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The need to rearrange values in an array is commonplace,
and facility in doing so is important.

Everyday experience is helpful, e.g., manipulating a hand of
playing cards. However, beware that when cards are deleted
or inserted, others move over automagically. A better
analogy is cards in boxes, but even this is flawed because
values are copied from variables, not pulled, like cards.

We consider:

* Reverse

e LeftShift

* LeftRotate

* Partitioning
* Collation
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Application: Reverse the order of an array.
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Application: Reverse the order of an array.

== There is no shame in reasoning with concrete examples.
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Application: Reverse the order of an array.

== There is no shame in reasoning with concrete examples.
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Application: Reverse the order of an array.

== There is no shame in reasoning with concrete examples.
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Application: Reverse the order of an array.

== There is no shame in reasoning with concrete examples.
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Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

== A header-comment says exactly what a method must accomplish, not how it does so.

9S19N9Y



A110|20|30|40|50|60

Before

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while

= |If you “smell a loop”, write it down.
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A110|20|30|40|50|60
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Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while :
#.Swap A[L] and A[R].
L += 1; R -= 1;

== A statement-comment is written as a statement in a high-level language,
e.g., English. As such, it is a specification for code not yet written.
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Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while :
# Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

== Ignore fussy details for as long as possible.
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Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

But when the time comes, “you gotta do what you gotta do”.

while :
# Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

== Ignore fussy details for as long as possible.
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Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
# Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

== Be alert to high-risk coding steps associated with binary choices.
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Odd-length subsequence

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
# Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

= Validate output thoroughly.
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Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
# Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

= Validate output thoroughly.
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Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
# Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

= Validate output thoroughly.
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0 1 3 4 ) 0 1 2 3 5
A[10(40|30|20|50|60 A[10(50(30140|20|60
Odd-length subsequence Even-length subsequence

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
# Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

= Validate output thoroughly.
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Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
# Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

= Validate output thoroughly.

9S19N9Y



L
R R L
0 1 2 3 4 ) 0 1 2 3 4 5
A[10(40|30|20|50|60 A[10(50(40130|20|60
Odd-length subsequence Even-length subsequence

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:

Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the

subsequence A[L..R] in situ without affecting the

rest of A.

It would have been an error for the
condition to have been L!=R.

while L < R:———*—*""’/’/daffﬂfff””’f”/”fdff

# Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

== Be alert to high-risk coding steps associated with binary choices.
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New Application: Shift an array left k places.
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Application: Shift an array left k places.

== There is no shame in reasoning with concrete examples.
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Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

== A header-comment says exactly what a method must accomplish, not how it does so.

A-BIYS-HJo]



0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A|130140150|60|50(60
1 1

Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

for j in range(0,  , 1): A[j] = A[] + k]

= |If you “smell a loop”, write it down.
== Decide first whether an iteration is indeterminate (use while) or determinate
(use for).
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Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

for j in range(@, n - k, 1): A[J] = A[] + k]
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Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

for j in range(9, n - k, 1): A[Jj] = A[] + k]

== Boundary conditions. Dead last, but don’t forget them.
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Application: Shift an array left k places.
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def left shift k(A: list[int], n: int, k: int) -> None:

Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

if k > 0:
for j in range(@, n - k, 1): A[j] = A[] + k]

It would have been correct without
this test, but offensive that for k==0

we would do the most work.

== Boundary conditions. Dead last, but don’t forget them.
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Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

Default increment of range() is 1.
if k > o: /

for j in range(@, n - k, 1): A[j] = A[] + k]

== Eliminate clutter by using default values.
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Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

if k > 0:
for j in range(9, n - k): A[j] = A[] + k]

== Eliminate clutter by using default values.
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Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

Default start of a range() is O.

for j in range(9, n - k): A[j] = A[] + k]

== Eliminate clutter by using default values.
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Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

if k > 0:
for j in range(n - k): A[j] = A[] + k]

== Eliminate clutter by using default values.
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New application: Rotate an array left 1 place.

def left rotate one(A: list[int], n: int) -> None:
Given int array A[©..n-1], left rotate one(A,n) shifts A[l..n-1] left one
place, with the value that was originally in A[©@] reentering at the right
in A[n-1].

temp = A[0Q]
left shift k(A, n, 1)
A[n - 1] = temp

|-97810Y-197



temp
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Application: Rotate an array left 1 place.

def left rotate one(A: list[int], n: int) -> None:
Given int array A[©..n-1], left rotate one(A,n) shifts A[l..n-1] left one
place, with the value that was originally in A[©@] reentering at the right
in A[n-1].

temp = A[9]
left shift k(A, n, 1)
A[n - 1] = temp

|-91e10Y-197
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Application: Rotate an array left 1 place.

def left rotate one(A: list[int], n: int) -> None:
Given int array A[©..n-1], left rotate one(A,n) shifts A[l..n-1] left one
place, with the value that was originally in A[©@] reentering at the right
in A[n-1].

temp = A[9]
left shift k(A, n, 1)
A[n - 1] = temp

|-91e10Y-197
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New Application: Rotate an array left k places.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.
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Application: Rotate an array left k places.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

)-87e10Y4-Ha7]
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Application: Rotate an array left k places.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

We shall consider four distinct approaches:
 Repeated Left-Rotate-1

* Swap Generalization

* Three Flips

e Juggle in Cycles

)-87e10Y4-Ha7]



Approach 1: Repeated left rotation 1 place.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.
for j in range(9, k): left rotate one(A, n)

|-93ej0Y-}jo] pajeaday
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Approach 2: k-wide generalization of swap.

#.Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

#

uonezijeiauar) demsg
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Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k

uonezijeiauar) demsg
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Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k

#.temp[0..k-1] = A[0..k-1]

uonezijeiauar) demsg
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Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k
#.temp[0..k-1] = A[0..k-1]
left _shift k(A, n, k)

)-87e10Y4-Ya7]
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Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k
#.temp[0..k-1] = A[0..k-1]
left shift k(A, n, k)

#.A[__ ..n-1] = temp[0..k-1]

= Defer challenging code for later; do the easy parts first.

uonezijeiauar) demsg
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Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

temp = [O] * k

# temp[0..k-1] = A[0..k-1]
for j in range(@, k): temp[j] = A[]]

left_shift_k(A, n, k)

#.A[___ ..n-1] = temp[0..k-1]

)-87e10Y4-Ya7]
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Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

# temp[0..k-1] = A[0..k-1]
for j in range(0, k): temp[j] = A[]]

left_shift_k(A, n, k)

# A[___..n-1] = temp[0..k-1]
for j in range(@, k): A[ ] = temp[j]

==  Avold gratuitous differences in code. Reuse code patterns, if possible.

uonezijeiauar) demsg
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Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k

# temp[0..k-1] = A[0..k-1]
for j in range(0, k): temp[j] = A[]]

left_shift_k(A, n, k)

# A[n-k..n-1] = temp[0..k-1]
for j in range(@, k): A[n - k + j] = temp[]]

uonezijeiauar) demsg
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Python has slices

0 k 0 k n-k n

Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k

# temp[0..k-1] = A[0..k-1]
for j in range(0, k): temp[j] = A[]]

left_shift_k(A, n, k)

# A[n-k..n-1] = temp[0..k-1]
for j in range(@, k): A[n - k + j] = temp[]]

uonezijeiauar) demsg
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temp | — A| —— EE—

Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

Python has slices

B mm o o e o oo e o e o o e e e e e e e e e e e e e e e e e e e e e mmm e m o
temp = [0] * k

# temp[0..k-1] = A[0..k-1]

temp = A[ :k]

left _shift k(A, n, k)

# A[n-k..n-1] = temp[0..k-1]

A[(n - k):] = temp

)-87e10Y4-Ya7]
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Python has slices
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Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k

temp = A[:k]
left_shift k(A, n, k)
A[(n - k):] = temp

== Omit specifications whose implementations are at least as brief and

clear as the specification itself.

uonezijeiauar) demsg
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Python has slices

0 K 0 K

n-k

temp | — A| —
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Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

temp = A[:k]
left_shift k(A, n, k)
A[(n - k):] = temp

==  Omit unused assignments

uonezijeiauar) demsg
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Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

# left shift k(A, n, k)
A[9:(n - k)] = A[k:]

Python has slices

A[(n - k):] = temp

)-87e10Y4-Ya7]
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Approach 2: k-wide generalization of swap.

# Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
# k places, with values originally in A[©..k-1] reentering at right.

temp = A[:k]
A[@:(n - k)] = A[k:]
A[(n - k):] = temp

==  Omit specifications whose implementations are at least as brief and

clear as the specification itself.

uonezijeiauar) demsg
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concatenation
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Approach 2: k-wide generalization of swap.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

A[O:n] = A[k:] + A[ :k]

=  Use the expressive power of a language’s operations.

uonezijeiauar) demsg
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Approach 3: Three Flips. Consider the two parts of the array.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

sdij4 @a4y]
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Approach 3: Represent the values in those parts as green and blue arrows.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

sdij4 @a4y]
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Approach 3: Reverse first k

sdij4 @a4y]

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.
reverse(A, 0, k - 1)

VS NETEY
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Approach 3: Reverse first k, then rest of elements

sdij4 @a4y]

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.
reverse(A, 0, k - 1)

reverse(A, k, n - 1)
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Approach 3: Reverse first k, then rest of elements

sdij4 @a4y]

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.
reverse(A, 0, k - 1)

reverse(A, k, n - 1)
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Approach 3: Reverse first k, then rest of elements, then all elements.

sdij4 @a4y]

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.
reverse(A, 0, k - 1)

reverse(A, k, n - 1)

reverse(A, 0, n - 1)
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Approach 3: Reverse first k, then rest of elements, then all elements.

sdij4 @a4y]

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.
reverse(A, 0, k - 1)

reverse(A, k, n - 1)

reverse(A, 0, n - 1)
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Approach 4: Juggle elements in a stride of k.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.
p =0 # Start at A[9Q]

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.
p =20 # Start at A[9Q]

temp = A[0Q] # and make a hole there.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :

Alp] = A[p + k] # Fill hole at p, making a new hole.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[p + k] # Fill hole at p, making a new hole.

p=p+Kk # Advance to the new hole.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0©..n-1], and integer k, 02<k<n, left shift A[k..n-1]
# k places, with values originally in A[0..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[p + k] # Fill hole at p, making a new hole.

p=p+Kk # Advance to the new hole.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[p + k] # Fill hole at p, making a new hole.

p=p+Kk # Advance to the new hole.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.

p=(p+ k) %n # Advance to the new hole.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.

p=(p+ k) %n # Advance to the new hole.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.

p=(p+ k) %n # Advance to the new hole.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

p=29
temp = A[0Q]
while

p=(p+ k) %n

A[P] = AL(p + k) % n]

# Start at A[9Q]
# and make a hole there.

# Fill hole at p, making a new hole.
# Advance to the new hole.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.

p=(p+ k) %n # Advance to the new hole.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

p=29
temp = A[0Q]
while

p=(p+ k) %n

A[P] = AL(p + k) % n]

# Start at A[9Q]
# and make a hole there.

# Fill hole at p, making a new hole.
# Advance to the new hole.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]

temp = A[0Q] # and make a hole there.

while ((p + k) % n) != 0: # Stop if p is about to be 0 again.
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.

p=(p+ k) %n # Advance to the new hole.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.

p =0 #
temp = A[0Q] #
while ((p + k) % n) != 0: #
Alp] = A[(p + k) % n] #
p=(p+ k) %n #
A[p] = temp #

Start at A[Q]

and make a hole there.

Stop if p is about to be 0 again.
Fill hole at p, making a new hole.
Advance to the new hole.

Fill the last hole from temp.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[0..k-1] reentering at right.
p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while ((p + k) % n) != 0: Stop if p is about to be © again.
Alp] = A[(p + k) % n] Fill hole at p, making a new hole.
p=(p+ k) %n Advance to the new hole.
A[p] = temp Fill the last hole from temp.

H H H H

Are we done?

sa|oAo u1 9I88np

)-87e10Y4-Ya7]



6
temp| a Ald|e| flglh]a]|b]|ec

~ =y

Approach 4: Juggle elements in a stride of k.

# Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[0..k-1] reentering at right.
p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while ((p + k) % n) != 0: Stop if p is about to be © again.
Alp] = A[(p + k) % n] Fill hole at p, making a new hole.
p=(p+ k) %n Advance to the new hole.
A[p] = temp Fill the last hole from temp.

H H H H

== Beware of premature self-satisfaction.

Are we done?

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[0..k-1] reentering at right.

p = 0 #
temp = A[0Q] #
while ((p + k) % n) I= 0: #
Alp] = A[(p + k) % n] #
p=(p+ k) %n #
A[p] = temp #

== Validate output thoroughly.

Are we done?

Start at A[9]

and make a hole there.

Stop if p is about to be 0 again.
Fill hole at p, making a new hole.
Advance to the new hole.

Fill the last hole from temp.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[0..k-1] reentering at right.
p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while ((p + k) % n) != 0: Stop if p is about to be © again.
Alp] = A[(p + k) % n] Fill hole at p, making a new hole.
p=(p+ k) %n Advance to the new hole.
A[p] = temp Fill the last hole from temp.

H H H H

== Validate output thoroughly.

Are we done? Hardly.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[0..k-1] reentering at right.
p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while ((p + k) % n) != 0: Stop if p is about to be © again.
Alp] = A[(p + k) % n] Fill hole at p, making a new hole.
p=(p+ k) %n Advance to the new hole.
A[p] = temp Fill the last hole from temp.

H H H H

== Validate output thoroughly.

Are we done? Hardly.

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

-hCDI\)OO|7T
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XXX

# Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[0..k-1] reentering at right.
p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while ((p + k) % n) != 0: Stop if p is about to be © again.
Alp] = A[(p + k) % n] Fill hole at p, making a new hole.
p=(p+ k) %n Advance to the new hole.
A[p] = temp Fill the last hole from temp.

H H H H

== Validate output thoroughly.

Are we done? Hardly. It only works if k and n are relatively prime!

sa|oAo u1 9I88np
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Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]

# k places, with values originally in A[@..k-1] reentering at right.

p =0 #
temp = A[0Q] #
while ((p + k) % n) != 0: #
Alp] = A[(p + k) % n] #
p=(p+ k) %n #
Alp] = temp #

== Validate output thoroughly.

Start at A[9]

and make a hole there.

Stop if p is about to be 0 again.
Fill hole at p, making a new hole.
Advance to the new hole.

Fill the last hole from temp.

Are we done? Hardly. It only works if k and n are relatively prime! Now what?

sa|oAo u1 9I88np
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Abandon, or learn that each of A[0..gcd(k,n)-1] begins a disjoint cycle.

Approach 4: Juggle elements in a stride of k.

# Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
# k places, with values originally in A[@..k-1] reentering at right.
g = gcd(n, k);

for j in range(9, g):

p = J # Start at A[]]

temp = A[p] # and make a hole there.

while ((p + k) % n) != 0: # Stop if p is about to be j again.
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.
p=(p+ k) %n # Advance to the new hole.

A[p] = temp # Fill the last hole from temp.

sa|oAo u1 9I88np
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Assessment:
[~ Repeated Left-Rotate-1  k:n Each Left-Rotate-1 moves all n elements. Done k times.
Swap Generalization n+k The copies into and out from temp do 2-k moves, and

the shift does n-k moves.

Three Flips 2:n Each element moves once during the 1st two reverses,
and then again for the 3rd reverse.

Juggle in Cycles n+gcd(n,k) Each element moves once, plus the first element of
each of the gcd(n,k) cycles must first be saved in temp.

Worst #moves, by far. Easiest to understand.

}-93e30Y-Ho



Assessment:
Repeated Left-Rotate-1  k:n Each Left-Rotate-1 moves all n elements. Done k times.
[ Swap Generalization n+k The copies into and out from temp do 2-k moves, and

the shift does n-k moves.

Three Flips 2:n Each element moves once during the 1st two reverses,
and then again for the 3rd reverse.

Juggle in Cycles n+gcd(n,k) Each element moves once, plus the first element of
each of the gcd(n,k) cycles must first be saved in temp.

Reasonable #moves but not in situ, i.e., requires extra space for temp.
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Assessment:
Repeated Left-Rotate-1  k:n Each Left-Rotate-1 moves all n elements. Done k times.
Swap Generalization n+k The copies into and out from temp do 2-k moves, and

the shift does n-k moves.

IZ= Three Flips 2:n Each element moves once during the 1st two reverses,
and then again for the 3rd reverse.

Juggle in Cycles n+gcd(n,k) Each element moves once, plus the first element of
each of the gcd(n,k) cycles must first be saved in temp.

Reasonable #moves. Good locality.
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Assessment:
Repeated Left-Rotate-1  k:n Each Left-Rotate-1 moves all n elements. Done k times.
Swap Generalization n+k The copies into and out from temp do 2-k moves, and

the shift does n-k moves.

Three Flips 2:n Each element moves once during the 1st two reverses,
and then again for the 3rd reverse.

== Juggle in Cycles n+gcd(n,k) Each element moves once, plus the first element of
each of the gcd(n,k) cycles must first be saved in temp.

Hardest to understand. Poor locality.

}-93e30Y-Ho



Assessment:
Repeated Left-Rotate-1  k:n Each Left-Rotate-1 moves all n elements. Done k times.
Swap Generalization n+k The copies into and out from temp do 2-k moves, and

the shift does n-k moves.

/ Three Flips 2:n Each element moves once during the 1st two reverses,
and then again for the 3rd reverse.

Juggle in Cycles n+gcd(n,k) Each element moves once, plus the first element of
each of the gcd(n,k) cycles must first be saved in temp.

Personal favorite, and really elegant!
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New Application: The Dutch National Flag problem.
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before after

Application: Rearrange an array into all red, then all white, then all blue.
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before after

Application: Rearrange an array into all red, then all white, then all blue.

#.Given array A[0..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

Se|4 [euolyeN yoInQ

== A statement-comment says exactly what code must accomplish, not how it does so.




before after

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[0..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.
while

= |If you “smell a loop”, write it down.

Se|4 [euolyeN yoInQ



intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[0..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.
while

== To get to POST iteratively, choose a weakened POST as INVARIANT.

Se|4 [euolyeN yoInQ



intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST:

Se|4 [euolyeN yoInQ

== To get to POST iteratively, choose a weakened POST as INVARIANT.




intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST: How shall we choose?

0 W b k n
A W ?
0 W k b n 0 k W b n
Iz A W ? == A ? W

Symmetric, so discard one arbitrarily.

Se|4 [euolyeN yoInQ




intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST: How shall we choose?

0 W b k n 0 r W b n
= A W ? == A ? W
0 W k b n
A W ?

Left more intuitive, because the ? region seems more familiar, so discard right.

Se|4 [euolyeN yoInQ




intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST: How shall we choose?

0 W b k n
= A W ?

0 W k b n
== A W ?

? region of top has only one degree of freedom, but bottom has two. Discard top.

Se|4 [euolyeN yoInQ



intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST: How shall we choose?

0 W k b n
== A W ?

This will be our INVARIANT.

Se|4 [euolyeN yoInQ



intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST: How shall we choose?

0 W Kk b n
€S A“ W ? h We have illustrated that program design and
programming can be driven by consideration of the

different possible invariants you can think of. One
This will be our INVARIANT. ml.ght call this mvanan’F-drlven .proglfammlng : In.
this mode of programming, the invariant comes first,
not as an afterthought to justify a loop you have
already written.

Se|4 [euolyeN yoInQ



R W ? B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[0..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

# INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0<w<k<bzn.
k: ;W: b:

Se|4 [euolyeN yoInQ

while




R W ? B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[0..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

# INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0<w<k<bzn.
k: ;W: b:

while

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.
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Kk
R w o [] - B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[0..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

k: ;W: b:

while

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.
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Kk
R w o [] - B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[0..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

else: # A[k] == W

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.
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Kk
R w o |[] - B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[0..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

else: # A[k] == W

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.
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R w o []] - B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[0..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

# INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0<w<k<bzn.
k: ;W: b:

while :
if A[k] == B:
elif A[k] ==
else: k += 1 # A[k] ==

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

Se|4 [euolyeN yoInQ



R w [l > [ B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[0..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

# INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0<w<k<bzn.
k: ;W: b:

while :
if A[k] == B:
elif A[k] ==
else: k += 1 # A[k] ==

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.
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R w |I] 2 (B B8 VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[0..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

# INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for ©@<w<k<bzn.
k: ;W: b:

while :
if A[k] =
#.Swa
b -=
elif A[k] ==
else: k += 1 # A[k] == W

B:
A[b-1] and A[k].

= T

== A Case Analysis in the loop body is often needed for characterizing different

ways in which to decrease the loop variant while maintaining the loop invariant.
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R [Jw (R~ B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[O..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

# INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for ©@<w<k<bzn.
k: ;W: b:

while :
if A[k] == B:
#.Swap A[b-1] and A[k].
b -=1

elif A[k] == R:
else: k += 1 # A[k] == W

== A Case Analysis in the loop body is often needed for characterizing different

ways in which to decrease the loop variant while maintaining the loop invariant.
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R BMw [ - B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[O..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

# INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for ©@<w<k<bzn.
k: ;W: b:
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while :
if A[k] == B:
#.Swap A[b-1] and A[k].
b -=1

elif A[k] == R:
#.Swap A[w] and A[k].
w+=1; k += 1

else: k += 1 # A[k] ==



R W ? B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[O..n-1] consisting of only three values (red, white, and blue),
# rearrange A into all red, then white, then blue.

# INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for ©@<w<k<bzn.
k: ;W: b:
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while k != b:
if A[k] == B:
#.Swap A[b-1] and A[k].
b -=1

elif A[k] == R:
#.Swap A[w] and A[k].
w+=1; k += 1

else: k += 1 # A[k] ==



W
k b
o n 0
] 2 VARIANT: b-k p—t
O
g =
Application: Rearrange an array into all red, then all white, then all blue. 923
op
Q
# Given array A[O..n-1] consisting of only three values (red, white, and blue), - |
# rearrange A into all red, then white, then blue. Q
# _____________________________________________________________________________ |
# INVARIANT: A[@..w-1] red, A[w..k-1] white, A[b..n-1] blue, for @<ws<k<bsn. T
k =0; w=20; b=n Q
1 fo]
while k != b:
if A[k] == B:
#.Swap A[b-1] and A[k].
b -= 1

elif A[k] == R:
#.Swap A[w] and A[k].
w+=1; k += 1

else: k += 1 # A[k] ==



Deferring low-level details has promoted thinking at a higher level of abstraction,
but don’t forget to elaborate “all the way down”.

Application: Rearrange an array into all red, then all white, then all blue.

# Given array A[@..n-1] consisting of only three values (red, white, and blue),
earrange A into all red, then white, then blue.
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if \A[k] == B:
# Swap A[b-1] and A[k].
temp = A[b - 1]; A[b - 1] = A[k]; A[k] = temp

b -=1
elif A[k] == R:
# Swap A[w] and A[k].
temp = A[k]; A[k] = A[w]; A[w] = temp

w+=1; k +=1
else: k += 1 # A[k] =

W



0 W k |b n 0

B~ =
V)
Y,

R w (B B A R

Boundary Conditions:

What about potential boundary conditions that might have needed special
attention?

You can systematically review the code for issues, but will discover that all are
nicely treated by the general case.
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In two situations, A[k] gets swapped with itself, but this only happens when its
value is already acceptable where it is:

* When the last remaining element in the ? region is blue.
* When A[k] is red, and the white region is empty.

All is well.



Performance:

Constant work per iteration.
Variant reduced by 1 on each iteration.

Thus, running time linear in n.
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Al <p ==p >p

A"

[ ] ] . . m

New Application: Rearrange (a segment of) an array into <p, ==p, and >p sections. -
. o

-

def partition(A: list[int], L: int, R: int, p: int) -> None: (@)
mmn :
Given A[L..R-1] and pivot value p, partition(A,L,R,p) rearranges A[L..R-1] into 5'
all <p, then all ==p, then all >p. g0

== A header-comment says exactly what a method must accomplish, not how it does so.




AL =P = >p O

[ [ L] . m
Appllcatlon: Rearrange (a segment Of) an array Into <p, ==p, and >p sections. ;‘|.
. o

-

def partition(A: list[int], L: int, R: int, p: int) -> None: (@)
mmn :
Given A[L..R-1] and pivot value p, partition(A,L,R,p) rearranges A[L..R-1] into 5'
all <p, then all ==p, then all >p. g0

(body of Dutch National Flag problem)

\

- We are simply going to replace the colors R, W, and B,

” o __

by the properties “<p”, “==p”, and “>p”.

== Don’t type if you can avoid it; clone. Cut and paste, then adapt.




Dutch National Flag problem
A

A R W B O
L _ Q)
Application: Rearrange (a segment of) an array into <p, ==p, and >p. -
. o
oy
def partition(A: list[int], L: int, R: int, p: int) -> None: (@)
mmn :
Given A[L..R-1] and pivot value p, partition(A,L,R,p) rearranges A[L..R-1] into 5'
all <p, then all ==p, then all >p. g0
g # INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 02w<ks<bzsn.
k =0; w=0; b =n
while k != b:
if A[k] == B:
# Swap A[b-1] and A[k].
temp = A[b - 1]; A[b - 1] = A[k]; A[k] = temp
b -=1
elif A[k] == R:

# Swap A[w] and A[k].
temp = A[k]; A[k] = A[w]; A[w] = temp

w+=1; k += 1
— else: k += 1 # A[k] ==




A <p —=P ~P O

L _ Q)
Application: Rearrange (a segment of) an array into <p, ==p, and >p. -
. o

-

def partition(A: list[int], L: int, R: int, p: int) -> None: (@)
mmn :
Given A[L..R-1] and pivot value p, partition(A,L,R,p) rearranges A[L..R-1] into 5'
all <p, then all ==p, then all >p. g0

# INVARIANT: A[0O..w-1] is “<p”, A[w..k-1] is “==p”, A[b..n-1] is “>p”, for @2w<k<bzin.
k=L, w=1L; b=R

while k != b:
if A[k] > p:
# Swap A[b-1] and A[Kk].
temp = A[b - 1]; A[b - 1] = A[k]; A[k] = temp

b -=1
elif A[k] < p:
# Swap A[w] and A[k].
temp = A[k]; A[k] = A[w]; A[w] = temp

w+=1; k += 1
else: k += 1 # A[k] ==p



Al <p ==p >p o

] [ . m
Application: Rearrange (a segment of) an array into <p, ==p, and >p. -
=4

e

. . =
What value of p would tend to create “<p” and “>p” regions of near equal size? 5'
gQ

If A[L..R-1] are in random order, any of those values is equally good for p.

Choosing a p of (A[L]+A[R-1])/2 guards against poor performance when A[L..R-1] is
already ordered.

This is central to a Divide and Conquer approach to sorting called QuickSort.



New Application: Collate ordered arrays A and B into array C.

#.Given ordered arrays A and B of lengths na and nb, create ordered
# array C of length na+nb consisting of those values.

uoize|jo)



0 1 2 3 na

0 1 2 3 4 5 na+nb

Application: Collate ordered arrays A and B into array C.
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0 1 2 3 na
A110(40150]60
0 1 2 nb

B120|30(50
0 1 2 3 4 5 na+nb
C|(10

Application: Collate ordered arrays A and B into array C.
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0 1 2 3 na
A[10]40|50(60
0 1 2 nb
B[(20(30|50
O 1 2 3 4 5 na+nb
C|10]20

Application: Collate ordered arrays A and B into array C.
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0 1 2 3 na
A[10]40|50(60
0 1 2 nb
B(20(30|50
O 1 2 3 4 5 na+nb
C(10]20|30

Application: Collate ordered arrays A and B into array C.

uoize|jo)



0 1 2 3 na
A[10]40|50(60
0 1 2 nb
B(20(30|50
O 1 2 3 4 5 na+nb
C|10120(30140

Application: Collate ordered arrays A and B into array C.

uoize|jo)



0 1 2 3 4 5 na+nb
C(10]120|30(40|50

Application: Collate ordered arrays A and B into array C.

uoize|jo)



0 1 2 3 4 5 na+nb
C(10120|30(40|50|50

Application: Collate ordered arrays A and B into array C.
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0 1 2 3 4 5 na+nb
C({10120130(40(50|50|60

Application: Collate ordered arrays A and B into array C.

Collation is central to a Divide and Conquer approach to sorting called MergeSort.
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copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from Aor B ?

Application: Collate ordered arrays A and B into array C.

# Given ordered arrays A and B of lengths na and nb, create ordered
# array C of length na+nb consisting of those values.

C =1[0] * (na + nb) # C[0..kc-1] is collation of
# A[@..ka-1] and B[0..kb-1].
ka=___; kb= ___; kc=__ # Indices in A, B, and C.

#.Copy values from A or B into C until one array is exhausted.
#.Copy remaining values into C from the unexhausted array, A or B.
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copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

# Given ordered arrays A and B of lengths na and nb, create ordered
# array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C =1[0] * (na + nb) # C[0..kc-1] is collation of

# A[0..ka-1] and B[@..kb-1].
ka = ; kb = ; ke = # Indices in A, B, and C.

# Copy values from A or B into C until one array is exhausted.
while :

if

else:

#.Copy remaining values into C from the unexhausted array, A or B.
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copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

# Given ordered arrays A and B of lengths na and nb, create ordered
# array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C = [0] * (na + nb) # C[0..kc-1] is collation of

# A[0..ka-1] and B[@..kb-1].
ka = ; kb = ; ke = # Indices in A, B, and C.

# Copy values from A or B into C until one array is exhausted.
while :

if : C[kc] = A[ka]; ka +=1; kc +=1

else:

#.Copy remaining values into C from the unexhausted array, A or B.
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copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

# Given ordered arrays A and B of lengths na and nb, create ordered
# array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C = [0] * (na + nb) # C[0..kc-1] is collation of

# A[0..ka-1] and B[@..kb-1].
ka = ; kb = ; ke = # Indices in A, B, and C.

# Copy values from A or B into C until one array is exhausted.
while :
if : C[kc]
else: C[kc]

A[ka]; ka +=1; kc +=1
B[kb]; kb +=1; kc +=1

#.Copy remaining values into C from the unexhausted array, A or B.
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copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

# Given ordered arrays A and B of lengths na and nb, create ordered
# array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C = [0] * (na + nb) # C[0..kc-1] is collation of

# A[0..ka-1] and B[@..kb-1].
ka = ; kb = ; ke = # Indices in A, B, and C.

# Copy values from A or B into C until one array is exhausted.
while :
if A[ka] < B[kb]: C[kc]
else: C[kc]

A[ka]; ka +=1; kc +=1
B[kb]; kb += 1; kc +=1

#.Copy remaining values into C from the unexhausted array, A or B.
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copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

# Given ordered arrays A and B of lengths na and nb, create ordered
# array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C = [0] * (na + nb) # C[0..kc-1] is collation of

# A[0..ka-1] and B[@..kb-1].
ka = ; kb = ; ke = # Indices in A, B, and C.

# Copy values from A or B into C until one array is exhausted.
while (ka < na) and (kb < nb):
if A[ka] < B[kb]: C[kc]
else: C[kc]

A[ka]; ka +=1; kc +=1
B[kb]; kb += 1; kc +=1

#.Copy remaining values into C from the unexhausted array, A or B.
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copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

# Given ordered arrays A and B of lengths na and nb, create ordered
# array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C = [0] * (na + nb) # C[0..kc-1] is collation of

# A[0..ka-1] and B[@..kb-1].
ka = 9; kb =0; kc =0 # Indices in A, B, and C.

# Copy values from A or B into C until one array is exhausted.
while (ka < na) and (kb < nb):
if A[ka] < B[kb]: C[kc]
else: Cl[kc]

A[ka]; ka +=1; kc +=1
B[kb]; kb +=1; kc +=1

#.Copy remaining values into C from the unexhausted array, A or B.
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copied to C ?
0 kb nb
copiedto C ?
0 kc
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

# Given ordered arrays A and B of lengths na and nb, create ordered
# array C of length na+nb consisting of those values.

C = [0] * (na + nb) # C[O..kc-1] is collation of
# A[0..ka-1] and B[©@..kb-1].
ka = 0; kb =0; kc =20 # Indices in A, B, and C.

# Copy values from A or B into C until one array is exhausted.
while (ka < na) and (kb < nb):
if A[ka] < B[kb]: C[kc]
else: Cl[kc]

Alka]l; ka +=1; kc +=1
B[kb]; kb +=1; kc +=1

# Copy remaining values into C from the unexhausted array, A or B.
while ka < na: C[kc] = A[ka]; ka +=1; kc +=1
while kb < nb: C[kc] = B[kb]; kb +=1; kc +=1

na+nb

uoize|jo)



Summary:

A number of useful one-dimensional array rearrangements were presented, some as
methods, and some as code fragments:

reverse(..)

left_shift k(..)

left _rotate_one(..)

Left-Rotate-k Four separate implementations were developed and assessed.

Dutch National Flag The basis of Partitioning, and an illustration of invariant-driven
programming.

partition(..) The basis for QuickSelect (Chapter 10), and QuickSort (Chapter 11), and
an introduction to an algorithm with good average-case performance, and not such
good worst-case performance.

Collation The basis for MergeSort (Chapter 11).

Arewwing
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