Principled Programming

Introduction to Coding in Any Imperative Language

Tim Teitelbaum

Emeritus Professor
Department of Computer Science
Cornell University

One-Dimensional Array Rearrangements

Copyright©2024 by Tim Teitelbaum; Most recent revision, 12/24/2024

The need to rearrange values in an array is commonplace,
and facility in doing so is important.

Everyday experience is helpful, e.g., manipulating a hand of
playing cards. However, beware that when cards are deleted
or inserted, others move over automagically. A better
analogy is cards in boxes, but even this is flawed because
values are copied from variables, not pulled, like cards.

We consider:

* Reverse

e LeftShift

* LeftRotate

* Partitioning
* Collation

uo3oNpoJuj

0 1 2 3 4 5
A110|20|30|40|50|60

D

Before

Application: Reverse the order of an array.

9S19N9Y

0

5

A|10

20

30140

50

60

[

Before

A

0 1 2 3 4 5
60|50140|30|20|10

S

After

Application: Reverse the order of an array.

== There is no shame in reasoning with concrete examples.

9S19N9Y

0O 1 2 3 4 5 0O 1 2 3 4 5
A160120|30|40|50|10 A160|50|40]|30|20|10
—

During After

Application: Reverse the order of an array.

== There is no shame in reasoning with concrete examples.

9S19N9Y

0O 1 2 3 4 5 0O 1 2 3 4 5
A160|50|30140|20|10 A160|50|40]|30|20|10
—

During After

Application: Reverse the order of an array.

== There is no shame in reasoning with concrete examples.

9S19N9Y

0

5

A|60

50

40130

20

10

S

During

A

0 1 2 3 4 5
60|50140|30|20|10

S

After

Application: Reverse the order of an array.

== There is no shame in reasoning with concrete examples.

9S19N9Y

A110|20|30|40|50|60

Before

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

== A header-comment says exactly what a method must accomplish, not how it does so.

9S19N9Y

A110|20|30|40|50|60

Before

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while

= |If you “smell a loop”, write it down.

9S19N9Y

A110|20|30|40|50|60

Before

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while :
#.Swap A[L] and A[R].
L += 1; R -= 1;

== A statement-comment is written as a statement in a high-level language,
e.g., English. As such, it is a specification for code not yet written.

9S19N9Y

A110|20|30|40|50|60

Before

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while :
Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

== Ignore fussy details for as long as possible.

9S19N9Y

A110|20|30|40|50|60

Before

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

But when the time comes, “you gotta do what you gotta do”.

while :
Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

== Ignore fussy details for as long as possible.

9S19N9Y

A110|20|30|40|50|60

Before

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

== Be alert to high-risk coding steps associated with binary choices.

9S19N9Y

A110|20|30|40|50|60

Odd-length subsequence

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

= Validate output thoroughly.

9S19N9Y

A110140|30|20|50|60

Odd-length subsequence

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

= Validate output thoroughly.

9S19N9Y

0 1 3 4) 0 1 2 3 5
A[10(40|30|20|50|60 A[10(20(30140|50|60
Odd-length subsequence Even-length subsequence

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

= Validate output thoroughly.

9S19N9Y

0 1 3 4) 0 1 2 3 5
A[10(40|30|20|50|60 A[10(50(30140|20|60
Odd-length subsequence Even-length subsequence

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

= Validate output thoroughly.

9S19N9Y

0 1 3 4) 0 1 2 4 5
A[10(40|30|20|50|60 A[10(50(40130120|60
Odd-length subsequence Even-length subsequence

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:
Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the
subsequence A[L..R] in situ without affecting the rest of A.

while L < R:
Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

= Validate output thoroughly.

9S19N9Y

L
R R L
0 1 2 3 4) 0 1 2 3 4 5
A[10(40|30|20|50|60 A[10(50(40130|20|60
Odd-length subsequence Even-length subsequence

Application: Reverse the order of (a subsequence of) an array.

def reverse(A: list[int], L: int, R: int) -> None:

Given int array A[©0..n-1], reverse(A,L,R) reverses the order of the

subsequence A[L..R] in situ without affecting the

rest of A.

It would have been an error for the
condition to have been L!=R.

while L < R:———*—*""’/’/daffﬂfff””’f”/”fdff

Swap A[L] and A[R].
temp = A[L]; A[L] = A[R]; A[R] = temp

L +=1; R -=1

== Be alert to high-risk coding steps associated with binary choices.

9S19N9Y

k
0 1 2 3 4 5 N

A110|20|30|40|50(60

New Application: Shift an array left k places.

A-BIYS-HJo]

0

1

k
2

3

4

5 n

A|10

20

30

40

50

60

5 n

A|130140|50|60

50

60

Application: Shift an array left k places.

== There is no shame in reasoning with concrete examples.

A-BIYS-HJo]

0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A|130140150|60|50(60
1 1

Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

== A header-comment says exactly what a method must accomplish, not how it does so.

A-BIYS-HJo]

0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A|130140150|60|50(60
1 1

Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

for j in range(0, , 1): A[j] = A[] + k]

= |If you “smell a loop”, write it down.
== Decide first whether an iteration is indeterminate (use while) or determinate
(use for).

A-BIYS-HJo]

0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A|130140150|60|50(60
1 1

Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

for j in range(@, n - k, 1): A[J] = A[] + k]

A-BIYS-HJo]

Kk

~

>
1

~

0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A110|20|30(40(|50(60
1 1

Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

for j in range(9, n - k, 1): A[Jj] = A[] + k]

== Boundary conditions. Dead last, but don’t forget them.

A-BIYS-HJo]

k
0

1

A|10

20

30

40

50

60

>

Application: Shift an array left k places.

10

20

30

4015060

def left shift k(A: list[int], n: int, k: int) -> None:

Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

if k > 0:
for j in range(@, n - k, 1): A[j] = A[] + k]

It would have been correct without
this test, but offensive that for k==0

we would do the most work.

== Boundary conditions. Dead last, but don’t forget them.

A-BIYS-HJo]

Kk

~

>
1

~

0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A110|20|30|40|50(60
1 1

Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

Default increment of range() is 1.
if k > o: /

for j in range(@, n - k, 1): A[j] = A[] + k]

== Eliminate clutter by using default values.

A-BIYS-HJo]

Kk

~

>
1

~

0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A110|20|30|40|50(60
1 1

Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

if k > 0:
for j in range(9, n - k): A[j] = A[] + k]

== Eliminate clutter by using default values.

A-BIYS-HJo]

Kk

~

>
1

~

0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A110|20|30|40|50(60
1 1

Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

Default start of a range() is O.

for j in range(9, n - k): A[j] = A[] + k]

== Eliminate clutter by using default values.

A-BIYS-HJo]

Kk

~
>

1
~

0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A110|20|30|40|50(60
1 1

Application: Shift an array left k places.

def left shift k(A: list[int], n: int, k: int) -> None:
Given array A[0..n-1], and 02k, left shift k(A,n,k) shifts elements of A
left k places. Values shifted off the left end of A are lost. Values not
overwritten remain as they were originally.

if k > 0:
for j in range(n - k): A[j] = A[] + k]

== Eliminate clutter by using default values.

A-BIYS-HJo]

temp

10| A|10]20|30|40|50(60

New application: Rotate an array left 1 place.

def left rotate one(A: list[int], n: int) -> None:
Given int array A[©..n-1], left rotate one(A,n) shifts A[l..n-1] left one
place, with the value that was originally in A[©@] reentering at the right
in A[n-1].

temp = A[0Q]
left shift k(A, n, 1)
A[n - 1] = temp

|-97810Y-197

temp

10| A|20|30|40|50|60(60

Application: Rotate an array left 1 place.

def left rotate one(A: list[int], n: int) -> None:
Given int array A[©..n-1], left rotate one(A,n) shifts A[l..n-1] left one
place, with the value that was originally in A[©@] reentering at the right
in A[n-1].

temp = A[9]
left shift k(A, n, 1)
A[n - 1] = temp

|-91e10Y-197

temp

10| A|20|30|40|50|60|10

Application: Rotate an array left 1 place.

def left rotate one(A: list[int], n: int) -> None:
Given int array A[©..n-1], left rotate one(A,n) shifts A[l..n-1] left one
place, with the value that was originally in A[©@] reentering at the right
in A[n-1].

temp = A[9]
left shift k(A, n, 1)
A[n - 1] = temp

|-91e10Y-197

0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A|130140|50|60(|50(60
1 1 |

New Application: Rotate an array left k places.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

)-87e10Y4-Ha7]

0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A|130140|50|60(10(20
1] |

Application: Rotate an array left k places.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

)-87e10Y4-Ha7]

0 1 2 3 4 5 n 0 1 2 3 4 5 n
A110|20|30|40|50(60 A|130140|50|60(10(20
1] |

Application: Rotate an array left k places.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

We shall consider four distinct approaches:
 Repeated Left-Rotate-1

* Swap Generalization

* Three Flips

e Juggle in Cycles

)-87e10Y4-Ha7]

Approach 1: Repeated left rotation 1 place.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.
for j in range(9, k): left rotate one(A, n)

|-93ej0Y-}jo] pajeaday

)-87e10Y4-Ya7]

0

Kk

A| —)

D

Approach 2: k-wide generalization of swap.

#.Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

#

uonezijeiauar) demsg

)-87e10Y4-Ya7]

temp

0

Kk

I

D

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k

uonezijeiauar) demsg

)-87e10Y4-Ya7]

0

temp |

0

Kk

I

[

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k

#.temp[0..k-1] = A[0..k-1]

uonezijeiauar) demsg

)-87e10Y4-Ya7]

0 k 0 k n

temp | — A| —

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k
#.temp[0..k-1] = A[0..k-1]
left _shift k(A, n, k)

)-87e10Y4-Ya7]

uonezijeiauar) demsg

0 k 0 k n

temp | — A ——— EE—

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k
#.temp[0..k-1] = A[0..k-1]
left shift k(A, n, k)

#.A[__ ..n-1] = temp[0..k-1]

= Defer challenging code for later; do the easy parts first.

uonezijeiauar) demsg

)-87e10Y4-Ya7]

0 k 0 k n

temp | A| I B

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

temp = [O] * k

temp[0..k-1] = A[0..k-1]
for j in range(@, k): temp[j] = A[]]

left_shift_k(A, n, k)

#.A[___ ..n-1] = temp[0..k-1]

)-87e10Y4-Ya7]

uonezijeiauar) demsg

0 k 0 k n

temp | — A| —— EE—

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

temp[0..k-1] = A[0..k-1]
for j in range(0, k): temp[j] = A[]]

left_shift_k(A, n, k)

A[___..n-1] = temp[0..k-1]
for j in range(@, k): A[] = temp[j]

== Avold gratuitous differences in code. Reuse code patterns, if possible.

uonezijeiauar) demsg

)-87e10Y4-Ya7]

0 k 0 k n-k n

temp | — A| —— EE—

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k

temp[0..k-1] = A[0..k-1]
for j in range(0, k): temp[j] = A[]]

left_shift_k(A, n, k)

A[n-k..n-1] = temp[0..k-1]
for j in range(@, k): A[n - k + j] = temp[]]

uonezijeiauar) demsg

)-87e10Y4-Ya7]

temp | — A| —— EE—

Python has slices

0 k 0 k n-k n

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k

temp[0..k-1] = A[0..k-1]
for j in range(0, k): temp[j] = A[]]

left_shift_k(A, n, k)

A[n-k..n-1] = temp[0..k-1]
for j in range(@, k): A[n - k + j] = temp[]]

uonezijeiauar) demsg

)-87e10Y4-Ya7]

0 k 0 k n-k n

temp | — A| —— EE—

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

Python has slices

B mm o o e o oo e o e o o e mmm e m o
temp = [0] * k

temp[0..k-1] = A[0..k-1]

temp = A[:k]

left _shift k(A, n, k)

A[n-k..n-1] = temp[0..k-1]

A[(n - k):] = temp

)-87e10Y4-Ya7]

uonezijeiauar) demsg

Python has slices

0 K 0 K

n-k

temp | — A| —

I

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

temp = [0] * k

temp = A[:k]
left_shift k(A, n, k)
A[(n - k):] = temp

== Omit specifications whose implementations are at least as brief and

clear as the specification itself.

uonezijeiauar) demsg

)-87e10Y4-Ya7]

Python has slices

0 K 0 K

n-k

temp | — A| —

I

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

temp = A[:k]
left_shift k(A, n, k)
A[(n - k):] = temp

== Omit unused assignments

uonezijeiauar) demsg

)-87e10Y4-Ya7]

0 k 0 k n-k n

temp | — A| —— EE—

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

left shift k(A, n, k)
A[9:(n - k)] = A[k:]

Python has slices

A[(n - k):] = temp

)-87e10Y4-Ya7]

uonezijeiauar) demsg

Python has

0 K 0 K

n-k

temp | — A| —

slices

I

Approach 2: k-wide generalization of swap.

Given int array A[0..n-1], and integer k, ©<k<n, left shift A[k..n-1]
k places, with values originally in A[©..k-1] reentering at right.

temp = A[:k]
A[@:(n - k)] = A[k:]
A[(n - k):] = temp

== Omit specifications whose implementations are at least as brief and

clear as the specification itself.

uonezijeiauar) demsg

)-87e10Y4-Ya7]

Python has

concatenation

0 K
) EEEE——
before

0 k n-k
EEE—— S
after

Approach 2: k-wide generalization of swap.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

A[O:n] = A[k:] + A[:k]

= Use the expressive power of a language’s operations.

uonezijeiauar) demsg

)-87e10Y4-Ya7]

0 k n

Al maammn) EEEE———

Approach 3: Three Flips. Consider the two parts of the array.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

sdij4 @a4y]
)-93e304-1o7]

first k rest

) EEEEE——

Approach 3: Represent the values in those parts as green and blue arrows.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

sdij4 @a4y]

)-87e10Y4-Ya7]

first k rest

ammms EEEE————)

Approach 3: Reverse first k

sdij4 @a4y]

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.
reverse(A, 0, k - 1)

VS NETEY

first k rest

ammmn GaEmm———

Approach 3: Reverse first k, then rest of elements

sdij4 @a4y]

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.
reverse(A, 0, k - 1)

reverse(A, k, n - 1)

)-87e10Y4-Ya7]

all

(e —

Approach 3: Reverse first k, then rest of elements

sdij4 @a4y]

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.
reverse(A, 0, k - 1)

reverse(A, k, n - 1)

)-87e10Y4-Ya7]

all

E— S—)

Approach 3: Reverse first k, then rest of elements, then all elements.

sdij4 @a4y]

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.
reverse(A, 0, k - 1)

reverse(A, k, n - 1)

reverse(A, 0, n - 1)

)-87e10Y4-Ya7]

0 n

Al EEEEEEE——— EE——

Approach 3: Reverse first k, then rest of elements, then all elements.

sdij4 @a4y]

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.
reverse(A, 0, k - 1)

reverse(A, k, n - 1)

reverse(A, 0, n - 1)

)-87e10Y4-Ya7]

O T
N
N
(O
(@]
~
-]

Approach 4: Juggle elements in a stride of k.

#.Given int array A[0@..n-1], and integer k, 02<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

O T
N
N
(O
(@]
~
-]

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.
p =0 # Start at A[9Q]

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a A blc|d|e]| f]d

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.
p =20 # Start at A[9Q]

temp = A[0Q] # and make a hole there.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a Ald|[b|c e | f|g

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :

Alp] = A[p + k] # Fill hole at p, making a new hole.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a Ald|bfc e| f|g

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[p + k] # Fill hole at p, making a new hole.

p=p+Kk # Advance to the new hole.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a Ald|blcl|lgl|lelf

Approach 4: Juggle elements in a stride of k.

Given int array A[0©..n-1], and integer k, 02<k<n, left shift A[k..n-1]
k places, with values originally in A[0..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[p + k] # Fill hole at p, making a new hole.

p=p+Kk # Advance to the new hole.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a Ald|[b|c]|gle

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[p + k] # Fill hole at p, making a new hole.

p=p+Kk # Advance to the new hole.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a Al d clgle

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.

p=(p+ k) %n # Advance to the new hole.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a Ald|e|c]|dg

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.

p=(p+ k) %n # Advance to the new hole.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a Ald|e|c]|g]h

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.

p=(p+ k) %n # Advance to the new hole.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a

—J

A

Kk
1 2 3 4 5 6 7 n p

d

elclg|lh]| f|Db
'}

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

p=29
temp = A[0Q]
while

p=(p+ k) %n

A[P] = AL(p + k) % n]

Start at A[9Q]
and make a hole there.

Fill hole at p, making a new hole.
Advance to the new hole.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

1 2 3 5 6 7 n
temp| a Al d | e glh|f|[Db]|c
L W LY J J

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while :
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.

p=(p+ k) %n # Advance to the new hole.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a

A

K P
1 2 3 4 5 6 7 n

d

e| f 1 g|h b | c

o ===J

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

p=29
temp = A[0Q]
while

p=(p+ k) %n

A[P] = AL(p + k) % n]

Start at A[9Q]
and make a hole there.

Fill hole at p, making a new hole.
Advance to the new hole.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

K P
1 2 3 4 5 6 7 n

temp| a Ald]e]| f|lg]ln b | ¢
= =)

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

p =20 # Start at A[9Q]

temp = A[0Q] # and make a hole there.

while ((p + k) % n) != 0: # Stop if p is about to be 0 again.
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.

p=(p+ k) %n # Advance to the new hole.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a Al d | e

g|lh|la]|]b]c

N ===

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.

p =0 #
temp = A[0Q] #
while ((p + k) % n) != 0: #
Alp] = A[(p + k) % n] #
p=(p+ k) %n #
A[p] = temp #

Start at A[Q]

and make a hole there.

Stop if p is about to be 0 again.
Fill hole at p, making a new hole.
Advance to the new hole.

Fill the last hole from temp.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

6
temp| a Ald|e| flg|lh]a]|b]|ec

~ =y

Approach 4: Juggle elements in a stride of k.

Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[0..k-1] reentering at right.
p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while ((p + k) % n) != 0: Stop if p is about to be © again.
Alp] = A[(p + k) % n] Fill hole at p, making a new hole.
p=(p+ k) %n Advance to the new hole.
A[p] = temp Fill the last hole from temp.

H H H H

Are we done?

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

6
temp| a Ald|e| flglh]a]|b]|ec

~ =y

Approach 4: Juggle elements in a stride of k.

Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[0..k-1] reentering at right.
p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while ((p + k) % n) != 0: Stop if p is about to be © again.
Alp] = A[(p + k) % n] Fill hole at p, making a new hole.
p=(p+ k) %n Advance to the new hole.
A[p] = temp Fill the last hole from temp.

H H H H

== Beware of premature self-satisfaction.

Are we done?

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp| a Al d | e

g|lh|a]|]b]c

N ==

Approach 4: Juggle elements in a stride of k.

Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[0..k-1] reentering at right.

p = 0 #
temp = A[0Q] #
while ((p + k) % n) I= 0: #
Alp] = A[(p + k) % n] #
p=(p+ k) %n #
A[p] = temp #

== Validate output thoroughly.

Are we done?

Start at A[9]

and make a hole there.

Stop if p is about to be 0 again.
Fill hole at p, making a new hole.
Advance to the new hole.

Fill the last hole from temp.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

v ool

temp ‘_cl A
T Y TR J 8 X

Approach 4: Juggle elements in a stride of k.

Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[0..k-1] reentering at right.
p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while ((p + k) % n) != 0: Stop if p is about to be © again.
Alp] = A[(p + k) % n] Fill hole at p, making a new hole.
p=(p+ k) %n Advance to the new hole.
A[p] = temp Fill the last hole from temp.

H H H H

== Validate output thoroughly.

Are we done? Hardly.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

CDI\)OO|7T
OOOOOO‘:S

XX

temp —_rl A
J R | #l Jf

Approach 4: Juggle elements in a stride of k.

Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[0..k-1] reentering at right.
p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while ((p + k) % n) != 0: Stop if p is about to be © again.
Alp] = A[(p + k) % n] Fill hole at p, making a new hole.
p=(p+ k) %n Advance to the new hole.
A[p] = temp Fill the last hole from temp.

H H H H

== Validate output thoroughly.

Are we done? Hardly.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp —_rl A
J R) |

Approach 4: Juggle elements in a stride of k.

-hCDI\)OO|7T
00000000‘3

XXX

Given int array A[0..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[0..k-1] reentering at right.
p =20 # Start at A[9Q]
temp = A[0Q] # and make a hole there.
while ((p + k) % n) != 0: Stop if p is about to be © again.
Alp] = A[(p + k) % n] Fill hole at p, making a new hole.
p=(p+ k) %n Advance to the new hole.
A[p] = temp Fill the last hole from temp.

H H H H

== Validate output thoroughly.

Are we done? Hardly. It only works if k and n are relatively prime!

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

temp ‘_rl A
J R

-hCDI\)OO|7T
00000000‘3

XXX

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]

k places, with values originally in A[@..k-1] reentering at right.

p =0 #
temp = A[0Q] #
while ((p + k) % n) != 0: #
Alp] = A[(p + k) % n] #
p=(p+ k) %n #
Alp] = temp #

== Validate output thoroughly.

Start at A[9]

and make a hole there.

Stop if p is about to be 0 again.
Fill hole at p, making a new hole.
Advance to the new hole.

Fill the last hole from temp.

Are we done? Hardly. It only works if k and n are relatively prime! Now what?

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

Abandon, or learn that each of A[0..gcd(k,n)-1] begins a disjoint cycle.

Approach 4: Juggle elements in a stride of k.

Given int array A[0@..n-1], and integer k, 0<k<n, left shift A[k..n-1]
k places, with values originally in A[@..k-1] reentering at right.
g = gcd(n, k);

for j in range(9, g):

p = J # Start at A[]]

temp = A[p] # and make a hole there.

while ((p + k) % n) != 0: # Stop if p is about to be j again.
Alp] = A[(p + k) % n] # Fill hole at p, making a new hole.
p=(p+ k) %n # Advance to the new hole.

A[p] = temp # Fill the last hole from temp.

sa|oAo u1 9I88np

)-87e10Y4-Ya7]

Assessment:
[~ Repeated Left-Rotate-1 k:n Each Left-Rotate-1 moves all n elements. Done k times.
Swap Generalization n+k The copies into and out from temp do 2-k moves, and

the shift does n-k moves.

Three Flips 2:n Each element moves once during the 1st two reverses,
and then again for the 3rd reverse.

Juggle in Cycles n+gcd(n,k) Each element moves once, plus the first element of
each of the gcd(n,k) cycles must first be saved in temp.

Worst #moves, by far. Easiest to understand.

}-93e30Y-Ho

Assessment:
Repeated Left-Rotate-1 k:n Each Left-Rotate-1 moves all n elements. Done k times.
[Swap Generalization n+k The copies into and out from temp do 2-k moves, and

the shift does n-k moves.

Three Flips 2:n Each element moves once during the 1st two reverses,
and then again for the 3rd reverse.

Juggle in Cycles n+gcd(n,k) Each element moves once, plus the first element of
each of the gcd(n,k) cycles must first be saved in temp.

Reasonable #moves but not in situ, i.e., requires extra space for temp.

}-93e30Y-Ho

Assessment:
Repeated Left-Rotate-1 k:n Each Left-Rotate-1 moves all n elements. Done k times.
Swap Generalization n+k The copies into and out from temp do 2-k moves, and

the shift does n-k moves.

IZ= Three Flips 2:n Each element moves once during the 1st two reverses,
and then again for the 3rd reverse.

Juggle in Cycles n+gcd(n,k) Each element moves once, plus the first element of
each of the gcd(n,k) cycles must first be saved in temp.

Reasonable #moves. Good locality.

}-93e30Y-Ho

Assessment:
Repeated Left-Rotate-1 k:n Each Left-Rotate-1 moves all n elements. Done k times.
Swap Generalization n+k The copies into and out from temp do 2-k moves, and

the shift does n-k moves.

Three Flips 2:n Each element moves once during the 1st two reverses,
and then again for the 3rd reverse.

== Juggle in Cycles n+gcd(n,k) Each element moves once, plus the first element of
each of the gcd(n,k) cycles must first be saved in temp.

Hardest to understand. Poor locality.

}-93e30Y-Ho

Assessment:
Repeated Left-Rotate-1 k:n Each Left-Rotate-1 moves all n elements. Done k times.
Swap Generalization n+k The copies into and out from temp do 2-k moves, and

the shift does n-k moves.

/ Three Flips 2:n Each element moves once during the 1st two reverses,
and then again for the 3rd reverse.

Juggle in Cycles n+gcd(n,k) Each element moves once, plus the first element of
each of the gcd(n,k) cycles must first be saved in temp.

Personal favorite, and really elegant!

}-93e30Y-Ho

New Application: The Dutch National Flag problem.

ge|4 [euonyenN yoing

I |

before after

Application: Rearrange an array into all red, then all white, then all blue.

Se|4 [euolyeN yoInQ

before after

Application: Rearrange an array into all red, then all white, then all blue.

#.Given array A[0..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

Se|4 [euolyeN yoInQ

== A statement-comment says exactly what code must accomplish, not how it does so.

before after

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[0..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.
while

= |If you “smell a loop”, write it down.

Se|4 [euolyeN yoInQ

intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[0..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.
while

== To get to POST iteratively, choose a weakened POST as INVARIANT.

Se|4 [euolyeN yoInQ

intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST:

Se|4 [euolyeN yoInQ

== To get to POST iteratively, choose a weakened POST as INVARIANT.

intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST: How shall we choose?

0 W b k n
A W ?
0 W k b n 0 k W b n
Iz A W ? == A ? W

Symmetric, so discard one arbitrarily.

Se|4 [euolyeN yoInQ

intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST: How shall we choose?

0 W b k n 0 r W b n
= A W ? == A ? W
0 W k b n
A W ?

Left more intuitive, because the ? region seems more familiar, so discard right.

Se|4 [euolyeN yoInQ

intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST: How shall we choose?

0 W b k n
= A W ?

0 W k b n
== A W ?

? region of top has only one degree of freedom, but bottom has two. Discard top.

Se|4 [euolyeN yoInQ

intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST: How shall we choose?

0 W k b n
== A W ?

This will be our INVARIANT.

Se|4 [euolyeN yoInQ

intermediate after

Application: Rearrange an array into all red, then all white, then all blue.

Here are four choices for a weakened POST: How shall we choose?

0 W Kk b n
€S A“ W ? h We have illustrated that program design and
programming can be driven by consideration of the

different possible invariants you can think of. One
This will be our INVARIANT. ml.ght call this mvanan’F-drlven .proglfammlng : In.
this mode of programming, the invariant comes first,
not as an afterthought to justify a loop you have
already written.

Se|4 [euolyeN yoInQ

R W ? B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[0..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0<w<k<bzn.
k: ;W: b:

Se|4 [euolyeN yoInQ

while

R W ? B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[0..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0<w<k<bzn.
k: ;W: b:

while

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

Se|4 [euolyeN yoInQ

Kk
R w o [] - B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[0..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

k: ;W: b:

while

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

Se|4 [euolyeN yoInQ

Kk
R w o [] - B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[0..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

else: # A[k] == W

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

Se|4 [euolyeN yoInQ

Kk
R w o |[] - B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[0..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

else: # A[k] == W

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

Se|4 [euolyeN yoInQ

R w o []] - B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[0..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0<w<k<bzn.
k: ;W: b:

while :
if A[k] == B:
elif A[k] ==
else: k += 1 # A[k] ==

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

Se|4 [euolyeN yoInQ

R w [l > [B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[0..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0<w<k<bzn.
k: ;W: b:

while :
if A[k] == B:
elif A[k] ==
else: k += 1 # A[k] ==

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

Se|4 [euolyeN yoInQ

R w |I] 2 (B B8 VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[0..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for ©@<w<k<bzn.
k: ;W: b:

while :
if A[k] =
#.Swa
b -=
elif A[k] ==
else: k += 1 # A[k] == W

B:
A[b-1] and A[k].

= T

== A Case Analysis in the loop body is often needed for characterizing different

ways in which to decrease the loop variant while maintaining the loop invariant.

Se|4 [euolyeN yoInQ

0 W k b n

R [Jw (R~ B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[O..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for ©@<w<k<bzn.
k: ;W: b:

while :
if A[k] == B:
#.Swap A[b-1] and A[k].
b -=1

elif A[k] == R:
else: k += 1 # A[k] == W

== A Case Analysis in the loop body is often needed for characterizing different

ways in which to decrease the loop variant while maintaining the loop invariant.

Se|4 [euolyeN yoInQ

R BMw [- B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[O..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for ©@<w<k<bzn.
k: ;W: b:

Se|4 [euolyeN yoInQ

while :
if A[k] == B:
#.Swap A[b-1] and A[k].
b -=1

elif A[k] == R:
#.Swap A[w] and A[k].
w+=1; k += 1

else: k += 1 # A[k] ==

R W ? B VARIANT: b-k

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[O..n-1] consisting of only three values (red, white, and blue),
rearrange A into all red, then white, then blue.

INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for ©@<w<k<bzn.
k: ;W: b:

Se|4 [euolyeN yoInQ

while k != b:
if A[k] == B:
#.Swap A[b-1] and A[k].
b -=1

elif A[k] == R:
#.Swap A[w] and A[k].
w+=1; k += 1

else: k += 1 # A[k] ==

W
k b
o n 0
] 2 VARIANT: b-k p—t
O
g =
Application: Rearrange an array into all red, then all white, then all blue. 923
op
Q
Given array A[O..n-1] consisting of only three values (red, white, and blue), - |
rearrange A into all red, then white, then blue. Q
___ |
INVARIANT: A[@..w-1] red, A[w..k-1] white, A[b..n-1] blue, for @<ws<k<bsn. T
k =0; w=20; b=n Q
1 fo]
while k != b:
if A[k] == B:
#.Swap A[b-1] and A[k].
b -= 1

elif A[k] == R:
#.Swap A[w] and A[k].
w+=1; k += 1

else: k += 1 # A[k] ==

Deferring low-level details has promoted thinking at a higher level of abstraction,
but don’t forget to elaborate “all the way down”.

Application: Rearrange an array into all red, then all white, then all blue.

Given array A[@..n-1] consisting of only three values (red, white, and blue),
earrange A into all red, then white, then blue.

Se|4 [euolyeN yoInQ

if \A[k] == B:
Swap A[b-1] and A[k].
temp = A[b - 1]; A[b - 1] = A[k]; A[k] = temp

b -=1
elif A[k] == R:
Swap A[w] and A[k].
temp = A[k]; A[k] = A[w]; A[w] = temp

w+=1; k +=1
else: k += 1 # A[k] =

W

0 W k |b n 0

B~ =
V)
Y,

R w (B B A R

Boundary Conditions:

What about potential boundary conditions that might have needed special
attention?

You can systematically review the code for issues, but will discover that all are
nicely treated by the general case.

Se|4 [euolyeN yoInQ

In two situations, A[k] gets swapped with itself, but this only happens when its
value is already acceptable where it is:

* When the last remaining element in the ? region is blue.
* When A[k] is red, and the white region is empty.

All is well.

Performance:

Constant work per iteration.
Variant reduced by 1 on each iteration.

Thus, running time linear in n.

Se|4 [euolyeN yoInQ

Al <p ==p >p

A"

[]] . . m

New Application: Rearrange (a segment of) an array into <p, ==p, and >p sections. -
. o

-

def partition(A: list[int], L: int, R: int, p: int) -> None: (@)
mmn :
Given A[L..R-1] and pivot value p, partition(A,L,R,p) rearranges A[L..R-1] into 5'
all <p, then all ==p, then all >p. g0

== A header-comment says exactly what a method must accomplish, not how it does so.

AL =P = >p O

[[L] . m
Appllcatlon: Rearrange (a segment Of) an array Into <p, ==p, and >p sections. ;‘|.
. o

-

def partition(A: list[int], L: int, R: int, p: int) -> None: (@)
mmn :
Given A[L..R-1] and pivot value p, partition(A,L,R,p) rearranges A[L..R-1] into 5'
all <p, then all ==p, then all >p. g0

(body of Dutch National Flag problem)

\

- We are simply going to replace the colors R, W, and B,

” o __

by the properties “<p”, “==p”, and “>p”.

== Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Dutch National Flag problem
A

A R W B O
L _ Q)
Application: Rearrange (a segment of) an array into <p, ==p, and >p. -
. o
oy
def partition(A: list[int], L: int, R: int, p: int) -> None: (@)
mmn :
Given A[L..R-1] and pivot value p, partition(A,L,R,p) rearranges A[L..R-1] into 5'
all <p, then all ==p, then all >p. g0
g # INVARIANT: A[O..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 02w<ks<bzsn.
k =0; w=0; b =n
while k != b:
if A[k] == B:
Swap A[b-1] and A[k].
temp = A[b - 1]; A[b - 1] = A[k]; A[k] = temp
b -=1
elif A[k] == R:

Swap A[w] and A[k].
temp = A[k]; A[k] = A[w]; A[w] = temp

w+=1; k += 1
— else: k += 1 # A[k] ==

A <p —=P ~P O

L _ Q)
Application: Rearrange (a segment of) an array into <p, ==p, and >p. -
. o

-

def partition(A: list[int], L: int, R: int, p: int) -> None: (@)
mmn :
Given A[L..R-1] and pivot value p, partition(A,L,R,p) rearranges A[L..R-1] into 5'
all <p, then all ==p, then all >p. g0

INVARIANT: A[0O..w-1] is “<p”, A[w..k-1] is “==p”, A[b..n-1] is “>p”, for @2w<k<bzin.
k=L, w=1L; b=R

while k != b:
if A[k] > p:
Swap A[b-1] and A[Kk].
temp = A[b - 1]; A[b - 1] = A[k]; A[k] = temp

b -=1
elif A[k] < p:
Swap A[w] and A[k].
temp = A[k]; A[k] = A[w]; A[w] = temp

w+=1; k += 1
else: k += 1 # A[k] ==p

Al <p ==p >p o

] [. m
Application: Rearrange (a segment of) an array into <p, ==p, and >p. -
=4

e

. . =
What value of p would tend to create “<p” and “>p” regions of near equal size? 5'
gQ

If A[L..R-1] are in random order, any of those values is equally good for p.

Choosing a p of (A[L]+A[R-1])/2 guards against poor performance when A[L..R-1] is
already ordered.

This is central to a Divide and Conquer approach to sorting called QuickSort.

New Application: Collate ordered arrays A and B into array C.

#.Given ordered arrays A and B of lengths na and nb, create ordered
array C of length na+nb consisting of those values.

uoize|jo)

0 1 2 3 na

0 1 2 3 4 5 na+nb

Application: Collate ordered arrays A and B into array C.

uoize|jo)

0 1 2 3 na
A110(40150]60
0 1 2 nb

B120|30(50
0 1 2 3 4 5 na+nb
C|(10

Application: Collate ordered arrays A and B into array C.

uoize|jo)

0 1 2 3 na
A[10]40|50(60
0 1 2 nb
B[(20(30|50
O 1 2 3 4 5 na+nb
C|10]20

Application: Collate ordered arrays A and B into array C.

uoize|jo)

0 1 2 3 na
A[10]40|50(60
0 1 2 nb
B(20(30|50
O 1 2 3 4 5 na+nb
C(10]20|30

Application: Collate ordered arrays A and B into array C.

uoize|jo)

0 1 2 3 na
A[10]40|50(60
0 1 2 nb
B(20(30|50
O 1 2 3 4 5 na+nb
C|10120(30140

Application: Collate ordered arrays A and B into array C.

uoize|jo)

0 1 2 3 4 5 na+nb
C(10]120|30(40|50

Application: Collate ordered arrays A and B into array C.

uoize|jo)

0 1 2 3 4 5 na+nb
C(10120|30(40|50|50

Application: Collate ordered arrays A and B into array C.

uoize|jo)

0 1 2 3 4 5 na+nb
C({10120130(40(50|50|60

Application: Collate ordered arrays A and B into array C.

Collation is central to a Divide and Conquer approach to sorting called MergeSort.

uoize|jo)

copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from Aor B ?

Application: Collate ordered arrays A and B into array C.

Given ordered arrays A and B of lengths na and nb, create ordered
array C of length na+nb consisting of those values.

C =1[0] * (na + nb) # C[0..kc-1] is collation of
A[@..ka-1] and B[0..kb-1].
ka=___; kb= ___; kc=__ # Indices in A, B, and C.

#.Copy values from A or B into C until one array is exhausted.
#.Copy remaining values into C from the unexhausted array, A or B.

uoize|jo)

copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

Given ordered arrays A and B of lengths na and nb, create ordered
array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C =1[0] * (na + nb) # C[0..kc-1] is collation of

A[0..ka-1] and B[@..kb-1].
ka = ; kb = ; ke = # Indices in A, B, and C.

Copy values from A or B into C until one array is exhausted.
while :

if

else:

#.Copy remaining values into C from the unexhausted array, A or B.

uoize|jo)

copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

Given ordered arrays A and B of lengths na and nb, create ordered
array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C = [0] * (na + nb) # C[0..kc-1] is collation of

A[0..ka-1] and B[@..kb-1].
ka = ; kb = ; ke = # Indices in A, B, and C.

Copy values from A or B into C until one array is exhausted.
while :

if : C[kc] = A[ka]; ka +=1; kc +=1

else:

#.Copy remaining values into C from the unexhausted array, A or B.

uoize|jo)

copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

Given ordered arrays A and B of lengths na and nb, create ordered
array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C = [0] * (na + nb) # C[0..kc-1] is collation of

A[0..ka-1] and B[@..kb-1].
ka = ; kb = ; ke = # Indices in A, B, and C.

Copy values from A or B into C until one array is exhausted.
while :
if : C[kc]
else: C[kc]

A[ka]; ka +=1; kc +=1
B[kb]; kb +=1; kc +=1

#.Copy remaining values into C from the unexhausted array, A or B.

uoize|jo)

copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

Given ordered arrays A and B of lengths na and nb, create ordered
array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C = [0] * (na + nb) # C[0..kc-1] is collation of

A[0..ka-1] and B[@..kb-1].
ka = ; kb = ; ke = # Indices in A, B, and C.

Copy values from A or B into C until one array is exhausted.
while :
if A[ka] < B[kb]: C[kc]
else: C[kc]

A[ka]; ka +=1; kc +=1
B[kb]; kb += 1; kc +=1

#.Copy remaining values into C from the unexhausted array, A or B.

uoize|jo)

copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

Given ordered arrays A and B of lengths na and nb, create ordered
array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C = [0] * (na + nb) # C[0..kc-1] is collation of

A[0..ka-1] and B[@..kb-1].
ka = ; kb = ; ke = # Indices in A, B, and C.

Copy values from A or B into C until one array is exhausted.
while (ka < na) and (kb < nb):
if A[ka] < B[kb]: C[kc]
else: C[kc]

A[ka]; ka +=1; kc +=1
B[kb]; kb += 1; kc +=1

#.Copy remaining values into C from the unexhausted array, A or B.

uoize|jo)

copied to C ?
0 kb nb
copied to C ?
0 kc na+nb
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

Given ordered arrays A and B of lengths na and nb, create ordered
array C of length na+nb consisting of those values.

B oo o o o o o o o o o o o o oo e e e e m o -
C = [0] * (na + nb) # C[0..kc-1] is collation of

A[0..ka-1] and B[@..kb-1].
ka = 9; kb =0; kc =0 # Indices in A, B, and C.

Copy values from A or B into C until one array is exhausted.
while (ka < na) and (kb < nb):
if A[ka] < B[kb]: C[kc]
else: Cl[kc]

A[ka]; ka +=1; kc +=1
B[kb]; kb +=1; kc +=1

#.Copy remaining values into C from the unexhausted array, A or B.

uoize|jo)

copied to C ?
0 kb nb
copiedto C ?
0 kc
copied from A or B ?

Application: Collate ordered arrays A and B into array C.

Given ordered arrays A and B of lengths na and nb, create ordered
array C of length na+nb consisting of those values.

C = [0] * (na + nb) # C[O..kc-1] is collation of
A[0..ka-1] and B[©@..kb-1].
ka = 0; kb =0; kc =20 # Indices in A, B, and C.

Copy values from A or B into C until one array is exhausted.
while (ka < na) and (kb < nb):
if A[ka] < B[kb]: C[kc]
else: Cl[kc]

Alka]l; ka +=1; kc +=1
B[kb]; kb +=1; kc +=1

Copy remaining values into C from the unexhausted array, A or B.
while ka < na: C[kc] = A[ka]; ka +=1; kc +=1
while kb < nb: C[kc] = B[kb]; kb +=1; kc +=1

na+nb

uoize|jo)

Summary:

A number of useful one-dimensional array rearrangements were presented, some as
methods, and some as code fragments:

reverse(..)

left_shift k(..)

left _rotate_one(..)

Left-Rotate-k Four separate implementations were developed and assessed.

Dutch National Flag The basis of Partitioning, and an illustration of invariant-driven
programming.

partition(..) The basis for QuickSelect (Chapter 10), and QuickSort (Chapter 11), and
an introduction to an algorithm with good average-case performance, and not such
good worst-case performance.

Collation The basis for MergeSort (Chapter 11).

Arewwing

	Title
	Slide 1

	Introduction
	Slide 2

	Reverse
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	Left-Shift-k
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

	Left-Rotate-1
	Slide 31
	Slide 32
	Slide 33

	Left-Rotate-k
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

	Dutch National Flag
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113

	Partitioning
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118

	Collation
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

