another
cutpoint that do not go through an intermediate cutpoint. Since the subgraph
on V −M is acyclic, F can be computed in time O(mn) using the traditional
worklist algorithm starting from every cutpoint. In each such computation,
each vertex of V −M is visited at most once. Alternatively, we could topo-
logically sort the subgraph and compute the compositions in sorted order.

As a byproduct of this computation, we also obtain the matrix

H
def
= BD∗ = B(I + D)n−m−1,

which describes the labels of paths from a cutpoint to a non-cutpoint that do
not go through any other cutpoint.

Now we need to compute the star of F , but this matrix will typically be
much smaller than E. We can do this by a divide-and-conquer method using
the recursive definition of the star of a matrix (3). This requires time O(m3)
in the worse case.

Now to achieve the final dataflow labeling, we observe that the sth
0 row

13

Kot and Kozen

of F∗ is a vector of transfer functions F∗[s0, u], one for each cutpoint u,
which when applied to `0 yields the final dataflow labeling of u. Similarly,
the sth

0 row of F∗H is a vector of transfer functions F∗H[s0, v], one for each
non-cutpoint v, which when applied to `0 yields the final dataflow labeling of
v. Each of the m values F∗[s0, u](`0) can be calculated in constant time, or
O(m) in all. Once we have this vector of values, we can calculate

F∗H[s0, v](`0) =
∑
u∈M

H[u, v](F∗[s0, u](`0)),

which takes time O(m) for each v ∈ V , or O(nm) in all.

4.2 Complexity

The worst-case complexity of this algorithm is O(nm + m3). Compared with
the worst-case complexity of the worklist algorithm, namely O(nd) where d is
the depth of the semilattice L, our algorithm may give an improvement when
m is small.

One other advantage of the second-order method is that it is amenable
to parallelization. The worklist method is inherently sequential, since each
application of a transfer function requires knowledge of its inputs, whereas
compositions can be computed without knowing their inputs. Such questions
remain for future investigation.

Acknowledgement

Thanks to Stephen Chong, Andrew Myers, and Radu Rugina for valuable
discussions. This work was supported in part by NSF grant CCR-0105586
and ONR Grant N00014-01-1-0968. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied,
of these organizations or the US Government.

References

[1] Abadi, M. and R. Stata, A type system for Java bytecode subroutines, in: Proc.
25th Symp. Principles of Programming Languages, ACM SIGPLAN/SIGACT,
1998, pp. 149–160.

[2] Coglio, A., Simple verification technique for complex Java bytecode subroutines,
Concurrency and Computation: Practice and Experience 16 (2004), pp. 647–
670.

[3] Freund, S. N. and J. C. Mitchell, A type system for the Java bytecode language
and verifier, J. Automated Reasoning 30 (2003), pp. 271–321.

[4] Garey, M. R. and D. S. Johnson, “Computers and Intractibility: A Guide to
the Theory of NP -Completeness,” W.H. Freeman, 1979.

14

Kot and Kozen

[5] Kildall, G. A., A unified approach to global program optimization, in: Proc. Conf.
Principles of Programming Languages (POPL’73), ACM, 1973, pp. 194–206.

[6] Kot, L. and D. Kozen, Second-order abstract interpretation via Kleene algebra,
Technical Report 2004-1971, Computer Science Department, Cornell University
(2004).
URL http://www.cs.cornell.edu/kozen/papers/KADataflow.pdf

[7] Kozen, D., A completeness theorem for Kleene algebras and the algebra of
regular events, Infor. and Comput. 110 (1994), pp. 366–390.
URL http://www.cs.cornell.edu/kozen/papers/ka.ps

[8] Leroy, X., Java bytecode verification: an overview, in: G. Berry, H. Comon and
A. Finkel, editors, Proc. Conference on Computer Aided Verification (CAV
2001), Lect. Notes in Computer Science 2102 (2001), pp. 265–285.

[9] Lindholm, T. and F. Yellin, “The JAVA virtual machine specification,” Addison
Wesley, 1996.

[10] Qian, Z., Standard fixpoint iteration for Java bytecode verification, Transactions
on Programming Languages and Systems 22 (2000), pp. 638–672.

15

http://www.cs.cornell.edu/kozen/papers/KADataflow.pdf
http://www.cs.cornell.edu/kozen/papers/ka.ps

	Introduction
	Background
	Upper Semilattices
	Kleene Algebra
	Strict Monotone Functions on a Semilattice

	Application to Java
	Specification of Transfer Functions
	The Transfer Function Specified by P,E
	Operations on Transfer Functions

	An Algorithm
	Small Cutsets
	Complexity

	Acknowledgement
	References

