
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Preface

Copyright©2024 by Tim Teitelbaum; Most recent revision, 12/03/2024



This is an introduction to computer programming aimed at the level of a first 
college course. It is also suitable as a monograph for people beyond the 
introductory level who are unfamiliar with its methodological content. It is a 
methodology-oriented introduction, and its subject is programming principles, 
not language features. 

In elementary Physics, one doesn't start learning mechanics by studying one or 
another brand of springs and pulleys; rather, one learns Newton's Laws and how 
to apply them in arbitrary situations. Similarly, in this book, I eschew the study 
of any particular brand of programming language, opting instead to focus on 
fundamental laws formulated as rules of program composition.

I use a minimal programming language, one so small that it can be said to be 
universal. Programming skill is measured by the ease with which you can turn a 
problem statement into a working program, not by the number of language 
features you know. The methodology presented is not specific to a particular 
language; rather, it applies to programming, in general.



The notation used is a small subset of Python, but I hasten to repeat: The book is 
about programming, not programming in Python. For our purposes, all 
imperative programming languages, e.g., Java, Python, JavaScript, C/C++, etc., 
share a common core. 

The notation is readily summarized in Chapter 2 Prerequisites. For students with 
a modicum of background, this chapter will be a succinct refresher that firms up 
prior knowledge, provides standard vocabulary, and establishes a common 
baseline for the rest of the book. Students with no background whatsoever can 
learn the material from the chapter, but may wish to supplement it, e.g., with 
one of the many excellent and free resources on the Internet. Instructors may 
wish to offer a lecture, or a few recitation sections, to bring everyone up to 
speed.



A premise of the book is that much of programming can be reduced to a set of 
rules you can follow in cookbook fashion. The conceit is that programming can 
(almost) be algorithmic. You, the programmer, just follow the rules, and out will 
pop a program. And not just any program, but a reasonably good program, at 
that. You play the role of a computer, and just follow the programming precepts 
taught. The chapters teach the precepts, and illustrate how they are applied. 

Precepts are written as imperatives, albeit they are couched in equivocating 
phrases such as "seek", "consider", "if possible", "prefer", etc. to allow for the 
possibility that other (perhaps contradictory) precepts take precedence. Thus, I 
straddle the gap between the fiction that coding can be deterministic (just 
follow the rules) and the fiction that coding is pure design (inexplicable 
creativity).



One of my themes is the use of programming patterns, short fragments of code 
that perform frequently needed tasks. These patterns arise so often that they 
are best mastered as if they were primitives of the programming language. 
Patterns are introduced and discussed throughout the book. 

You are encouraged to learn each pattern so well that it becomes an atomic 
notion in your programming vocabulary. When, in the course of programming, 
you see the need to do something for which there is an established pattern, you 
should be able to recognize the pattern's applicability, and then immediately 
blast it into your program in one indivisible action. In the parlance of cognitive 
psychology, you should have chunked the pattern, and should no longer think of 
it in terms of its constituent parts. 



The book's focus is synthesis, not analysis. Thus, no substantial code is presented 
as a fait accompli for interpretation. Rather, the essential content of the book is 
the stepwise development of solutions rather than the solutions per se.

In cases where more than one approach comes to mind, each will be considered, 
explored, and evaluated. A few examples are consequential algorithms. My 
purpose, however, is instruction in programming, not algorithms. As such, 
although an example may have a well-deserved reputation and a noteworthy 
asymptotic running-time complexity, these will be incidental to its use in 
illustrating how you might develop the program yourself.

Code is presented in a sequence of incremental steps that are displayed in 
numbered “movie” frames. Each coding “movie” starts with a specification in 
frame one, and ends with the finished product. That way, you are shown a 
recommended order of development, and not just the final program. 



Much of the power of computers derives from fashioning conceptual hierarchies 
at varying levels of abstraction, ranging from high-level ideas to low-level details. 
The notion of a specification and its implementation is central in that activity.

A specification defines what must be accomplished (at one level of abstraction), 
and its refinement into an implementation defines how to accomplish that (in 
terms of lower-levels of abstraction). This process, known as stepwise 
refinement, is essential to the book’s methodology. 

The principle of information hiding is introduced early as a mechanism that 
allows a program’s different levels of abstraction to be separated from one 
another. Information hiding, and the related concepts of modularity and 
encapsulation, are often presented as an aspect of object-orientation. In 
contrast, I present them as separate notions well before objects.



Because objects implicate too many language-specific details, I defer them until 
late, which allows the rest of the book to be truly language-independent.

Much of the power of a modern programming language comes from its libraries. 
If you plan to do any serious programming in a given language, you will surely 
want to master its libraries, and use them rather than "reinventing the wheel". 

For pedagogical purposes, however, I focus on how to program in the base 
programming language, and largely ignore libraries. Although their use is 
eschewed, libraries are far from forgotten. In fact, the text anticipates the need 
for generic collections, and then implements a class ArrayList as a motivating 
examples for objects. It happens that Python’s builtin list data type is very 
similar to ArrayLists, so this example helps to clarify what is going on “under 
the hood” with Python lists.

Thus, you are led right to the pearly gates of libraries, armed with the ability to 
read and understand library interface specifications, and to use them to 
advantage.



Throughout the book, I advocate a cautious approach to programming that is 
aimed at writing correct code from the start. But mistakes are inevitable. 

Debugging code is like trying to find “a needle in a haystack”, and the topic is not 
realistically discussed in the context of short program segments. Accordingly, the 
subject is deferred until the final chapter, where I deliberately introduce bugs 
into the largest program example of the book, and then discuss how to find 
them. 



Language-oriented introductions to programming tend toward being 
encyclopedic tomes; in contrast, I have aimed for a comparatively short, 
coherent, and digestible book. I have aspired to tell a compelling story, knitted 
together by interesting, nontrivial examples that are woven throughout --- a 
book that invites cover-to-cover reading.

The slide version of the book is even more succinct, and benefits from some of 
the unique advantages of the medium, e.g., animation of both code 
development and program execution.

My aim in writing this book is your proficiency in programming. I wish you well.

Tim Teitelbaum
Ithaca, NY


	Title
	Slide 1

	Preface
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10


