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Abstract

Interest in intelligent edge computing is surging, driven by
improving connectivity and hardware advances. This is creat-
ing a need: today’s cloud platforms optimize for high band-
width via batching even at the price of high latency, but edge
systems often must react quickly as events occur. A further
challenge is that many intelligent applications are locked into
ML computing frameworks that cannot easily be modified.
We created a new system, Cascade, to untangle this puzzle.
Innovations include a legacy-friendly storage and computing
model that lets applications directly access Cascade-hosted
data, data paths that leverage RDMA and GPU accelerators,
and a separation of updates from queries to minimize locking
and copying. Our evaluation includes cases where Cascade
reduces latency by as much as 3 orders of magnitude with no
loss of throughput.

1 Introduction

Latency concerns are pushing developers to consider edge
deployments, where they benefit from fast network con-
nectivity and can offer rapid responses to end users while
also quickly filtering and discarding uninteresting informa-
tion [23, 32, 36, 43]. The burst of excitement around large
language models is accelerating this trend: Although Chat-
GPT is not a real-time application, it plays interactive roles
in which synthesized text should reflect current state. These
edge databases will become large, will receive high rates of
updates, and the AIs that query them will depend on extremely
rapid responses.

Any platform that responds to these needs will be further
constrained by the need to maintain compatibility. Many ap-
plications are locked into big-data ML frameworks such as
PyTorch or Apache. This argues for a "platform as a service"
approach that enables edge-focused data hosting and execu-
tion environment but remains compatible with standard ML
tools and data curation infrastructures.

The challenge is evident in Fig. 1 (drawn from an exper-

iment discussed in Sec. 5.1). Kafka is a pub/sub tool for
interconnecting microservices, and Kafka Direct is an RDMA
version that sets records [10, 33, 41]. The experiment streams
objects to a no-op task. Cascade, designed with these require-
ments in mind, is compared with Kafka Direct on the left.
It maintains a tight latency distribution, while Kafka Direct
exhibits huge tail latencies. On the the right we break those
delays down, revealing that they arise at every layer of the
componentized system. The finding is not unusual: existing
data-ingress platforms run as distinct components and intro-
duce batching as part of a strategy that optimizes throughput
at the expense of tail latency (see, for example, the perfor-
mance benchmarks in [4, 7, 9, 15, 33]). This will be the first
of a series of "insights" about existing platforms that shaped
our work on Cascade.

Cascade is a scalable distributed platform optimized for
delay-sensitive edge intelligence. The core of the system is an
RDMA-accelerated key-value (K/V) store. Thin APIs allow
it to be treated like a file system or a pub/sub framework.
Unusually, Cascade also can host user-developed logic which
will run in an address space with direct access to the Cascade
address space, so that data reads return pointers without doing
any copying. This paper focuses on "engineering" aspects:

1. Cascade can share objects via memory-mapped seg-
ments, enabling access via pointers and eliminating copy-
ing. Objects accessed as a group are managed jointly,
and jobs are scheduled close to data they access.

2. Although the APIs seen by users are standard (K/V store
file system, pub/sub), Cascade’s novel fast path architec-
ture avoids interposing a separate service between stages
of a multi-stage API pipeline or graph.

3. Throughout the system design choices minimize latency.
Cascade has a single scheduler thread per server, queries
and updates have distinct data paths, actions are batched
and locking is minimized.

This paper presents the system, then evaluates applications (a
messaging service and two AI/ML pipelines) to confirm that
it outperforms popular baseline options.

1



1 16 256
Message Size (KiB)

101

102

103

104

105

106

107

En
d-

to
-E

nd
 L

at
en

cy
 (u

s)

CMS 1 replica
CMS 3 replicas

KafkaDirect 1 replica
KafkaDirect 3 replicas

1 16 256
Message Size (KiB)

200

400

600

800

1000

1200

La
te

nc
y 

(u
s)

4.2 ms 6.9 ms 4.5 ms 8.8 ms 4.5 ms 283 ms

CMS pub->svr, RF=1
CMS svr rep, RF=1
CMS svr->sub, RF=1
CMS pub->svr, RF=3

CMS svr rep, RF=3
CMS svr->sub, RF=3
KD pub->svr, RF=1
KD svr rep, RF=1

KD svr->sub, RF=1
KD pub->svr, RF=3
KD svr rep, RF=3
KD svr->sub, RF=3

Figure 1: Comparison of the Cascade messaging system (CMS) and Kafka Direct over 100Gbps RDMA. For a single-stage
no-op task, Cascade latency is less than 100us, whereas Kafka-Direct has huge tail latencies (left), and they arise at every layer
(right). The notation to describe the layers and full details of the experiment are presented in Sec. 5.1

2 Intelligent-Edge Computing Today

Suppose that one were to build an intelligent edge application
today. In this section we identify issues that arise due to
batching, accelerators, caching, and object placement. Each
leads to an insight concerning requirements that future edge
infrastructures will need to address.

2.1 Stream Processing Systems
Stream processing for the intelligent edge is different from tra-
ditional batch processing [17,24,45,47]. Edge applications are
event-triggered: as events stream in, the system continuously
responds on an event-by-event basis. This makes it hard for
edge applications to run on platforms evolved from batched
big data infrastructures. For example Online MapReduce [16]
and Spark Streaming [3, 9] were created by extending offline
batched versions to support mini-batching. They offer legacy
compatibility, but many events are still delayed while wait-
ing to fill the next mini-batch. Even stream-native systems
such as Google DataFlow [8], Apache Flink [14], and Apache
Storm [1] often batch, incurring significant per-event delays.

Insight 1: Systems using rigid batching patterns to improve
throughput incur a latency penalty.

2.2 Accelerators for the Edge Cloud
RDMA is available on cloud-based HPC clusters [40, 42],
and RDMA are available on edge clusters [25]. As the cloud
expands to embrace edge computing, we believe these cases
will converge, yielding a single platform that can leverage
accelerators. The easy option is to hide the accelerator under
IP wrappers like IPoIB [30], but doing so often harms per-
formance. To gain the full benefit, an edge platform must be
end-to-end zero-copy with minimal locking, using optimized

data layouts such as cache-aligned memory objects in DMA-
mapped, pinned pages [10, 29, 34, 46, 48]. One option is to
create a suite of new accelerated infrastructure tools, similar
to Kafka-Direct [19, 26, 28, 41, 50]. The alternative we favor
builds a highly efficient core infrastructure component, then
maps standard APIs to this core.

Insight 2: Even if it adheres to standard APIs, an acceler-
ated edge demands a specialized ground-up architecture.

2.3 The Edge Consistency Puzzle
Today’s cloud is biased toward fast response but sometimes
cuts corners by tolerating weak consistency. We see this dy-
namic in the first tiers of the existing cloud, which center on
an elastic microservices model that makes extensive use of
weakly coherent (potentially stale) caches. A cloud-integrated
low latency edge will need to preserve many aspects of this
popular and highly scalable model. Yet the intelligent edge
brings its own priorities, including an emphasis on data fresh-
ness. Edge applications that take real-world actions often
need stronger consistency: an action based on a confused
perception of the external state can cause harm.

Insight 3: The edge cloud needs data freshness and consis-
tency guarantees provided that they can be offered with low
latency and high throughout.

2.4 Collocation of Data and Computing
Latency-sensitive tasks are at risk of stalling when fetching
objects from storage. This is a particularly serious issue with
intelligent applications: ML hyperparameters and models are
often large objects, and copying them over a network will be
costly even if the network is fast. ML training is so iterative
that this overhead is mostly ignored: a training run will fetch
objects once, but subsequent iterations will find copies in
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cache. An event-triggered edge would have less temporal
locality and hence lower hit rates.

Insight 4: The edge compels us to group objects that will
be accessed as a set and to compute close to the data rather
than moving data from storage to compute nodes.

3 Cascade Design and Implementation

These insights motivate Cascade: a combined storage and
compute framework optimized for low latency and high band-
width, and offering strong consistency. Our innovations center
on the way the system is engineered and enable Cascade to
host applications near the data: either directly in Cascade’s
address space, or in a docker container on the same compute
node as one of our servers. This "fast-path" is not obligatory,
but brings a huge speedup.

3.1 K/V Store and Data Organization
Cascade runs as a distributed, scalable service on a cluster
of nodes equipped both for storage and computation, using a
library called Derecho [26] for RDMA messaging, multicast
and replicated logging using a variant of Paxos. The native
storage abstraction is that of a sharded, fault-tolerant K/V
store. APIs such as the POSIX/FUSE file system, pub/sub and
adaptors used by language-level embedded query packages
like LINQ are mapped to our native key-value mode (some-
times this is trivial, in other cases it requires more ingenuity
and brings some overhead). Users can specify a replication
level, in which case we replicate data across shard members
using self-managed state-machine replication: every mem-
ber has the full data, and can accept any job assigned to it.
Should a shard become overloaded, Cascade’s scheduler can
also "spill over" and place tasks on members of other shards
to balance load (Sec. 3.6). These servers would fetch, then
cache, any needed objects.

Cascade’s native API is compact. To store a K/V object put
is invoked. To fetch one get is called. Both can be invoked
by any node; if the caller is not in the target shard, a point-
to-point send relays the request to a member. A new K/V
operation called trigger will cause Cascade to upcall to any
lambdas watching the given key. To facilitate interoperability
with applications designed to read and write files, Cascade
keys are strings, and can look like POSIX pathnames.

Objects are managed in pools. A pool is identified by a path
prefix, and has a single replication factor, persistence/logging
properties, and sharding policy. Each object has an opaque
application-supplied vector of bytes, and a meta-data record
holding version numbers and timestamps. Versioning permits
Cascade to offer an exactly-once put semantic: Should a
relayed put be disrupted by a failure, it can simply be reissued
with the same version number. If the version already exists
the duplicated request is ignored. The timestamps are useful
because many edge applications track the evolution of some
phenomenon over time, such as trajectories of vehicles or
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Figure 2: Serializable snapshot isolation

changing temperature and pressure in a complex piece of
equipment. Cascade’s get can be time-indexed, making it
easy to express temporal computations.

3.2 Computing on Cascade Objects
Cascade inherits the very strong form of consistency illus-
trated in Fig. 2 from Derecho. Here we see a traffic camera
uploading an image. A lambda was watching for this event. It
triggers, initiating a series of actions. These lambdas access
data by time, enabling them to fetch images from before and
after the event time τ. Lambdas accessing the same time (the
red bar of width corresponding to clock precision δ) observe
data along a consistent cut: a form of linearizable snapshot
isolation [12]. Thus the computation will analyze a complete
and consistent view of recent data. Data persists after as little
as 50us, enabling very high-speed safety monitoring.

3.3 Fast Path Lambdas
The traffic camera example involved a series of user-supplied
lambdas. For example, perhaps λ1 does a quick scan of the
scene and discards completely empty images, or ones that
cannot be analyzed due to extreme weather. For interesting
images, λ3 and λ4 run to detect pedestrians, cars, buses, bikers,
etc. This leads to triggering λ2 (potential collisions). This
pattern is typical of the sequences of intelligent computations
Cascade is designed to host: each lambda implements some
form of application logic or artificial intelligence, yielding a
data-flow graph (DFG) in which each directed edge represents
a flow of objects from one lambda to another.

A lambda can be quite elaborate: our experiments package
the image classifier YOLO as a lambda, and ChatGPT could
also operate this way. Some AI lambdas already take inputs
as command line arguments and from files and need no modi-
fications; others can be ported by building "helper" programs
and still others can be recompiled to access our native K/V
layer directly. For this purpose, they would use our native C++
APIs, or access them via wrappers from Python, Java, or C#
dotnet.

Cascade can trigger a lambda in three ways. (1) In the
first case, the developer intends to trigger some lambda but
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without saving any data. For this purpose, trigger is used;
it has the usual K/V arguments, but is supported as a point-
to-point asynchronous send. (2) A volatile put atomically
replaces the current version (if any) of an in-memory object
replicated with some shard. Here, the triggered lambda will
run after these updates occur. The developer selects between
two options: we can do the upcall on one node or it can occur
on all shard members. (3) A persistent put uses Derecho’s
Paxos protocol to update a versioned, logged object.

Fig. 3 shows details of this design for a single Cascade
server, illustrating the case where the user’s logic is packaged
into a DLL with upcallable functions. On the bottom left
data flows into Cascade K/V storage layer. These updates
correspond to put and trigger put operations, so the sys-
tem thread checks for a match between the key and locally
registered lambdas (discussed in Sec. 3.1). When a match is
found an event pairing the data and the lambda is enqueued.
Threads in the lambda upcall pool monitor this queue, remov-
ing elements and doing upcalls. The key and value are passed
as C++ shared pointers, avoiding copying.

Our containerized colocation option is not yet finished, but
is designed to mimic the DLL approach. The user’s logic
will run in a docker container. It accesses Cascade either by
treating it as a file system, pub/sub layer or K/V system, or
via a version of the "internal" API we offer to DLLs. Data
is moved between the container and Cascade using a pair of
shared-memory segments. One, restricted to read-only access,
selectively reveals Cascade-hosted data to the application. The
other lets the application send data to Cascade. Both include
pools of 2MB pages; the R/W one additionally holds two lock-
free FIFO queues, one for requests by the application, and one
for responses and notifications. In preliminary experiments,
DLL hosting for lambdas is slightly faster, but less secure.
The containerized approach benefits from better security, but
system calls are slightly more costly: RPC though our shared
memory FIFOs incur round-trip latencies varying from about
0.5us to slightly more than 1.5us, depending on the server we
test on.

3.4 Minimizing data movement

Throughout Cascade, the need to pass objects from place to
place risked causing a great deal of copying. Reasons include
data marshalling, the need to collect data from various mem-

ory locations, and cacheline or page alignment needs [27].
One example of this arises with containerized AI lambdas.

With these, Cascade leverages the shared page pools described
above. We share large page-aligned memory-mapped objects
by remapping pages via mremap, so that they appear to reside
in the page pool, yet are actually read-only duplicates of pages
that really reside in Cascade itself. We can do the opposite as
well: data that really lives in the container client can be made
visible for Cascade to read, or even for it to use as the origin
of a direct RDMA transfer. With the most recent NVIDIA
GPUs, we use cuMemMap to share GPU memory pages.

Another example of how we avoid unecessary copying
arises with in-place C++ object construction. Here we seek
to avoid copying some structure or multifield object. The
classic issue is handling of hardware-specific byte ordering
and alignment. Our approach assumes that servers will all
use the same native data layout rules. External clients respect
server policies even if they differ from the native ones, poten-
tially paying a cost similar to standard marshalling if they run
on hardware that favors some other native data formatting.
This enables RDMA transfers without marshalling or copying.
Cascade publishes the service’s desired byte layout and align-
ment when an external client connects, enabling clients to
preconstruct efficient marshallers for native types at binding
time. For small amounts of data, the costs will be negligible.
Large objects like photos or video often have architecture-
independent encodings; here, the main need is to ensure that
when such an object is first uploaded by the device, it will
already be saved in a suitable memory region. Thus it is not
necessary to marshal objects.

Although this is not always feasible in a back-compatible
and fully transparent manner, all applications using Cascade
APIs can avoid copying by having a message sender asyn-
chronously allocate memory within the message buffer region
Cascade employs for communications, which is pinned and
preregistered for RDMA transfers. The caller supplies the
desired constructor as a function. When space becomes avail-
able, Cascade upcalls the constructor on a thread that is per-
mitted to block. The client can either construct the object in
place immediately, or delay until data is available (for exam-
ple a client managing a camera may need to wait until motion
is detected or a new photo is acquired). When the object
is ready to send, the constructor returns control to Cascade,
which marks the message as complete. Meanwhile, Cascade’s
core thread polls "under construction" message slots. The next
time it checks, Cascade will notice that a message (or group
of messages) is now ready for transmission, and will enqueue
an RDMA send that respects the FIFO order in which the
message memory slots were requested.

3.5 Collocation of Related Data Objects

The next question focuses on the locations at which data
is stored and where computation will occur. Most K/V sys-
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tems hash the object keys to obtain shard numbers. Hashing
randomizes object placement onto the available shards. The
concern is that if a lambda depends on multiple objects, ran-
domized object placement would defeat the goal of collocat-
ing computation with storage. ML models can be huge, so the
importance of collocation is significant – with a 10GB model,
even transferring at 100Gb/s takes one second.

With this in mind, Cascade allows developers to associate
an affinity set key with each object: a second pathname. If
none is specified, the object’s name is its affinity key. Objects
can still be accessed one by one, but if desired, objects that
employ the same affinity set will be collocated, moved, cached
in memory or evicted as a set. They can also be updated as a
set: for example, an ML system that refines its model might
also update hyperparameters: two distinct objects, but they
will have the same affinity set key. In support of such cases,
put also offers an API that will send a list of new objects
sharing an affinity key as a single message. Cascade’s put
implementation is single-threaded, hence the set of updates
will appear to happen atomically.

Even with affinity groups, objects still have unique names.
The affinity key is only used to ensure co-hosting. If desired,
the Cascade meta-data store can be queried to obtain the
affinity key associated with a given object. The meta-data
store is also able to list all objects associated with an affinity
set, to track and query access patterns, and to track cache
status for sets that are cached outside their home shard.

3.6 TIDE scheduler
Cascade makes scheduling decisions at several stages of event
and event-stream processing. Consider a data-flow graph
(DFG) representing application data flows and data dependen-
cies (an example can be seen in Fig. 9 in Sec. 5). A single
DFG can represent processing of a single event, but can also
describe an event stream, and it is even possible to create
a form of template that will be instantiated once per stream.
Moreover, an application might use many DFGs. Within these
instantiated DFGs, each computational task – each lambda –
must be mapped to a node that will perform that task. TIDE’s
job is to compute an optimized, load-balanced plan that will
be replicated onto client systems and used to select the target
when a trigger put occurs. TIDE also manages caches, both
for host memory and CUDA memory on GPU accelerators.
The broad goal is to ensure that all the inputs a task requires
are available on the node where the task is launched, so that
there are no object-fetch delays on the critical path.

TIDE is a sophisticated subsystem, and the constraint of
brevity precludes a full discussion of the optimization tech-
niques employed, or a full evaluation of TIDE’s effectiveness.
Accordingly, we defer a more detailed presentation of the
algorithm for future papers: one focused on the single-event
case, and a second on an extension we call MTIDE that fo-
cuses on scenarios in which a pipeline is instantiated multiple
times, resulting in a large number of side-by-side event flows.
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Figure 4: K/V Store Put Throughput

PUT type 10KB Message 1MB Message
Trigger 12 µs 220 µs
Volatile 70 µs 1100 µs
Persistent 500 µs 4200 µs

Table 1: Typical Put Operation Latencies

4 Evaluation

In this section, we start by reviewing microbenchmarks that
evaluate the throughput and latency of the Cascade K/V store.
Next, we evaluate performance of a data pipeline composed of
multiple put operations, employing no-op actions to highlight
overheads. Finally, we evaluate three applications.

Our servers are dedicated nodes with Mellanox ConnectX-4
VPI NIC cards connecting to a Mellanox SB7700 InfiniBand
switch, which provides an RDMA-capable 100Gbps network
backbone. The servers have two configurations. The more
powerful configuration matches what edge-hosting systems
typically offer; these have dual Intel Xeon Gold 6242 pro-
cessors, 192 gigabytes of memory, and an NVIDIA Tesla T4
GPU. The lightweight setup emulates a less powerful Cas-
cade client; it has two Intel Xeon E2690 v0 processors and
96 gigabytes of memory but no GPU. For convenience, we
use type A to denote the larger configuration and type B for
the basic one. Both types of servers have high-speed NVMe
storage (Intel Optane P4800X cards).

All servers run Linux kernel 5.4.0. We synchronize the
server clocks with PTP [22] so that the skew among them is
in the microseconds, allowing comparison of the timestamps
from different servers with sub-millisecond precision.

4.1 Cascade K/V Store Performance
We started by evaluating the performance of Cascade’s three
types of put operations (Sec. 3.3). Clients run on type B
servers, issuing requests to Cascade nodes on type A servers
at a controlled rate. Then, we varied the shard size as well as
the number of clients to test scalability. For some experiments,
we used just a single client irrespective of the server shard
size (one), while others had multiple clients, one per shard
member (all).
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Figure 5: Cascade’s K/V Store Put Latency is low over a wide range of message sizes and data rates.

4.1.1 Throughput

Fig. 4 shows the put throughput of Cascade K/V store as we
vary the shard size (the number of replicas). The Y-axes rep-
resent the throughput seen by the application. With only one
node in a shard, volatile put reaches ∼ 500 MBps (50 kops)
and ∼ 2.8 GBps (2.8 kops) for 10KB and 1MB messages.
The throughput for 10KB messages is steady as we vary the
shard size from 1 to 5. With 1MB messages, both figures drop
slightly: ∼ 2.2 GBps (2.2kops) for shards of size 5, reflecting
the overhead of replicating large messages.

With multiple clients, we achieve even higher throughput.
Volatile put with 10KB messages rises from ∼ 500 MBps (25
kops) to ∼ 1.3 GBps (130 kops), a figure at which the repli-
cation capacity of the system becomes saturated. In contrast,
with 1MB messages, even with multiple clients, throughput
remains flat, peaking at ∼ 2.7 GBps for 5-member shards.
Our studies suggest that the bottleneck is associated with a
memcpy operation that we use to copy data from the RDMA
buffers used for incoming messages to a heap where we store
objects that will be passed to developer-supplied lambdas.

The numbers for persistent put operations show similar
trends, but the actual bandwidths are sharply reduced. Per-
sistent put reaches at most ∼ 270 MBps (27 kops) for small
messages and ∼ 800 MBps (800 ops) for large ones. The
bottleneck turns out to be a side-effect of the Paxos-based
consistency model used in Derecho. Although our NVMe de-

vice can achieve sequential write bandwidth of 2.4 GBps, this
data rate is only achievable with long, uninterrupted DMA
transfers. It turns out that in the persisted mode our update
workload incorporates ordering dependencies that the storage
layer enforces by periodically pausing until persisted updates
are completed, disrupting the DMA transfer scheme (we plan
to look at ways of aggregating such actions opportunistically,
but this is future work). Trigger put operations scale best be-
cause these operations avoid all memory copying and replica-
tion overheads. A trigger put client gets ∼ 7.6GBps (∼ 7.6
kops) for 1MB messages, which is close to the RDMA hard-
ware limit, and aggregated throughput grows linearly in the
number of clients.

4.1.2 Latency

Table 1 explores put latency for our three modes, considering
small and large messages. For each volatile put operation,
we measured time starting when the client sends the request,
and ending when all replicas finish updating their in-memory
store. Each data point in the figure shows the average latency
during a five-second period. Similarly, for each persistent put
operation, we measure time from when the client first sends
the request to when the last replica finishes persisting it;. For
trigger put we measure until the request reaches a replica
that upcalls to a developer-supplied lambda.

The persistent put latency is about four to five times higher
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Figure 6: Latency Breakdown for Volatile and Persistent Put

0 1 2 3 4 5
pipeline length

0

2000

4000

6000

8000

10000

12000

la
te

nc
y 

(u
s)

Stage 1 (1M)
Stage 2 (1M)
Stage 3 (1M)
Stage 4 (1M)

Stage 1 (10K)
Stage 2 (10K)
Stage 3 (10K)
Stage 4 (10K)

(a) Cascade with Trigger Put

0 1 2 3 4 5
pipeline length

0

2000

4000

6000

8000

10000

12000

la
te

nc
y 

(u
s)

Stage 1 (1M)
Stage 2 (1M)
Stage 3 (1M)
Stage 4 (1M)

Stage 1 (10K)
Stage 2 (10K)
Stage 3 (10K)
Stage 4 (10K)

(b) Cascade with Volatile Put
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Figure 7: No-op Pipeline Latency
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Figure 8: No-op Pipeline Bandwidth

than that of a volatile put. Below, we confirm that the bot-
tleneck is the I/O to our storage devices. Trigger put is one
order of magnitude faster than volatile and persistent put be-
cause it does not need to replicate or persist any data.

The data in Table 1 reflects performance when the system
is not saturated. As the workload is increased and begins to
approach the maximum sustainable throughput, latency will
rise sharply and without limit. To quantify this effect, we
measured the end-to-end latency of Cascade K/V store with
three replicas in Fig. 5. The six subfigures show the end-to-
end latency for the three operation types and two different

message sizes. We control the maximum message rate on the
client-side and the Cascade window size (a multicast flow-
control parameter) to see how the latency changes.

As shown in figures 5b, 5c, 5e, and 5f, before the system
becomes saturated end-to-end latency is consistently low, cor-
responding to the flat part on the near right part of the curved
surfaces. The system is keeping up with the request rate, so
there are no queuing backlogs: requests are processed imme-
diately. As the workload grows we see the latency suddenly
rise, corresponding to the slope part on the far left part of
the curved surfaces. Here, processing becomes bursty and
queuing delay dominates the end-to-end latency.

Fig.s 5a and 5d show that the trigger put latency is insen-
sitive to workload and window size. This is a consequence
of using a no-op as the triggered action: If we used a lambda
that performed a more realistic computation, the computing
cost would dominate the end-to-end latency. We will see this
effect when we evaluate our dairy image processing pipeline.

Fig. 6 shows the latency breakdown for the volatile and
persistent put. We use a setup with a shard of three nodes and
a client that uploads 1MB objects. The window size is three.
The submitting component refers to the latency between the
client serializing a put request into the sending buffer and
the Cascade server receiving it; the multicast component is
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the latency of replicating the data among the shard members;
the processing component is the time spent in updating the
in-memory state, and the persistence component represents
the time between initiation of an update and its persisted
commit (across all replicas). Because trigger put has only
the submitting component, we exclude it in this figure.

All options have a wide range of message sizes and data
rates for which per-event latency remains stable and very low.
For volatile put, the multicast and submitting components
account for most of the end-to-end latency. For persistent put,
the persistence overhead dominates. When the request rate
approaches the maximal achievable single-event throughput,
the overhead of submitting and multicast grows suddenly
because the messages pile up. In the persistent case the effect
is exacerbated by a stage in Paxos that syncs data to storage.

4.2 Pipeline Performance

To microbenchmark a fast path pipeline we created a series of
lambdas that relay received data stage-by-stage but perform
no other computation, implemented with a trigger put or
a volatile (multicast) put. The shards have three members
each: one running on a type A server and two on type B
servers. Each lambda runs in a single member, on a dedicated
A-type server. The client program runs on a type B server
node. A first experiment examines latency from the client to
the no-op for 10KB and 1MB messages sent at a low request
rate. In Fig. 7a and 7b we show the average latency during a
representative 5-second period for varying pipeline lengths.
The first-stage numbers match the trigger and volatile put
latencies in table 1. In longer pipelines trigger is faster, but
the overhead of volatile put is surprisingly low.

For purpose of comparison, we then configured Apache
Flink to mimic Cascade by having it use a single task-
processing slot per server, disabling automatic operator chain-
ing [6] to prevent it from merging the tasks. We recompiled
Flink to load 1MB at a time (the defaut is 32KB), and set
its minibatch delay barrier to zero. This last change goes be-
yond the norm but without it performance was terrible and
the servers had very low CPU utilization levels. Yet even with
all of this tuning, Flink’s pipeline latency is high (Fig. 7c).
The Cascade pipeline with trigger put has a latency below
one-eighth that of the Flink version for 10 KByte messages
and one-fourth for 1 MByte messages. Indeed, even the (repli-
cated) volatile put on three-member shard has less than half
of the latency of Flink, at both messages sizes. Two factors ac-
count for this: Flink runs on TCP, not RDMA, and it uses the
Java-based Kryo serializer, which copies from Java-managed
memory to a network buffer.

We then stressed each pipeline by streaming at the max-
imum sustainable message rates. This yields the first four
throughput series in Fig. 8. Again, the throughput of Cas-
cade’s one-stage pipeline matches the trigger and volatile
put throughput in Fig. 4, dropping slightly as we move to a

𝝺cms@/cms/topics

(a) Messaging Service

𝝺filter@/sf/detect_animal

𝝺bcs@/sf/assess_mastitis

𝝺nop@/sf/save_image

(b) Smart Farm

𝝺mot@/rcd/tracking

𝝺Y-net@/rcd/prediction

𝝺detect@/rcd/detection

𝝺nop@/rcd/output

(c) Collision Detection

Figure 9: Application DFGs

pipeline with two or more stages. This reflects the extra costs
associated with message relaying: the first stage only sends,
while inner pipeline stages must send and receive, and the
final stage only receives. Performance is sustained as pipeline
length grows from two to four, supporting our claim that Cas-
cade scales extremely well. In the same experiment, Flink
gives lower and more variable throughput.

5 Cascade Applications

We implemented three applications to explore the overall
effectiveness of Cascade when compared with existing ways
of solving the same problems. We made a major effort to
be fair to the comparison platforms, and to configure them
exactly as recommended by their developers.

5.1 Cascade Messaging Service
Our first application is the Cascade Messaging Service (CMS)
that was compared to Kafka-Direct in the introduction. CMS
employs a standard Pub/Sub model but maps publish to
atomic multicast, enabling strong ordering and fault-tolerance
semantics. As seen in Fig. 9a, the CMS DFG has just
one vertex: a lambda λcms binding to folder /cms/topics. A
CMS client publishes to a topic T by calling put with key
/cms/topics/T, and will be either volatile or persistently logged
at the developer’s option. λcms does no computation; instead,
it pushes a notification (including the object data) to clients
subscribed to T . λcms allows concurrent upcalls for distinct
topics (any single topic retains FIFO event ordering).

Recall from Sec. 4 that our experimental setup has two
categories of servers. For this experiment we hosted both
platforms on type A servers, and configured Kafka-Direct as
recommended by the developers, with publisher, subscriber
and server nodes on distinct machines. To create Fig. 1 (left
side) we disabled intentional batching to prioritize latency
over throughput (nonetheless, both batch if a backlog forms).
To avoid bottlenecks in the persistent storage layer, λcms uses
a volatile folder, while KafkaDirect’s log data was stored in
ramdisk. We then varied the data rates at each object size.
For each size we were able to identify rates that minimized
latency for both systems. We then plotted the median (circles),
10%-90% range (box) and an error bar for the 1%-99% range.
The right side of the figure breaks delay down by the stage at
which it arose.
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Fig. 10 shows latency at each presented data rate, but only
for CMS; we see steady low latency as long as the system can
keep up event-by-event, and then a shift to a batched behavior
as backlogs begin to form. We were unable to create a similar
graph for Kafka-Direct: latencies were highly variable at every
offered rate, consistent with our finding that this Pub/Sub
broker becomes bursty even at very low throughput.

We invested significant effort to understand why Kafka-
Direct is so prone to queuing. Unfortunately, the root cause is
not evident, but it has the effect of delaying the Kafka-Direct
RDMA polling thread: Quite frequently,100ms or more passes
between rechecking the RDMA message queue (we instru-
mented the code and have data supporting this observation,
over a wide range of operating conditions, and it arises in
an unmodified download of the broker configured precisely
as recommended, on hardware identical to what they used
for their own testing). During these long pauses, queuing
backlogs form, resulting in delivery of a batch of delayed
messages. Our hypothesis is that the developer team didn’t
view this as a problem because throughput was their priority –
and Kafka-Direct throughput is quite good (this said, Cascade
is faster). In future work, we plan to extend our CMS into a
drop-in-compatible replacement for Kafka.

5.2 A Smart Farming Application
We also built a dairy health tracking application. The system
images animals as they enter or leave the milking area, then
employs ML to develop a variety of information streams that
are reported via dashboards for farm workers, owner and vets.
We obtain a multi-stage pipeline. The first step uses a motion
detector and RFID to capture photos and identify the cows.
In the second step, selected images are subjected to a full
analysis, after which web tools generate dashboard reporting.

Two vision models are involved in this application: a filter
model that determines whether a photo has a valid animal
image, and a body-condition scoring (BCS) model called
CowNet [2] that assesses the health condition of the animal.
We developed the λ f ilter and λbcs using TensorFlow’s C API
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Figure 10: CMS latency: Detailed breakdown

to incorporate the two models. A storage stage is represented
as a no-op lambda, giving the three-stage DFG shown in
Fig. 9b. Both /s f/detect_animal and /s f/assess_mastitis
folders are volatile, since not all original photos are worth
saving. The /s f/save_image folder is used to retain photos
along with the computed body condition score, RFID, and
timestamp. These lambdas do not have any constraint on
ordering, hence the upcall pool is configured to permit con-
current upcalls. Nodes in the front-end and compute stages
perform image analysis and run on servers of type A. The
other nodes run in the type B servers. Each node runs in a
dedicated server to avoid resource conflicts.

We first deployed the application with a simple configura-
tion where each stage of the pipeline runs on a single-member
shard. We use cow images collected from our research dairy,
each with a valid cow image pre-verified by the filter model:
it needs to run, but will always select every image for further
analysis (this is to avoid variable-length computations that
would make the output harder to understand). The raw image
size in JPEG format is about 200 KBytes. At the beginning of
the experiment, the photo aggregator transforms the raw im-
ages into two-dimensional dense arrays in OpenCV cv::Mat
format, which can be used directly by our inference engine.
Interestingly, although this dense array format is larger (about
1 MBytes which is five times the JPEG format), it saves the
computation resources and supports faster decision-making,
reducing CPU and GPU performance pressure but at the cost
of higher data movement costs. The storage folder is volatile,
meaning that the most recent version of each object will be
held in memory but not persisted.

We then built the same application as a Flink pipeline for
comparison. It consists of a photo streaming data source task
as the photo aggregator, four filter tasks, four bcs tasks, and a
terminating data sink. We use Flink’s fine-grained resource
management to control the task layout so that tasks of the
same type will run on the same server. Moreover, the filter
and bcs tasks are placed in Type A servers because the models
require GPU resources. To mimic Cascade in-memory storage
of the results, the Flink data sink task saves output into an
in-memory hashmap. Once again we see that even though
Flink’s data storage sink is non-replicated and the Cascade
version replicates the output, Flink is substantially slower.

Latency Breakdown In this experiment we selected fixed
sending rates in the range from 50 to 400 frames per sec-
ond(fps). For each rate, we run a session that lasts for (at
least) five seconds and log the timestamps for each photo at
different stages in the pipeline. We recorded the following six
timestamps for each photo: (1) the photo aggregator sends a
photo; (2) the filter lambda is triggered; (3) the filter lambda
terminates; (4) the bcs model is triggered; (4) the bcs model
terminates; (5) the result is written by the store folder.

The gray bars in Fig. 11 show the results for Cascade at
a low rate and then at the highest sustainable rate (the lim-
iting factor turns out to be the filter and bcs model costs,
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which fully load our type A servers). The end-to-end latency
is only six milliseconds for both the light workload at ∼ 50
fps and the stressed workload at ∼ 400 fps. Even when the
workload grows to a stressed 650 fps, it only rises slightly to
6.5 milliseconds. The time spent in model inference domi-
nates end-to-end latencies: filter processing time represents
about 40% of end-to-end latency; and bcs model processing is
even greater, at nearly 43%. The aggregated data forwarding
latency represents just 17%, reflecting the efficient fast path.

The red bars in Fig. 11 show the Flink latency breakdown.
Although the filter and bcs models consume slightly more
time, Flink’s data forwarding delays (highlighted with stripes)
are far higher. For a stressed load at 400 fps, Cascade’s end-
to-end latency is about one-eighteenth that of Flink’s. Even
with light load at 50 fps, Flink’s end-to-end latency is 25 ms,
whereas Cascade is just 6 ms, a 75% reduction. The peak
achievable Flink throughput was ∼450 fps, hence there is no
Flink data point for 650 fps.

Throughput Scalability We investigated scalability by
varying the number of nodes while tracking throughput. Here,
the configuration of the shard responsible for each stage has
a significant impact, so we use a tuple to represent a system
configuration, where the elements are positive integers repre-
senting the number of nodes assigned to each role: frontend
(which runs the filter lambda), compute (which runs the bcs
scoring lambda). Since the storage is not a performance bot-
tleneck here, we keep the same storage tier set-up as in the
previous section (three nodes in the storage shard) in this
experiment and skip it in the tuple. For example, (1,2) rep-
resents a system configuration with six nodes. The frontend
folder is backed by a shard with one node; the compute folder
is backed by a shard with two nodes; and, not shown in the
tuple, the store folder is backed by a shard with three nodes.
Cascade supports a variety of load-balancing policies, includ-
ing random, static, and round-robin; we selected round-robin.
We then graphed the maximum throughput achievable without
overloading the pipeline in Fig. 12. For context we bench-
marked both lambdas on a single server of type A: filter runs
at ∼ 900 fps, while bcs runs at ∼ 700 fps.
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Figure 13: Traffic at a busy intersection

The overall trend for Cascade, shown dark gray bars in
Fig. 12 is easily understood. The bcs lambda is the bottleneck
in the (1,1) configuration. In the (1,2) configuration, the bcs
lambda has adequate capacity because it runs on 2 nodes,
causing the filter lambda to emerge as the limiting factor: we
obtain a maximum throughput of ∼ 900. With configuration
(2,2) bcs is again the limit. With the (2,3) configuration, the
two lambdas are balanced and throughput exceeds one thou-
sand fps. Broadly, these results support our view that Cascade
has excellent scalability. We repeat the same experiment using
Flink (red bars). Cascade turns out to outperform Flink by
∼ 40%, reflecting the benefits of our fast-path architecture.

5.3 Real-time Collision Detection

Next we created a more sophisticated application that moni-
tors city intersections (Fig. 13). We analyze video streams
that include several types of agents (pedestrians, cars, cy-
clists, skateboarders, buses, and golf carts). For each frame,
the solution extrapolates agent trajectories to detect imminent
collisions a few seconds before they occur, using off-the-shelf
ML models in a our stage pipeline (Fig. 9c). The first stage,
λmot , runs a Multi-Object Tracking (MOT) ML model to track
trajectories in a video stream. λY Net predicts each trajectory
for the next 4.8 seconds based on the past 3.2 seconds. λdetect
predicts potential collisions and requires consistency: stale
data could disrupt the algorithm. The final stage stores output.

We implemented λmot in Python using a multi-object
tracker available in [11], which employs a combination
of YOLO5 for agent detection, and StrongSORT [21] and
OSNet [49] for trajectory tracking. λY Net was also imple-
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mented in Python, using a trajectory prediction model called
YNet [35]. Both λmot and λY Net use PyTorch. We imple-
mented λdetect in C++. It consists of a simple algorithm that
performs a linear interpolation on each trajectory prediction
and checks if any interpolated pair of trajectories in the same
frame crosses each other: a potential collision. All ML models
used in λmot and λY Net are trained with the Stanford Drone
Dataset (SDD) [39]. In our application, we treat each video
as a stream originating at a camera hosted by a distinct client.

All folders are volatile, since data generated will not be
accessed for longer than a few seconds after the events hap-
pened. The lambdas are sensitive to data consistency: the
position of an agent in past frames influences detection and
trajectory prediction during the analysis of subsequent ones.

Next, we evaluated the traffic safety application. Ideally,
computations (λmot , λY Net , and λdetect) should dominate the
end-to-end latency of each video frame. λmot was deployed on
one shard containing two type A servers. λY Net was deployed
on one shard containing six type A servers. Since λdetect does
not require GPUs, it was deployed on one shard containing
three type B servers. Finally, we deployed three clients on
type B servers; each streams one randomly selected video
from the SDD dataset. Note that this pipeline triggers no
replicated updates: it uses trigger puts when transmitting
data from one stage to the next, hence there is no trade-off
between the number of shards and shard size.

We identified an opportunity for parallel event handling
(Fig. 14). Each frame triggers λmot , which detects agents in
the frame and match them with agents detected in the pre-
vious frame from the same client. The new position of each
agent in the new frame is sent to λY Net , triggering separate
λY Net instances for each new position. These can run in paral-
lel, limited by the λY Net six-node deployment. Therefore the
workload on the second stage depends not only on how many
clients are streaming frames, but also on how many agents
are detected in each frame. The size of messages containing
new positions is negligible, in the order of 10s of bytes.

Clients stream videos in a rate of 2.5 frames per second,
since YNet was trained under that framerate. Each frame is
sent uncompressed to the first stage of the pipeline, and has a
size of roughly 8MB. According to our evaluations, sending
compressed frames would reduce their size to the order of
100s of KBs. Although the transmission delay of smaller
frames is lower, uncompressing them in λmot results in a much
higher total delay. We executed the application with all three
clients streaming simultaneously for approximately 5 minutes.
The first 30 seconds worth of frames from each stream were
discarded to allow a warmup, leaving an aggregated total of
2073 frames. Fig. 15 shows the frequency of agents across all
frames (λmot typically detected 7 to 16 agents per frame).

Of particular interest is the end-to-end latency of frames,
and the cost of Cascade lambdas. Fig. 16 shows the average
latency breakdown per frame. We aggregated frames accord-
ing to the number of agents detected, in groups of five, as

Figure 14: Pipeline triggered by a frame.

Figure 15: Histogram of agents across 2073 frames.

indicated in the vertical axis. The topmost group corresponds
to all frames. The horizontal axis indicates latency in mil-
liseconds. Each horizontal bar corresponds to the average
end-to-end latency for a lambda in frames containing the in-
dicated number of agents. In a frame, the end-to-end latency
for λmot corresponds to the time since the lambda started
executing (with the frame already available in memory), un-
til all agents in the frame are detected and their trajectories
computed. Since there are multiple agents per frame, the end-
to-end latency for λY Net corresponds to the time since the first
instance of this lambda starts, until the last instance finishes.
Multiple instances are executed, generating predictions in
parallel. Thus multiple instances of λdetect start while there
are still instances of λY Net running. The end-to-end latency
for λdetect is the time since the first instance started, until the
last instance finishes. The gap between time 0ms and λmot
corresponds to the frame transfer from the client. The gap
between λmot and λY Net includes the transferring of the new
agents positions, as well as waiting time due to the servers
being busy executing λY Net for the previous frame.

As expected, latency is higher in general for larger work-
loads (indicated by the number of agents). However, it is
possible to see that the time between the frame is sent by a
client until λmot starts is consistent regardless of the workload:
the average is 28ms, with a 95th percentile of 34ms. Similarly,
the overhead between λmot and the first instance of λY Net is
consistent, about 5ms. Focusing on the frames containing 11
to 15 agents, the average end-to-end latency for the pipeline
is 229ms, with a 95th percentile of 264ms. Considering all
frames, the latency is much less consistent with an average of
241ms and a 95th percentile of 338ms. This variance stems
from lambdas that require more processing time when the
workload is heavier. We conclude that Cascade incurs a low
and consistent overhead in the critical path.

We also deployed our application in Microsoft Azure Cloud.
Adhering closely to documentation [38], we created a pipeline
that uses Azure Machine Learning (AML), Stream Analyt-
ics (SA), and Event Hubs (EHs). The application lambdas
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Figure 16: RCD average per-frame latency breakdown.

were deployed as real-time endpoints (which behave as web-
services), triggered by SA jobs connected by EHs [31].

RDMA is widely used in Azure’s own infrastructure com-
ponents, although we were not able to determine whether
RDMA is used in the specific Azure components we used.
Accordingly, the goal of this experiment is really to illus-
trate expected performance in the absence of a technology
like Cascade – we do not think there actually is an existing
cloud technology that can be used in a totally fair comparison.
In future work we plan to experiment with Cascade hosted
on Azure HPC (a costly configuration, but one that allows
third-party platforms to leverage RDMA).

In this experiment, we employed only one camera. Videos
were pre-loaded in Azure Blob Storage [13]. The simulated
camera ran in a virtual machine, triggering the application
pipeline by sending frame metadata to an EH at a rate of 2.5
fps. A front-end SA job consuming the metadata invoked λmot ,
which downloaded the corresponding frame from the Blob
storage and performed object tracking. Results were sent to
the next job through another EH. The third job was triggered
similarly. The results of the last job were sent back to the
camera virtual machine for end-to-end latency measurement.

We used seven Standard_NC4as_T4_v3 AML instances
equipped with the same GPU as in our local environment,
one for λmot and six for λY Net . Three more instances (type
Standard_DS3_v2) were deployed for λdetect . We employed
premium-tier [37] EHs, and SA jobs ran in a dedicated SA
cluster. Measurements confirmed that our lambdas have the
same computation cost as in our Cascade experiment.

Although Azure solutions are capable of high throughput,
it is quite difficult to disable batching in standard Azure com-
ponents. Figure 17a shows end-to-end latency, grouped by
the number of agents detected in a frame. The topmost bar
corresponds to all frames. Medians are all above 2 seconds,
with long tails. The minimum was 924.67ms. Figure 17b
drills down, showing that the latency originates in the EH:
We deployed a consumer and a publisher in an idle Azure
virtual machine to stress a premium-tier EH with a single
partition. Latencies from sending to receiving is tracked for
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Figure 17: Latency on Azure Cloud

30 seconds, using the same message sizes as in Figure 1. We
disabled batching and controlled the sending rate for the low-
est latency. The average EH latency is tens of milliseconds,
over two orders higher than RDMA-enabled CMS, and jitter
is common, resulting in the long tails evident in Figure 17a.

6 Additional Related Work

Sections 1 and 2 discussed a number of widely used big-data
platforms and the challenges of adapting them for use in event-
driven edge settings. Although Kafka Direct, Apache Flink
and Storm [14] aim at stream processing, these are not the
only prior systems relevant to ours. For example, Spark [47]
achieves impressive performance for iterative tasks such as
training. It gains this speed through in-memory RDD caching
and scheduling, but runs the actual jobs on nodes distinct from
the HDFS storage service that hosts data. We think of Cas-
cade as similar in style, but with a primary bias towards low-
latency that leads us to group related objects and then to run
jobs close to their inputs. Prior work on K/V stores includes
RDMA-enabled systems such as FARM [20] and FASST [29]
as well as commercial data warehousing products, such as
Amazon’s DynamoDB [18], Snowflake [5], Microsoft Cos-
mosDB, Databricks Datalake, Cassandra, RocksDB or even
the Ceph object-oriented file system, which runs over a key-
value store called RADOS [44]. As with Spark, none of these
solutions hosts developer-supplied lambdas or deploys GPU
accelerators close to the storage system, forcing costly lock-
ing, copying and domain crossings. Moreover, few focus on
rapid data consistency (Azure has long featured strong stor-
age consistency, and AWS recently introduced a consistency
feature, but neither achieves particularly low update latency).

7 Conclusion

We created Cascade to host a new generation of edge comput-
ing that depends on large stored objects and other "big data"
collections, yet also must carry out computations under time
pressure. A central puzzle is that AI developers are locked
into cloud tools and platforms, hence any new option must

12



be as transparent as possible. Cascade’s architecture achieves
these goals by allowing user code to be hosted very close to
our servers and scheduling job execution on nodes that host
the required data. The design enables end-to-end zero copy
RDMA data paths between the application and our storage
model, or between application stages. Cascade also offers
data consistency: a guarantee needed in many reactive edge
settings, where inconsistency can result in visible errors or
real-world harm. Performance is excellent: stage to stage de-
lays can be as low as 33us and bandwidth as high as 4.5Gbps.
The latency figure improves on today’s standard platforms by
multiple orders of magnitude, while the throughput number
equals or improves upon what today’s platforms achieve.
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