
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Binary Search

Copyright©2024 by Tim Teitelbaum; Most recent revision, 12/03/2024

If you want to find the definition of the word proboscis in a 512-page dictionary, you
wouldn’t use Sequential Search starting on the first page, say, with aardvark. Rather,
you would start roughly in the middle. From there, you would:

• Repeatedly halve the portion of the dictionary that remains
under consideration, doing so by looking at the middle
page of the region in hand, and discarding whichever half is
revealed thereby to not contain proboscis.

• Once the search has been narrowed to a single page, you
would look on that page to see if proboscis is there.

• If it is, you found its definition; otherwise, it isn’t in the
dictionary.

The method is called Binary Search, and is an example of a Divide and Conquer algorithm.
Binary Search is astoundingly fast.

Application: Search for a value v in an unordered array A[0..n-1].

☞ A statement-comment says exactly what code must accomplish, not how it does
so.

#.Given array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.

Application: Search for a value v in an ordered array A[0..n-1].

#.Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A. */

☞ A statement-comment says exactly what code must accomplish, not how it does
so.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
k = 0
while (A[k] != v) and (k < n): k += 1

☞ Master stylized code patterns, and use them.

Sequential search works, but ignores the order. We can do better.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.

while ______: ___________

☞ If you “smell a loop”, write it down.

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.

while ______: ___________

☞ Invent (or learn) diagrammatic ways to express concepts.

0 k n

A A[k]==v, if v in A[0..n-1] POSTv

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.

while ______: ___________

0 L R n

A v in here, if v in A[0..n-1]

☞ To get to POST iteratively, choose a weakened POST as INVARIANT.

INVARIANTv

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
while ______: ___________

0 L R n

A v in here, if v in A[0..n-1] INVARIANT

☞ Introduce program variables whose values describe “state”.

v

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
while ______:
 if _________: ___________
 else: ___________

0 L R n

A v in here, if v in A[0..n-1]

VARIANT: R-L
INVARIANT

☞ A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

v

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
while ______:
 if _________:
 R = ______ # Select left “half”.
 else:
 L = ______ # Select right “half”.

0 L R n

A v in here, if v in A[0..n-1]

VARIANT: R-L
INVARIANTv

☞ A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = ____________ # Compute “midpoint”.
while ______:
 if _________:
 R = ______ # Select left “half”.
 else:
 L = ______ # Select right “half”.

0 L M R n

A v in here, if v in A[0..n-1]

VARIANT: R-L
INVARIANTv

☞ A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = ____________ # Compute “midpoint”.
while ______:
 if _________:
 R = ______ # Select left “half”.
 else:
 L = ______ # Select right “half”.

0 L M R n

A v in here, if v in A[0..n-1]

If you object to A[L..R] straddling the midpoint of A[0..n-1], understand that in
“schematic diagrams”, the exact locations of boundaries are immaterial.

VARIANT: R-L
INVARIANTv

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = ____________ # Compute “midpoint”.
while ______:
 if _________:
 R = ______ # Select left “half”.
 else:
 L = ______ # Select right “half”.

Recognize that regions of even and odd lengths may need distinct treatments.

0 1

L

2

M

3 4

R

5 6 n

A

0 1

L

2

M

3

R

4 5 6 n

A

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = (L + R) // 2 # Compute “midpoint”.
while ______:
 if _________:
 R = ______ # Select left “half”.
 else:
 L = ______ # Select right “half”.

Recognize that regions of even and odd lengths may need distinct treatments, but hope
for a uniform treatment.

0 1

L

2

M

3 4

R

5 6 n

A

0 1

L

2

M

3

R

4 5 6 n

A
M is index of rightmost
element of left “half”.

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = (L + R) // 2 # Compute “midpoint”.
while ______:
 if _________:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.

0 1

L

2

M

3 4

R

5 6 n

A

0 1

L

2

M

3

R

4 5 6 n

A
M is index of rightmost
element of left “half”.

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = (L + R) // 2 # Compute “midpoint”.
while ______:
 if v __ A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.

0 1

L

2

M

3

R

4 5 6 n

A
M is index of rightmost
element of left “half”.v

0 1

L

2

M

3 4

R

5 6 n

A

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = (L + R) // 2 # Compute “midpoint”.
while ______:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.

0 1

L

2

M

3

R

4 5 6 n

A v
M is index of rightmost
element of left “half”.v

0 1

L

2

M

3 4

R

5 6 n

A v

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = (L + R) // 2 # Compute “midpoint”.
while ______:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.

0 1

L

2

M

3

R

4 5 6 n

A v
M is index of rightmost
element of left “half”.v

0 1

L

2

M

3 4

R

5 6 n

A v

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = (L + R) // 2 # Compute “midpoint”.
while ______:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.

0 1

L

2

M

3

R

4 5 6 n

A v v
M is index of rightmost
element of left “half”.v

0 1

L

2

M

3 4

R

5 6 n

A v v

Duplicate instances of v in A[L..R] may escape, but not all of them.

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = (L + R) // 2 # Compute “midpoint”.
while L != R:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.

v

0 1 2

L

R

3 4 5 6 n

A

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

0 1 2

L

R

3 4 5 6 n

A

Before After (left) After (right)

L R R-L L R R-L L R R-L

2 5 3 2 3 1 4 5 1

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = (L + R) // 2 # Compute “midpoint”.
while L != R:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

0 1

L

2

M

3 4

R

5 6 n

A VARIANT:

Confirm that the VARIANT decreases on every iteration.

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = (L + R) // 2 # Compute “midpoint”.
while L != R:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

0 1

L

2

M

3

R

4 5 6 n

A VARIANT:

Confirm that the VARIANT decreases on every iteration.

Before After (left) After (right)

L R R-L L R R-L L R R-L

2 4 2 2 3 1 4 4 0

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = ______; R = ______
M = (L + R) // 2 # Compute “midpoint”.
while L != R:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

0 1 2

L

M

3

R

4 5 6 n

A VARIANT:

Confirm that the VARIANT decreases on every iteration.

Before After (left) After (right)

L R R-L L R R-L L R R-L

3 4 1 3 3 0 4 4 0

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = 0; R = n - 1
M = (L + R) // 2 # Compute “midpoint”.
while L != R:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.

v

L

0 1 2 3 4 5

R

6 n

A

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

L

0 1 2 3 4 5

R

6 n

A

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = 0; R = n - 1
M = (L + R) // 2 # Compute “midpoint”.
while L != R:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.
if A[L] == v: k = L
else: k = n

v

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

0 1 2

L

R

3 4 5 6 n

A v

0 1 2

L

R

3 4 5 6 n

A v 3k found

Application: Search for a value v in an ordered array A[0..n-1].

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
L = 0; R = n - 1
M = (L + R) // 2 # Compute “midpoint”.
while L != R:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.
if A[L] == v: k = L
else: k = n

v

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

0 1 2

L

R

3 4 5 6 n

A

0 1 2

L

R

3 4 5 6 n

A not found7k

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
if n == 0: k = 0
else:
 L = 0; R = n - 1
 M = (L + R) // 2 # Compute “midpoint”.
 while L != R:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.
 if A[L] == v: k = L
 else: k = n

v

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

n=0

A not found0k

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
if n == 0: k = 0
else:
 L = 0; R = n - 1
 M = (L + R) // 2 # Compute “midpoint”.
 while L != R:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.
 if A[L] == v: k = L
 else: k = n

v

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

L

R

0 1 2 3 4 5 6 n

A v found0k

Application: Search for a value v in an ordered array A[0..n-1].

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
if n == 0: k = 0
else:
 L = 0; R = n - 1
 M = (L + R) // 2 # Compute “midpoint”.
 while L != R:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.
 if A[L] == v: k = L
 else: k = n

v

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

n=0

A

L

R

0 1 2 3 4 5 6 n

A v found0knot found0k

Is it a problem that k==0 represents both “not found” and “found in 0th element”?

Application: Search for a value v in an ordered array A[0..n-1].

v

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

n=0

A

L

R

0 1 2 3 4 5 6 n

A v found0knot found0k

No. What matters is whether k<n, not whether k==0.

Given ordered array A[0..n-1], n≥0, and value v, let k be an index of A
where A[k]==v, or n if there is no v in A.
if n == 0: k = 0
else:
 L = 0; R = n - 1
 M = (L + R) // 2 # Compute “midpoint”.
 while L != R:
 if v <= A[M]:
 R = M # Select left “half”.
 else:
 L = M + 1 # Select right “half”.
 if A[L] == v: k = L
 else: k = n # Test for found.

 if k<n: # Found.
 else: # Not found.

Binary Search is astoundingly fast. If n==512, just 9 iterations to termination!

Iteration # VARIANT

0 512

1 256

2 128

3 64

4 32

5 16

6 8

7 4

8 2

9 1

Running time is logarithmic in n,

and independent of whether v is in A or not.

	Title
	Slide 1

	Introduction
	Slide 2

	Divide and Conquer
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

