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Abstract

If A is a context-free language over a two-letter alphabet, then the set of
all words obtained by sorting words in A and the set of all permutations of
words in A are context-free. This is false over alphabets of three or more
letters. Thus these problems illustrate a difference in behavior between two-
and three-letter alphabets.

The following problem appeared on a recent exam at Cornell:

Let � be a finite alphabet with a fixed total ordering on the letters.
For a string x � ��, let sort x be the string obtained by sorting
the letters in increasing order. For example, if a � b � c, then
sort abacbaa � aaaabbc. For A � ��, let sortA � fsortx j x � Ag.
Of the following three statements, two are false and one is true. Give
counterexamples for the two false ones and a proof of the true one.

(i) If A is regular, then so is sort A.

(ii) If A is context-free, then so is sortA.

(iii) If A is context-sensitive, then so is sort A.

One might also ask the same questions about perm A, the set of all permutations
of words in A.

Of course, it is (i) and (ii) that are false, since

sort �abc�� � perm �abc�� � a�b�c� � fanbncn j n � �g�
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Interestingly, (ii) is true for both sort and perm over a two-letter alphabet. This is
quite surprising: whereas a two-letter alphabet is exponentially more succinct than
a one-letter alphabet, one does not normally think of a break in behavior between
two- and three-letter alphabets. In many applications, three letters (or for that
matter any fixed finite number of letters) can be coded into two with only a linear
loss of efficiency. Not so, apparently, in this case.

In this short note we give an elementary proof of these facts. The proof for
sort is a fairly straightforward construction relying on Parikh’s theorem and Pilling
normal form, but the proof for perm is somewhat more involved, requiring a bit of
linear algebra over integer lattices.

Let � � fa�� � � � � adg, and let � � �� � Nd be the Parikh map

��x�
def
� ��a��x�� � � � ��ad�x���

where �a�x� is the number of a’s in x. Define

��A�
def
� f��x� j x � Ag

perm A
def
� ������A��

sort A
def
� perm A � a�� � � � a

�
d �

Theorem 1 For d � �, if A is a context-free language, then so are perm A and
sort A.

This is trivial for d � � and false for d � 	. The interesting case is d � �.

Lemma 1 It suffices to prove Theorem 1 for A regular. When manipulating regular
expressions, we can also use the commutativity axiom xy � yx.

Proof. This is a consequence of Parikh’s theorem (the commutative image of
any context-free language is the commutative image of some regular set), observing
that the definitions of perm A and sort A depend only on the commutative image
��A� of A. �

Lemma 2 It suffices to prove Theorem 1 for A of the form xy�� � � � y
�
k , where

x� y�� � � � � yk � ��.

Proof. Under commutativity, every regular expression is equivalent to a sum of
expressions of this form. This is known as Pilling normal form (see [1]). �
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Here is a direct construction for sort A. This result will also follow from the
result for permA by intersecting with a�b�, but the proof for permA is somewhat
harder.

Without loss of generality, assume A is of the form of Lemma 2. Let m �
�a�x�, n � �b�x�, mi � �a�yi�, and ni � �b�yi�, � � i � k. A context-free
grammar for sort A is

S � amT�b
n

Ti � amiTib
ni j Ti��� � � i � k � �

Tk � amkTkb
nk j ��

For permA, we will need to use some linear algebra on integer lattices.

Lemma 3 Let y�� � � � � yn be nontrivial. The following are equivalent:

(i) ��y��� � � � � ��yn� are linearly dependent over Q .

(ii) ��y��� � � � � ��yn� are linearly dependent over Z.

(iii) There exists a partition of y�� � � � � yn into two nonempty disjoint sets y�� � � � � yk
and yk��� � � � � yn (renumbering if necessary) and coefficients ai � N , � �
i � n, such that not all ai � �, � � i � k, not all ai � �, k 
 � � i � n,
and
Qk

i�� y
ai
i �

Qn
i�k�� y

ai
i .

The property in (iii) regarding the vanishing of the coefficients follows from the
observation that we cannot have

Qk
i�� y

ai
i � � with ai � N unless all ai � �.

The following lemma gives a stronger version of Pilling normal form.

Lemma 4 (Conway [1, Theorem 2, p. 92]) Any regular subset of Nd can be writ-
ten as a sum of terms of the form xy�� � � � y

�
n with ��y��� � � � � ��yn� linearly inde-

pendent over Q .

Proof. Suppose ��y��� � � � � ��yn� are linearly dependent. Let
Qk

i�� y
ai
i �Qn

i�k�� y
ai
i with ai � N, � � i � n, not all a�� � � � � ak � � and not all

ak��� � � � � an � �. Using the Kleene algebra identities

y� � �

n��X
i��

yi��yn��

x�� � � � x
�
n � �x� � � � xn�

��

kX
i��

Y
��j�k

j ��i

x�j �
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(the second one requires commutativity), rewrite y�� � � � y
�
k as ��ya�� �� � � � �yakk ��,

where

� �

kY
i��

ai��X
j��

y
j
i �

and then �ya�� �� � � � �yakk �� as

�ya�� � � � yakk ���

kX
i��

�i��

where

�i �
Y
j ��i

�y
aj
j ��� � � i � k�

Note � contains no starred terms, so it can be expressed as a finite sum of products
of the yi. Then y�� � � � y

�
n can be written as a sum of terms of the form

u�ya�� � � � yak
k
���iy

�
k�� � � � y

�
n �

Now we can replace
Qk

i�� y
ai
i with

Qn
i�k�� y

ai
i to get

u�y
ak��
k��

� � � yann ���iy
�
k�� � � � y

�
n �

Since this is contained in y�� � � � y
�
n , we have u � y�� � � � y

�
n , thus

u�y
ak��
k�� � � � y

an
n ���iy

�
k�� � � � y

�
n � u��iy

�
k�� � � � y

�
n �

where

��i �
Y
j ��i

y�j � � � i � k�

Thus the original term xy�� � � � y
�
n can be written as a sum of terms of the same

form but with one fewer starred yi.
We can continue decreasing the number of starred terms inductively until the

yi are linearly independent. �

By this lemma, to prove Theorem 1 for the case permA, it suffices to consider
A of the form xu� or xu�v�, where ��u� and ��v� are linearly independent. Note
that the dimension is at most two since we are over a two-letter alphabet. We
can get rid of the x without loss of generality by jxj applications of the following
lemma:
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Lemma 5 Let a � �. If A is context-free, then so is fxay j xy � Ag. It follows
that if perm A is context-free, then so is perm aA, since perm aA � fxay j xy �
perm Ag.

Proof. Consider a Chomsky normal form grammar for perm A. For every
nonterminal X , add a new nonterminal Xa, which is meant to generate all the
strings that X generates but with an extra a somewhere. For every production X �
Y Z , add the productions Xa � YaZ j Y Za. For every production X � b, add
the productions Xa � ba j ab. For every production X � �, add the production
Xa � a. The new start symbol is Sa, where S was the old start symbol. �

Now we show that perm u�v� is context-free. (We leave the easier case,
perm u�, as an exercise for the interested reader.) Suppose �a�u� � u�, �b�u� �

u�, �a�v� � v�, �a�v� � v�; thus ��u� � �u�� u�� and ��v� � �v�� v��. Arrange
��u� and ��v� in a �	 � matrix

A
def
�

�
u� v�
u� v�

�

with positive determinant � � u�v� � u�v� � �. (The sign of the determinant is
determined by the orientation of u and v; exchange if necessary to make it positive.)
The adjoint (pseudo-inverse) of A is

A� def
�

�
v� �v�

�u� u�

�

and satisfies the property

AA� � A�A �

�
� �

� �

�
�

Now we give a nondeterministic one-way automaton with an integer counter
accepting perm u�v�. The machine actually keeps three counters, c�� c�� c�, but
the counters c� and c� hold only finitely many values and can be stored in the finite
control. The counter c� holds an integer. We can simulate this with a pushdown
automaton with a single-letter stack, keeping the sign in the finite control.

The automaton starts in the state c� � c� � c� � � and takes the following
actions on each input symbol: on input a,

c� �� �c� 
 v�� mod �

c� �� c� � u�

c� �� min�c� 
 �� v��
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and on input b,

c� �� �c� � v�� mod �

c� �� c� 
 u��

In addition, it may nondeterministically choose to take the following reset step
whenever c� � v� without reading an input symbol.

c� �� c� ��

c� �� ��

Thus after scanning a prefix y of the input string,

c� � �v��a�y�� v��b�y�� mod �

c� � �u��a�y� 
 u��b�y���q�
(1)

where q is the number of resets that have occurred, and c� contains the number of
a’s seen since the last reset, up to a maximum of v�. The automaton accepts if
c� � c� � �.

Now we show that the automaton accepts perm u�v�. For s� t � Z�, note that
As � t iff A�t � �s. Applying this with s � �p� q� and t � ��a�x���b�x��, we
have

�a�x� � u�p
 v�q

�b�x� � u�p
 v�q
(2)

iff

v��a�x�� v��b�x� � �p

�u��a�x� 
 u��b�x� � �q�
(3)

This implies that the following are equivalent:

(i) x � perm u�v�

(ii) there exist p� q � N such that x � perm upvq

(iii) there exist p� q � N satisfying either of the equivalent conditions (2) or (3).

Now suppose x � perm u�v� and condition (iii) holds with p� q � N . Let
the automaton choose to perform the reset step at its earliest opportunity while
scanning x (i.e., as soon as the counter c� reaches v�), but only q times. It has the
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opportunity to perform a reset at least q times, since by (2), �a�x� � v�q. By (1),
the final values of c� and c� are

�v��a�x�� v��b�x�� mod � � �

�u��a�x� 
 u��b�x���q � ��

respectively, so the machine accepts.
Conversely, suppose the machine accepts. Let q be the number of times the

reset occurred. By (1), there exists p � Z such that (3) holds, and we need only
show that p � �. Since the reset occurred q times, we have �a�x� � v�q. Then

u�v�p � �p
 u�v�p

� v��a�x�� v��b�x� 
 u�v�p

� v�v�q � v��u�p
 v�q� 
 u�v�p

� ��

But u�v� � �
 u�v� � �, therefore p � �.
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