Borel Coalgebra and Non-Wellfounded Logic

I and Francisco Mota?!

Dexter Kozen
1 Department of Computer Science
Cornell University
Ithaca, New York 14853-7501, USA
{kozen,fmotal}@cs.cornell.edu

—— Abstract

We introduce Borel coalgebras and Borel automata as a computational approach to basic de-
scriptive set theory. We show that over any Polish space, Borel automata accept exactly the
coanalytic sets, and total Borel automata (those that halt on all inputs) accept exactly the Borel
sets. The latter result is a computational version of the Kleene—Suslin theorem. The ordinal rank
of a Borel set is characterized as the running time of a Borel automaton. We show how these
ideas lead to a general notion of non-wellfounded logic in which syntactic objects such as terms
and formulas are elements of a final coalgebra. We relate these notions to the categorical theory
of recursion schemes (Adamek, Milius, and Velebil 2006, Milius and Moss 2006) to provide a
foundation for non-wellfounded logic.

Keywords and phrases coanalytic sets, Borel sets, coalgebra, non-wellfounded logic, IND pro-
grams

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Mathematical logic has had a profound influence on the theory of computation for over
half a century. From type theory to denotational semantics, from verification to model
checking, from automated deduction to the Curry—Howard correspondence, the foundations
of computation owe a great debt to logic.

In the reverse direction, the contributions of computation to the foundations of logic are
perhaps less well established. However, one distinguishing characteristic of computation that
can provide a fresh perspective is its dynamic nature, in contrast to traditional static nature
of logic. In logic, models, valuations of variables, and truth values of predicates are regarded
as fixed and immutable. Computation, on the other hand, often involves explicit operators
such as assignments x := e that can change state. In addition, programming languages
often provide mutable data structures for maintaining information during a computation,
which are typically absent from traditional treatments of logic. This dichotomy is reflected
in the relationship between denotational and operational models in programming language
semantics.

Although the static approach is perhaps more amenable to mathematical treatment, the
dynamic perpective can lend insight and reinforce intuition. For example, in the realm of
inductive definability, Kleene’s theorem states that over N, the inductive and II} relations
coincide, as do the hyperelementary and Af relations. However, this theorem has a more
computational interpretation than is apparent from the standard development [5, 15]. In [6],
a programming language IND was defined, and it was shown that over any structure, loop-free
IND programs (respectively, IND programs that always halt, general IND programs) com-
pute exactly the first-order (respectively, hyperelementary, inductive) relations. By Kleene’s
theorem, IND programs compute exactly the II} relations over N. Moreover, IND programs

m licensed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2

Borel Coalgebra and Non-Wellfounded Logic

can be used to give a more computationally motivated proof of Kleene’s theorem. In [10], it
was shown that IND programs with dictionaries, a common abstract data structure allowing
storage and retrieval of data indexed by keys, compute exactly the IIj relations over any
countable structure. This was not a new result, but rather a more computational perspective
on a result of Barwise, Gandy, and Moschovakis [4, 14] (see [5, Corollary VI.3.9(i), p. 214])
stating that over any countable structure 21, the IT} relations are equivalent to a certain class
of inductively definable relations over HIF 2, where HF 2 refers to the structure 2 augmented
with its hereditarily finite sets. But the result of [10] clarifies the role of the hereditarily
finite sets: like dictionaries, they are simply a data structure, nothing more nor less. The
difference is that IND programs and dictionaries are more programmable.

Our purpose in this paper is to further this agenda. In section §2 we introduce Borel
coalgebras and Borel automata as a model of computation for describing constructs from
basic descriptive set theory [11, 17], but with a decidedly more computational flavor. We
show that over any Polish space, Borel automata accept exactly the coanalytic sets, and
total Borel automata (those that halt on all inputs) accept exactly the Borel sets. The
latter result is a computational version of the Kleene—Suslin theorem [16]. The ordinal rank
of a Borel set is characterized as the running time of a Borel automaton. These running times
can be any countable ordinal, but Borel automata that accept their inputs within a uniform
countable time bound accept only Borel sets; this is shown by “clocking” the computation.
The semantics is a direct generalization of the semantics of alternating Turing machines
and IND programs. The main contributions here are not so much the results themselves,
but rather a more computational perspective on the basic notions of descriptive set theory
[11, 16, 17].

In §4 we impose two natural restrictions on Borel coalgebras, the finitary and uniform
Borel coalgebras, and characterize the expressive power of these restricted models. The
latter turn out to be equivalent to programs of the IND programming language introduced
in [6] interpreted over countable structures. This is the “Kleene” part of the Kleene-Suslin
theorem.

Finally, in §5 we discuss a larger context for the dynamic approach based on a non-
wellfounded version of infinitary logic [7] that is also related to coalgebraic logic [18] and
the categorical theory of recursion schemes [3, 12, 13]. Normally syntactic objects such
as terms and formulas are defined inductively, viewing the nonlogical and logical symbols
as algebraic constructors. This is so with classical first-order logic and the infinitary logics
L3, notably L, [7], which are exclusively wellfounded. In our approach, syntactic objects
are coterms over an algebraic signature, which are elements of a final coalgebra for the
signature. As coterms are not wellfounded in general, we must accommodate nonhalting;
this is accomplished with the use of three-valued (Lukasiewicz) logic, the third value L
representing “don’t know yet (and maybe never will).”

We emphasize that although our treatment involves coalgebras and coterms, the logic
is algebraic, not coalgebraic. We elaborate on this point in §5, in which we give a general
account of non-wellfounded logic, including notions of interpretation and substitution. Our
main result of this section is a free construction that for any F-algebra A and interpretation
of variables over A gives a canonical interpretation of F-coterms in the flat Scott domain
A, using results from the categorical theory of recursion schemes [3, 12, 13]. Since the F-
coterms form the final F-coalgebra, this interpretation composes with the unique coalgebra
morphism from any F-coalgebra S to provide a computational semantics for S when viewed
as a program.

Dexter Kozen and Francisco Mota

s:allA where A € ©,,(S5)

s :some A where A € ©,,(S5)
s:nott where te S

s:if p then t else v where ¢ € ® and t,u e S

Figure 1 Borel Coalgebra

2 Borel Coalgebras and Borel Automata

» Definition 2.1. Fix a set ® of basic predicates in some language. A Borel coalgebra over
® is a possibly infinite program made of labeled statements of the form shown in Figure 1,
where S is a set of statement labels or states and ,,, (S) denotes the countable powerset of
S. Formally, a Borel coalgebra is a pair (S, A) where S is a set of states and A is a structure
map

A:S = 9, (S)+ 0u, (S) + S+ (@ x S?),

where the components correspond to all A, some A, nott, and if ¢ then ¢ else u from left to
right. Alternatively, A comprises two maps ¢ and 0, where 0(s) is the set of states on which
s depends and £(s) tells us what kind of state s is, as given in the following table.

Program Notation ‘ Type of A(s) ‘ 0(s) ‘ £(s) ‘

s:allA £, (S) A all
s:some A P, (S) A some
s:nott S t not
s :if ¢ then t else u | ® x 52 (t,u) | p€®

» Definition 2.2. A Borel automaton is a triple (S, A, sg) where (S, A) is a Borel coalgebra
and sg € S is the starting state of the automaton.

2.1 Intuitive Operation

The input to a Borel automaton is a mathematical structure 2 in the language of ® and
a valuation o interpreting variables in ® as elements of 2[. The computation consists of
processes generating a computation tree downward from the start state sy and passing
acceptance or rejection information upward from the leaves to the root.

We start with a single process pg in state sg. During the computation, if a process p is in
a non-leaf state s, that is, a state for which §(s) # &, then p spawns a set of child processes,
one for each element of §(s). The process p then suspends, waiting for reports of acceptance
or rejection from its children. The child process associated with ¢ € 6(s) proceeds similarly
from state t.

When enough information is received from its children, the process p waiting at a state
s accepts or rejects as appropriate and passes this information back up to its parent. A
process waiting at a “some” state accepts if at least one of its children accepts and rejects
if all of its children reject. A process waiting at an “all” state accepts if all of its children
accept and rejects if at least one of its children rejects. A process waiting at a “not” state
rejects if its unique child process accepts and accepts if its unique child rejects. A process
waiting at an “if p then t else u” state depends on the truth of ¢: if 2,0 | ¢ then this

XX:3

XX:4

Borel Coalgebra and Non-Wellfounded Logic

process accepts if the child process at t accepts and rejects if the process at t rejects; if
2, 0 |= - then the process accepts if the process at u accepts and rejects if the process at
u rejects.

The computation is said to accept if the original process py waiting at the start state sg
accepts. It is said to reject if pg rejects. It is said to halt if pg either accepts or rejects.

Because of countable branching, a process waiting at a state for reports from its children
can take more than finite time to accept or reject. Thus the notion of time must be suitably
generalized. The “time” at which a process halts can be any countable ordinal.

2.2 Formal Semantics

To execute a Borel automaton, we must fix a structure 2l and a valuation ¢ and then
simulate the processes as described above. There is no imposition of well-foundedness on
the transition structure, so a process may depend on its own value, directly or indirectly.
For example, the circular statements “s : all {s}” and “s; : notsy ; s2 : nots;” are allowed.
We thus interpret the value of each process by successive approximation, using three-valued
logic with truth values 3 = {0,1, L} where L represents “don’t know yet (and maybe never
will).” There are two natural partial orders defined on 3, namely the Lukasiewicz order <
and the Scott (information) order T, defined by the following Hasse diagrams:

1
| o 1
| N/
0 1
Lukasiewicz order < Scott (information) order C

As algebraic constructors on 3, the operators V and A give the supremum and infimum,
respectively, in the FLukasiewicz order <, and the operator — inverts the order, i.e. maps 0
to1l,1t00, and L to L.

The computation of a Borel automaton (S, A, sg) on input o is defined formally in terms
of an inductively defined labeling L, : S — 3. Given any labeling L : S — 3, we define a
new labeling 7, (L) as follows:

Niea L(t), if A(s) = (all, A),
Viea L(t), if A(s) = (some, A),
To(L)(s) = ¢ =L(t), if A(s) = (not,t),
L(t), if A(s)= (cp u) and 2 o0 @,
(s) = (o,

L(u), if A(s ,u) and A, 0 = .

The map 7, is monotone in the information order C defined pointwise on labelings. By the
Knaster—Tarski theorem, 7, has a C-least fixpoint L, : S — 3. This is the least L such that
To(L) £ L. The least fixpoint can also be obtained as a limit of approximants L,,:

Lo(s) = L Lot1=7(La) Ly=| | La Ly =| | La.
a<A «
Here A denotes a limit ordinal and | | the supremum in the information order. If S is
countable, the closure ordinal of the inductive definition of L, is countable. For the final
coalgebra, the closure ordinal is wy. We say that S accepts if L,(sp) = 1 and rejects if
L,(sp) = 0. We say that the automaton halts if it either accepts or rejects.

Dexter Kozen and Francisco Mota

2.3 Time

The halting time T, (s) of a state s € S on input o is the least ordinal « such that L(s) # L,
if such an « exists. If T, (s) exists, then it is countable. For a € {0,1, L}, let E,(s) = {t €

3(s) | Lo (t) = al.

inftEEl(s) To(t)+1, L(s)
SUDse gy (s) Lo (t) + 1, £(s) =some and Ep(s) = d(s),
SUDse 7, (s) T,(t)+1, 4(s)=all and Ei(s) =4(s),
T,(s) = infepyo) To(t) +1, £(s)

(s)

T,(t) +1, £(s) = not and 6(s) = {t},
T, () +1, A(s) = () and 2,0 = o,
TO’(U) + 15 A(S) = (QD,LU) a’nd Qla o ': ¥,

and undefined otherwise. We say that a Borel automaton S is uniformly a-time bounded for
a countable ordinal « if, whenever S halts, it does so within time «; that is, T, (s¢) < « for
any halting input o. Note that every Borel automaton is wi-time bounded.

2.4 Useful Constructions

» Definition 2.3. An alternative formulation of Borel coalgebra replaces conditional state-
ments “s : if ¢ then t else u” with test statements “s : ¢” which accept immediately if
2A,0 E ¢ and reject immediately if 2, o F p. We call these oblivious Borel coalgebras be-
cause tests can only appear at the leaves of the computation tree, so the computation tree is
the same for all inputs. Non-oblivious Borel coalgebras (as defined in the previous section)

can simulate oblivious Borel coalgebras by replacing each test s : ¢ with the statements:
s 1 if i then accept else reject accept : all @ reject : some &

where accept accepts immediately and reject rejects immediately. Likewise, non-oblivious
Borel coalgebras can be made oblivious by replacing every conditional “s : if ¢ then ¢ else u”
with the statements:

s :some{sy, s} s1 :all{s3,u} so :all {s4,t} $3 1 not sy S4:
or more succinctly, allowing compound statements,

s :some{all {notp, u},all{p,t}}
This says that working with oblivious or non-oblivious automata is mostly a matter of taste.

» Definition 2.4. A Borel coalgebra is positive if it has no negation statements. Due
to DeMorgan’s laws, we can make every Borel coalgebra positive by following a two-step

process. Given S, build the dual machine with a disjoint copy of the statement labels
S'={s"|se S}

’ if S has ‘ then S’ has
s:allA s’ : some A’
s :some A s’ all A/
s:nott s’ :nott’
s:if ¢ then u else v | s’ :if then v/ else v’

XX:5

XX:6

Borel Coalgebra and Non-Wellfounded Logic

Note that s accepts when s’ rejects and vice versa. Now build a machine from the disjoint
union S U S’ by replacing each negation:

if S, S’ have | then SU S’ has |

s:nott s:all {t'}
s i nott s vall {t}

This construction does not preserve the obliviousness, and conversely the oblivious construc-
tion does not preserve positivity. To have both, we need the basic predicates to be closed
under negation, allowing us to replace “s3 : notsy” with “sg3 : if =@ then accept else reject”
in the oblivious construction, thereby preserving positivity.

» Definition 2.5. Given two positive Borel coalgebras with disjoint state sets Sy, S, we
build an interleaved coalgebra S ® Sa with states (S x S2) U (S2 x S1) as follows:

’ if S1,.52 have ‘ then S; ® Sy has ‘
s:allA (s,t) rall{(t,r) | r € A}
s : some A (s,t) :some{(t,r) | r € A}
s :if @ then welse v | (s,t) @ if © then (¢,u) else (¢,v)

This machine S7 ® S accepts if S7 or Sy accepts before the other rejects, and rejects if S; or
So rejects before the other accepts. Therefore if S; and Sy agree whenever they both accept
or reject, then S7 ® S5 agrees with both and halts whenever either of the two halt. By using
the positive construction (Definition 2.4), we can interleave any two Borel coalgebra.

» Lemma 2.6. If T,(s) <T,(t), then Ly(s,t) = L,(s) and T,(s,t) = T,(s) - 2.

» Definition 2.7. For each countable ordinal o < w; we construct a Borel automaton called
the a-clock, with S = a4+ 1 and sg = « and the single rule for all g € S:

B :some {v:v < S}

Regardless of input, this automaton runs for « steps and then rejects. By interleaving the
a-clock with a Borel automaton S, we enforce a uniform time bound on S, as any input that
takes longer than « steps to compute in the original automaton is automatically rejected.
We call this process “clocking.”

3 Characterization of Coanalytic and Borel Sets

Consider the class of Borel automata with a single variable x ranging over elements of a Polish
space 2 and atomic formulas x € A, where A is a basic open set of 2[. The prototypical
example of a Polish space is the Baire space w*, in which case x ranges over w* and A would
be one of A, for y € w* representing the basic open set {a € w* | y < a}, where < represents
the prefix relation. For such automata, we say that S accepts a € 2 if L,(sg) = 1, where
o(x) = a. We define

L(S) ={a e A | S accepts a},
the set of elements of 2 accepted by S.

» Theorem 3.1. Let A be a subset of a Polish space. A is coanalytic iff A = L(S) for some
Borel automaton S.

Dexter Kozen and Francisco Mota

Proof. (<) Without loss of generality assume S is oblivious. The acceptance condition is
VL (1-(L) E L= L(sp) =1), (1)
where

Vies(s) L(#), ¢

(
o (D)(s) = { Presto) B0 ei
(

§) = some,

)
)

2
: (2)
)

S

S

—L(3(s)), ¢
A, 0 E @], 14

S

where [, 0 F ¢] € 2 denotes the truth value of this basic predicate. Because the set of
states reachable from the start state sq is countable and duplication of siblings does not
affect acceptance or rejection, we can assume without loss of generality that S = w*, so = ¢,
and 0(s) = {sn | n € w}. By a long sequence of transformations (the full argument can be

found in Appendix A), the acceptance condition (1) can be transformed to IT} form

VL Vf Vg 3s In (¢Y(o, L, s, f(s),g9(s),n) = L(e) = 1), (3)

so the set

{o| S accepts 0} = {0 |VL (7,(L)C L= L(e) =1)}

={o |VYLVf Vg 3s3In (Y(o,L,s, f(s),g(s),n) = L) =1)}

is coanalytic.
(=) If A is coanalytic, it can be constructed via a Suslin scheme:

A= () (Mc UMy, UMy, UMggya, U--) (4)

rew®

where M, is a family of basic open sets in 2l indexed by finite sequences of natural numbers
a € w*. We build a Borel automaton with states w*, start state €, and program:

a:if o(x) € M, then accept else all {an | n € w}. (5)
The automaton checks that along all paths © = zgz; - - -, eventually o(z) € My, ...,,. Then
L,(e) =1iff o(x) € A, so this Borel automaton accepts A. <

The following is our main theorem.
» Theorem 3.2. Let A be a subset of a Polish space. The following are equivalent:

1. A is analytic and coanalytic.

2. A is Borel.

3. A is accepted by a well-founded Borel automaton. This means that all computation paths
on any input are finite.

4. A is accepted by a Borel automaton with uniform time bound o < w1.

5. A is accepted by a total Borel automaton, i.e. one that halts on all inputs.

» Remark. The equivalence (1 < 2) is known as the Kleene—Suslin theorem (see e.g. [11]).
We give here a more computationally flavored proof.

XX:7

XX:8

Borel Coalgebra and Non-Wellfounded Logic

Proof. (2 & 3) A well-founded Borel automaton in oblivious mode is an infinitary term
representing the inductive construction of the set A as a Borel set.

(3 = 4) If the computation is oblivious, the computation tree does not depend on the
input o. Since the tree is well founded, its ordinal is countable, and this is a uniform time
bound for all inputs.

(4 = 3) Given any Borel automaton with a uniform time bound «, we can interleave
the automaton with the a-clock, according to Definition 2.7. The clocked automaton is
well founded since the ordinal « is; any computation that takes too long is now forcibly
truncated. The language A is preserved because all the inputs were originally accepted in
fewer than « steps.

(3 = 5) Every computation path of a well-founded automaton is finite. It is easily shown
by well-founded induction on the structure of the automaton that on any input, every node
is eventually labeled with either 0 or 1.

(5 = 1) By Theorem 3.1, A is coanalytic. Moreover, because the automaton halts on all
inputs, the dual automaton (Definition 2.4) accepts the complement of A, so the complement
of A is also coanalytic, and therefore A is analytic.

(1 = 4) This is the most interesting case. This can be shown by a product construction
analogous to the proof that an r.e., co-r.e. set is recursive or an inductive, coinductive set (as
represented by complementary IND programs) is hyperelementary. If A and ~A are both
coanalytic, they have Suslin schemes (4) defined by basic open sets M, and Ng, respectively.
Moreover, if the space is Polish (completely metrizable and separable), we can arrange that
the diameters of the sets ~M, along any path decrease to 0, and similarly for ~Ng. Then
A and ~A are accepted by automata of the form (5):

a:if o(x) € M, then accept else all {an | n € w}
B :if o(x) € Ng then accept else all {fn | n € w},

respectively. These automata have only choice nodes and universal branching, thus they
never reject. For any input, exactly one machine will accept. We construct a product
machine that runs both machines together, alternating steps between the two.

(a, 8,0) : if o(z) € M, then accept else all {(an,3,1) | n € w}
(o, B,1) :if o(x) € Ng then accept else all {(a, fn,0) | n € w}.

The start state is (e, ¢,0).

We claim that no input ever follows an infinite path in the computation tree all the way
down. To do so, it would have to fail all infinitely many membership tests along the path.
These tests are determined by an interleaved pair of infinite strings xoyox1y1z2ys2 - - - such
that the tests alternate between M and N; that is, the tests are M., N, My, Ny, Moo,
Nyoyss--- - But for o(z) to fail all these tests would imply

o(z) & () (MeUMyyUMype, U---)U (| (NeUNy UNyyy, U---) = AU~A,

reEWY yeww

a contradiction. Since the ~M, and ~Ng are closed and their diameters decrease to 0 along
any path, there is no sequence of inputs that follow the path arbitrarily far down either,
because it would be a Cauchy sequence converging to an input that follows the path all the
way down. Thus the computation tree can be pruned to give a well-founded automaton
accepting all inputs. Let @ < wy be the ordinal of this tree.

Dexter Kozen and Francisco Mota

Now for any o(z) € A, since o(x) ¢ ~A, there exists y € w* such that
o(x) & Ne U Ny, U Nygy, UNygyg U=

Pruning the computation tree of all paths xoyjz1yix2ys - -+ such that ¢y’ # y yields a tree
containing an accepting computation tree of the original automaton for A on input o(z),
and the ordinal of this tree is bounded by a. Since o(z) € A was arbitrary, the running
time of the original automaton for A is uniformly bounded by «. |

4 Definability with Restricted Borel Coalgebras

The previous section showed that Borel coalgebras are very powerful, accepting precisely the
coanalytic sets and deciding precisely the Borel sets, when interpreted over a Polish space.
In this section we consider two natural restrictions to Borel coalgebras and consider analogs
of Theorems 3.1 and 3.2 for these restrictions.

4.1 Finitary Borel Coalgebras

Under the process interpretation of a Borel coalgebra (§2.1), we assume that a process can
recognize when all of its (infinitely many) children have made a decision. This is unrealistic
for real-world processes operating in finite time, so in this section we limit ourselves to
finitely branching processes.

» Definition 4.1. A Borel coalgebra (S, A) is finitary if d(s) is finite for all s € S. A Borel
automaton (S, A, sg) is finitary if (S, A) is finitary.

» Lemma 4.2. If S is a finitary Borel coalgebra, then L, is a fixrpoint of 7.

Proof. Suppose 7, (L,)(s) = b for some b € {0,1}. Because §(s) is finite and L., = | |,,c,, Ln
it follows that there exists some n < w such that L, (t) = L,(t) for all ¢ € §(s). Therefore
L,+1(s) = b and thus L, (s) = b. Therefore L, is a fixed point of 7. <

» Theorem 4.3. If2A is a topological space and the basic predicates ® are of the form “z € A”
where A is a clopen subset of 2, then L(S) is open in 2 for any finitary Borel automaton
S. Conversely if A has a countable clopen basis and A C 2A is open, there exists a finitary
Borel automaton that accepts A.

Proof. The full proof is given in Appendix A. <

» Theorem 4.4. Let 2 be the Cantor space 2¥. If S is a finitary Borel automaton over the
language of clopen subsets of A, and S halts on all inputs, then there is a finite time bound
n < w such that S halts in n steps for all inputs.

Proof. This is a straightforward compactness argument. The proof details are given in
Appendix A. <

4.2 Uniform Borel Coalgebras

Borel coalgebras allow for arbitrarily complex branching behavior, encoding intractable or
uncomputable functions through the transition function d(s). In this section we look at a
restriction of Borel coalgebras where the transition structure has a finite description, and
we show that this corresponds to the IND programming language.

XX:9

XX:10

Borel Coalgebra and Non-Wellfounded Logic

Let @ be a set of basic predicates that is closed under substitution of free variables with
natural numbers. For example, in the first-order language of rings, every free variable z in
a basic predicate ¢ can be substituted with a number n € N yielding the basic predicate
©[n/x], where n represents the term 1+ 1+ --- + 1 with n ones.

Let Env(N) be the set of finite partial functions v : Var — N. Given ¢ € ® and
v € Env(N), let ¢[r] denote the substitution of every free variable = of ¢ with the number
v(z) whenever € dom(v). Given v € Env(N) and « € Var and n € N, let v[n/z] denote the
function v’ € Env(N) that agrees with v everywhere except at z, where v/(z) = n. Let vy €
Env(N) denote the empty partial function. Note that ¢[vg] = ¢ and p[v[n/z]] = ¢[n/z][V]
and that every v € Env(N) can be written as v = vy[nq/z1] - - - [ng /], so ¢[v] is well defined
and ¢[v] € .

» Definition 4.5. A Borel coalgebra (S, A) over @ is uniform if S = @ x Env(N) for some
finite set @) of substates, and there exists a function

A Q — ({all,some} x @ x Var) U (® x Q%) U {accept, reject}

such that for all ¢ € @ and v € Env(N),

A'(q) = (all, g1, x) implies A(q,v) = (all, {(q1,v[n/x]) : n € N}),
A’(q) = (some, g1, x) implies A(q,v) = (some,{(q1,v[n/z]) : n € N}),
A'(q) = (p,q1,q2) implies A(q,v) = (v, (q1,7), (g2, 7)),

A’(q) = accept implies A(q,v) = (all, @),

A'(q) = reject implies A(q,v) = (some, &).

Therefore A’ completely determines the transition structure of (S,A) and because @ is
finite, this A’ has a finite description. A Borel automaton (S, A, sg) is uniform if (S, A) is
uniform and sg = (qo, ¥p) for some ¢g € Q.

Uniform Borel automata are equivalent to programs of the IND programming language
introduced in [6] interpreted over a countable structure. An IND program consists of finite
sequences of labeled statements of three forms:

assignment: £: z:=13 l: y:=V
conditional: £ : if o then goto £/
halt: {: accept £: reject.

The assignment statements represent universal and existential nondeterministic branching
(simulated by A’(q) = (all,q1,2) and A’(q) = (some,q1,x)). The conditional statements
test a basic predicate and branch (simulated by A’(¢) = (¥, q1,¢2)). The halt statements
just accept and reject (simulated by A’(q) = accept and A’(q) = reject). In light of this
equivalence, we state the analogs of Theorems 3.1 and 3.2 for uniform Borel automata.

» Theorem 4.6 ([6]). Uniform Borel automata over N accept the inductively definable rela-
tions and decide the hyperelementary relations.

5 Non-Wellfounded Logic

We have argued that IND programs and Borel automata provide a useful dynamic view
of inductive definability and descriptive set theory. This suggests a more general non-
wellfounded approach to mathematical logic, allowing non-wellfounded syntax in addition to
the usual wellfounded syntax. In the previous sections, the syntax is given by Borel coterms,
which are elements of the final Borel coalgebra. The final coalgebra is known to exist by

Dexter Kozen and Francisco Mota

very general considerations [1, 2, 19], viewing oblivious Borel coalgebras as coalgebras for
the set functor

00, (S) + 04, (S) + 5 + D. (6)

We give a concrete construction in Appendix B.

In general, terms and formulas are elements of a final coalgebra whose interpretations
over an algebra are computed recursively, accommodating non-halting with the use of the
third logical value L. The usual wellfounded constructs are a special case.

A general framework for this approach already exists in the form of a recently developed
categorical treatment of recursive function schemes [3, 12, 13]. In this treatment, one in-
terprets coterms in an Flgot algebra, an algebraic structure augmented with a distinguished
map (-) that, applied to a system of recursive equations, produces a canonical solution to
that system. Formally, a system of equations is modeled as a coalgebra 6 : X — A+ FX,
where X is a set of indeterminates, A is an Elgot algebra over which the variables are to
be interpreted, and F' is a set functor describing the algebraic signature. A solution to the
system is a map 67 : X — A such that the diagram

5T
X A
5 [id, o]
id + Fé'
A+ Fpx 2t A+ FA

commutes. In cases where there may be more than one solution, the desired solution is
determined by (-)T. For CPOs, this is typically the C-least solution.

IND programs and Borel coalgebras fit this scheme with the Elgot algebra 3. For oblivious
Borel coalgebras, the appropriate functor is (6). In this interpretation, the components of
the coproduct (6) represent, from left to right, recursive equations of the form

T = \/ y T = /\ y =y x =0 FE g

yed(x) y€d(z)

A system of equations
§:X =349, (X)+ 0, (X)+X+d

is essentially a Borel coalgebra with some leaf nodes annotated with 3. The canonical
solution 67 is the C-least labeling L as computed in §2.2.

It follows from general results in [3, 12, 13] that Elgot algebras of CPOs admit canonical
solutions that are least in the distinguished order C on the domain. We can apply this
theorem to obtain canonical interpretations of F-coterms over any F-algebra 20, = (A ,a)
obtained from an F-algebra 21 = (A4, «) by augmenting with L. We show how to do this
in a uniform way such that the resulting 2, is an Elgot algebra and 3 = 2,. This is a
slightly subtle construction in that the structure maps « are not necessarily strict, thus
not morphisms in the category of CPOs in general.

Let F' be a functor on Set. We can also include powerset functors in F. For example,
the functor (6) is such a functor. Let (A4, «) be an F-algebra. Let A be the disjoint union
AU {L} ordered as a flat domain with a T b if either @ = b or ¢ = L. Every nonempty
subset X C A has a meet [| X.

Assume that the ordering C on A; has a natural extension to F'A; such that F is
monotone on functions h : X — A, ordered pointwise. For example, we can order products

XX:11

XX:12

Borel Coalgebra and Non-Wellfounded Logic

and coproducts componentwise, and for powersets, C C D if either (i) C = D, or (ii) L € C
and D = (C' — {L}) U{a} for some a € A.
For z € FA |, define

_ ~Jb A{aly) [z Cyand y € FA} = {b},
() = Ilgy a(y)—{L’ Ha(y) |z Cyand y € FA} > 2.
yE?A

In other words, thinking of L as “don’t know”, we replace L with elements of A in all
possible ways and compute « on the resulting inputs; if there is only one result, i.e., there
is no ambiguity, then that is the result of a , otherwise it is still L.

» Example 5.1. 3=2,.
» Lemma 5.2. | : FA| — A, is monotone.
» Theorem 5.3. For any A, 2, is an Elgot algebra.

Proof. The least solution is constructed inductively by a straightforward generalization of
the inductive procedure in §2.2. |

An F-coterm over variables X is an element of the final coalgebra v : CX — X+ FCX. For
F the functor (6) and X = &, this is the final coalgebra C' constructed in Appendix B. It
follows from results of [3, 12, 13] that any F-coterm in C'X satisfies a universality property
akin to free algebras in the sense that any set map 6 : X — A, extends to a least F-algebra
morphism h : CX — A, such that the following diagram commutes:

h
CX

Al

~ [id, o]

0+ Fh
X+FCX+—>AJ_ +FA,

For F the functor (6), X = &, and A; = 3, the map h coincides with the least labeling L,
computed in §2.2.

6 Conclusion and Future Work

We have introduced Borel coalgebras and Borel automata as a computational approach to
basic descriptive set theory, recasting some basic results of that theory in a more com-
putational framework. We have also shown how these ideas lead to a general notion of
non-wellfounded logic in which syntactic objects such as terms and formulas are elements of
a final coalgebra.

For the future, we would like to relate these results to the Borel machines of Klarlund
[8, 9], which are more conventional automata on infinite words over a finite alphabet with
Borel acceptance conditions on the words. We would also like to explore the use of compu-
tational methods in other results of descriptive set theory such as the determinacy of games.
Finally, we would like to investigate deductive systems, completeness theorems, and decision
procedures for suitable fragments of non-wellfounded logic.

Dexter Kozen and Francisco Mota

—— References

1

10

11

12

13

14

15

16

17

18

19

P. Aczel and P.F. Mendler. A final coalgebra theorem. In Category Theory and Computer
Science, volume 389 of Lecture Notes in Computer Science, pages 357-365. Springer, 1989.
J. Addmek. On final coalgebras of continuous functors. Theor. Comput. Sci., 294:3-29,
2003.

Jiff Adamek, Stefan Milius, and Jifi Velebil. Elgot algebras. Log. Methods Comput. Sci.,
2(5:4):1-31, 2006.

J. Barwise, R. Gandy, and Y. Moschovakis. The next admissible set. J. Symbolic Logic,
36:108-120, 1971.

Jon Barwise. Admissible Sets and Structures. North-Holland, 1975.

David Harel and Dexter Kozen. A programming language for the inductive sets, and
applications. Information and Control, 63(1-2):118-139, 1984.

H. Jerome Keisler. Descriptive Set Theory, volume 62 of Studies in Logic and the Founda-
tions of Mathematics. North-Holland, 1971.

Nils Klarlund. Progress Measures and Finite Arguments for Infinite Computations. PhD
thesis, Cornell University, August 1990.

Nils Klarlund. The limit view of infinite computations. In Bengt Jonsson and Joachim
Parrow, editors, 5th Int. Conf. Concurrency Theory (CONCUR’94), volume 836 of Lecture
Notes in Computer Science, pages 351-366, Uppsala, Sweden, August 1994. Springer.
Dexter Kozen. Computational inductive definability. Annals of Pure and Applied Logic,
126(1-3):139-148, April 2004. Special issue: Provinces of logic determined. Essays in
the memory of Alfred Tarski. Zofia Adamowicz, Sergei Artemov, Damian Niwinski, Ewa
Orlowska, Anna Romanowska, and Jan Wolenski (eds.).

D. A. Martin. Descriptive set theory. In J. Barwise, editor, Handbook of Mathematical
Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages 783-815.
Elsevier, 1977.

Stefan Milius and Lawrence S. Moss. The category theoretic solution of recursive program
schemes. Theoret. Comput. Sci., 366:3-59, 2006.

Stefan Milius and Lawrence S. Moss. Corrigendum to: "the category theoretic solution of
recursive program schemes". Theoret. Comput. Sci., 403(2-3):409-415, 2008.

Y. N. Moschovakis. Abstract first order computability I. Trans. Amer. Math. Soc., 138:427—
464, 1969.

Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-Holland, 1974.
Yiannis N. Moschovakis. The suslin-kleene theorem for countable structures. Duke Math.
J., 37(2):341-352, 06 1970.

http://dx.doi.org/10.1215/S0012-7094-70-03744-0

Yiannis N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in Logic and the
Foundations of Mathematics. North-Holland, 1980.

Lawrence S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96(1-3):277-317,
1999. Festschrift on the occasion of Professor Rohit Parikh’s 60th birthday. Errata: Ibid.,
99(1-3):241-259, 1999.

Luigi Santocanale. Logical construction of final coalgebras. In H. Peter Gumm, editor,
Proc. Workshop on Coalgebraic Methods in Computer Science, Warsaw, Poland, volume 82
of Electronic Notes in Theoretical Computer Science, pages 1-20. Elsevier, April 2003.

XX:13

http://dx.doi.org/10.1215/S0012-7094-70-03744-0

XX:14

Borel Coalgebra and Non-Wellfounded Logic

A Omitted Proofs

Proof of Theorem 3.1. Most of the proof is given in the main text, but we omitted the
argument that the acceptance condition (1) can be transformed to IT3 form (3). Here is the

full argument.

Without loss of generality assume S is oblivious. The acceptance condition (1) is

VL (15(L) C L= L(so) = 1),
where
Vieses) L(t), U(s) = some,
7,(L)(s) = Niesis) L(t), L(s) =all,

(s)
(s)
-L(4(s)), £(s) = not,
[2oF e, s

where [2,0 F ¢] € 2 denotes the truth value of this basic predicate.

(7)

(®)

Because the set of

states reachable from the start state sg is countable and duplication of siblings does not

affect acceptance or rejection, we can assume without loss of generality that S = w*,

and (s) = {sn | n € w}. Then (8) becomes

\/nGw L(Sn)7 f(s) = some,
_ /\TLEw L(Sn)7 E(S) = aII,
To(L)(s) = - L(s0), £(s) = not,

L(Sn) C L(s))

where s ranges over w*. This is equivalent to

(4(s) = some A(Vn L(sn) =0) = L(s) =0)
A (£(s) =someA(In L(sn) =1) = L(s) = 1)
v A (U(s) =allA(Vn L(sn) =1) = L(s) = 1)
| A (es) =allA@n Lisn) = 0) = L(s) = 0)
A (£(s) = not AL(s0) # L = L(s) = =L(s0))
A (U(s)=¢=L(s) =[o F ¢])

Writing this in prenex form,

(£(s) =some AL(sk) = 0= L(s) =0)
A (€(s) =someAL(sn) =1= L(s) =1)
A (L(s) = II/\L(sm) =1=1L(s)=1)
Ve 3k ImVn | (0s) = all AL(sn) = 0 = L(s) = 0)
A (U(s) = not AL(s0) # L = L(s) = ~L(s0))
A (U(s) =@ = L(s) = [0 F ¢])

S0 =&,

Dexter Kozen and Francisco Mota

which we abbreviate to
Vs 3k Im Vn (o, L, s, k,m,n).
Skolemizing, we can write this as

3f 3g Vs Vn (o, L, s, f(s),9(s),n)
where f,g: w* — w. The acceptance condition (7) can now be written
VL ((3f g Vs Vn (o, L, s, f(s),9(s),n)) = L(e) = 1)
& VL Vf Vg 3sIn (Y(o,L,s, f(s),9(s),n) = L) =1).
This formula is in the desired II} form (3). |
Proof of Theorem 4.3. (=) Let L(S,b,n) = {a € A : Tén)(Lo)(So) = b where o(x) = a}.
Note that L(S,b,n) is clopen for all b € {0,1} and n < w, by induction on n. Therefore
L(S) is open:
L(S)={aeU: S accepts a}
={aeA: L,(s9) =1 where o(z) = a}
={acqA:|],., T[E—n)(L())(SQ) =1 where o(z) = a} (by Lemma 4.2)
= Upew L(S,1,n0).
(<) Let A C 2 be open and let By, By, Bs ... be basic clopen sets such that A =J,,_,, Bn.
Then A is accepted by the finitary Borel automaton (N U {saccept}, A, 0) defined by:

n :if x € B,, then accept else (n + 1)
accept : all @

One can show that L,(n) =1 if and only if o(z) € |J;_,, B; and therefore L(S) = A. <

Proof of Theorem 4.4. This follows from a compactness argument. Let L(S,b,n) = {a €
A (Lo)(so) = b where o(x) = a}. Since S halts on all inputs, and by Lemma 4.2, we
know that L(S) = ¢, L(S,1,n) and (A \ L(S)) = U,,c., L(S,0,n). These are both open,
so they are both closed, and so they are both compact subsets of 2. By compactness and
the fact that L(S,b,n) C L(S,b,n + 1), there is some n such that L(S) = L(S,1,n) and
A\ L(S)) = L(S,0,n). Thus S halts in n steps for all inputs. <

B Construction of the Final Borel Coalgebra

In this section we construct the final Borel coalgebra. The final coalgebra is known to exist
by very general considerations [1, 2, 19], viewing oblivious Borel coalgebras as coalgebras
for the set functor

9 (S) + 90 (S) + S + @

but we give a concrete construction, because we wish to use it as an abstract syntax for non-
wellfounded logic. We work with oblivious Borel coalgebras (§2.4) because this simplifies
the development.

» Definition 2.1. A Borel coterm is an element of the final Borel coalgebra.

Coterms can be constructed explicitly as labeled trees modulo the maximum autobisim-
ulation. A term is a well founded coterm. Terms need not be finite. A regular coterm is
one with a finite representation; that is, one represented by an element of a finite Borel
coalgebra under the canonical morphism. Regular coterms need not be well founded.

XX:15

XX:16

Borel Coalgebra and Non-Wellfounded Logic

B.1 Labeled Trees

A particular Borel coalgebra is the set of labeled trees. This is not quite the final coalgebra, as
we must still identify bisimilar trees; but it is close to it and a good syntactic representation.
A labeled tree is a partial function ¢ : w* — {all, some, not} U ® such that

dom ¢ is nonempty and prefix-closed (that is, if <y € dom¢t, then z € domt);

if x € dom¢ and t(z) = not, then zn € dom¢t for exactly one n € w; and

if z € dom¢ and t(x) € @, then an ¢ domt for all n € w.
Any such ¢t must be defined on the empty string e at least, which is the root of the tree.

If © € domt, the subtree of t rooted at x is the labeled tree t[z = Ay.t(zy). Note that
if v <y and y € domt, then t]y is a subtree of t[x. The set of labeled trees forms a Borel
coalgebra as follows:

’ If t(e) is... ‘ then... ‘

all t:all {tfn:n €wndomt}
some t:some {t[n:n € wnNdomt}
not t:nottln where n € wNdomt
2 tiy
Equivalently,

Lt)=1tle) and d(t) ={t[n:n €wndomt}.

B.2 Bisimulation

A bisimulation between two oblivious Borel coalgebras (S, A) and (T, A) is a binary relation
R C S x T such that for all s € S and t € T, if R(s,t), then

1. 4(s) = £(t)
2. for all s’ € §(s), there exists ¢’ € §(¢) such that R(s',t')
3. for all ¢/ € §(t), there exists s’ € §(s) such that R(s',t')

We say that two states are bisimilar if there is a bisimulation relating them. A bisimula-
tion between a Borel coalgebra and itself is called an autobisimulation. The identity relation
is an autobisimulation, and the union of any set of bisimulations is a bisimulation. Thus
there is a unique coarsest autobisimulation = on any coalgebra, which is the union of all
autobisimulations. Two states of the same coalgebra are bisimilar iff they are related by =.
It is an equivalence relation with classes [s] = {t | s = t}. The quotient S/= with states [s]
is again a Borel coalgebra with £([s]) = £(s) and 6([s]) = {[¢] | t € é(s)}. The properties of
autobisimulation ensure that ¢ and ¢ are well defined on S/=. Moreover, the map s — [s]
is a morphism of Borel coalgebras, and s and [s] are bisimilar.

B.3 Construction of the Canonical Morphism

» Theorem 2.2. The coalgebra of labeled trees modulo bisimilarity is the final Borel coalge-
bra.

Proof of Theorem 2.2. We construct the canonical map from an arbitrary oblivious Borel
coalgebra (S, ¢,9) to the final coalgebra.

For s € S, let descs be the set of descendants of s, the smallest set containing s and
closed under §. The set descs is countable, so let us assume without loss of generality
that descs C w. A finite run from s is a sequence ng---ng, k > 0, such that s = ng and

Dexter Kozen and Francisco Mota

n; € 6(ni—1), 1 < i < k. Let t be the tree whose domain is the set of all ny ---ny € w*
such that ng---ng is a finite run from s with t(ny - --ng) = €(ng) and t(e) = £(ng). Every
oblivious coalgebra generates a set of runs of this form, which is identical to one of the

labeled trees constructed in §B.1. The canonical map maps s to the image of this subtree

in the bisimilarity quotient. <

XX:17

	Introduction
	Borel Coalgebras and Borel Automata
	Intuitive Operation
	Formal Semantics
	Time
	Useful Constructions

	Characterization of Coanalytic and Borel Sets
	Definability with Restricted Borel Coalgebras
	Finitary Borel Coalgebras
	Uniform Borel Coalgebras

	Non-Wellfounded Logic
	Conclusion and Future Work
	Omitted Proofs
	Construction of the Final Borel Coalgebra
	Labeled Trees
	Bisimulation
	Construction of the Canonical Morphism

