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To enumerate is to list off, one by one.

We consider:

• Counting

• 1-D Indeterminate Enumeration

• 1-D Determinate Enumeration

• 2-D Enumerations

and these applications:

•

•

•

•



Counting: 

int k = 1;
while ( true ) k++;

int k = 0;
while ( true ) k++;

int k = start;
while ( true ) k++;

1-origin children

0-origin older children

start-origin sophisticated children



Counting:

int k = 1;
while ( true ) k++;

int k = 0;
while ( true ) k++;

Linguistic Confusions

First value enumerated Number of increments

1-origin 1 k-1

0-origin 0 k

start-origin start k-start

Off-by-one errors, and their ilk

Number of integers in a range from first to last, inclusive last-first+1

Index of last integer in a range of N integers starting at 0 N-1

int k = start;
while ( true ) k++;



Counting:

int k = 1;
while ( true ) k++;

int k = 0;
while ( true ) k++;

int k = start;
while ( true ) k++;

Children learn the concept of infinity from counting. Indeed, these 
loops run forever, but not because there is no maximum int.  
Rather, because after 231-1, the next int is -231. This is called 
arithmetic overflow.
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From there, counting proceeds “up” to -1, and then around again.



Counting:

int k = 1;
while ( true ) k++;

int k = 0;
while ( true ) k++;

int k = start;
while ( true ) k++;
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From there, counting proceeds “up” to -1, and then around again 
unless condition becomes false first.

int k = start;
while ( condition ) k++;

Children learn the concept of infinity from counting. Indeed, these 
loops run forever, but not because there is no maximum int.  
Rather, because after 231-1, the next int is -231. This is called 
arithmetic overflow.



1-D Indeterminate Enumeration:

/* Enumerate from start until !condition. */
   int k = start;
   while ( condition ) k++;



1-D Indeterminate Enumeration:

/* Enumerate from start until !condition, but no further than maximum. */
   int k = start;
   while ( k<=maximum && condition ) k++;

if ( k>maximum ) /* condition was true for all k in [start..maximum]. */
else /* k is smallest in [start..maximum] for which condition is false. */



1-D Determinate Enumeration:

/* Do whatever n times. */
   int k = 0;
   while ( k<n ) {
      /* whatever */
      k++;
      }

/* Do whatever n times. */
   for (int k=0; k<n; k++)
      /* whatever */

or



1-D Determinate Enumeration: Don’t terminate a determinate enumeration prematurely.

/* Do whatever n times. */
   for (int k=0; k<n; k++) {
      /* whatever */
      if ( condition ) k = n;  // Don’t do this.
      }

k = 0;
while ( k<n && !condition ) {
   /* whatever */
   k++;
   }

Rather, do this:

N.B. The two versions are not exactly equivalent. 



Application of 1-D Determinate Enumeration: Print all primes up to n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 Consider each integer from 2 through n.



Application of 1-D Determinate Enumeration: Print all primes up to n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Consider each integer from 2 through n.

If it is not marked out, it is prime: Print it, and 
mark out all its multiples.



Application of 1-D Determinate Enumeration: Print all primes up to n.
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If it is not marked out, it is prime: Print it, and 
mark out all its multiples.



Application of 1-D Determinate Enumeration: Print all primes up to n.
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If it is not marked out, it is prime: Print it, and 
mark out all its multiples.



Application of 1-D Determinate Enumeration: Print all primes up to n.
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Application of 1-D Determinate Enumeration: Print all primes up to n.
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Application of 1-D Determinate Enumeration: Print all primes up to n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Consider each integer from 2 through n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15
If it is not marked out, it is prime: Print it, and 
mark out all its multiples.



Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
   /* Initialize sieve to all prime. */
   /* Print each prime in sieve, and cross out its multiples. */



Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
   /* Initialize sieve to all prime. */
      for (int j=2; j<=n; j++) _____________
   /* Print each prime in sieve, and cross out its multiples. */



Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
   /* Initialize sieve to all prime. */
      for (int j=2; j<=n; j++) _____________
   /* Print each prime in sieve, and cross out its multiples. */
      for (int j=2; j<=n; j++) _____________



Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
   /* Initialize sieve to all prime. */
      for (int j=2; j<=n; j++) _____________
   /* Print each prime in sieve, and cross out its multiples. */
      for (int j=2; j<=n; j++)
         if ( ________ ) {
            System.out.println(j);
            for (int k=2*j; k<=n; k=k+j) _____________
            }



Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
   boolean prime[] = new boolean[____];  // prime[k] true iff k is prime.
   /* Initialize sieve to all prime. */
      for (int j=2; j<=n; j++) prime[j] = true;
   /* Print each prime in sieve, and cross out its multiples. */
      for (int j=2; j<=n; j++)
         if ( prime[j] ) {
            System.out.println(j);
            for (int k=2*j; k<=n; k=k+j) prime[k] = false;
            }



Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
   boolean prime[] = new boolean[n+1];
   /* Initialize sieve to all prime. */
      for (int j=2; j<=n; j++) prime[j] = true;
   /* Print each prime in sieve, and cross out its multiples. */
      for (int j=2; j<=n; j++)
         if ( prime[j] ) {
            System.out.println(j);
            for (int k=2*j; k<=n; k=k+j) prime[k] = false;
            }



1-origin, e.g., for itemization

0-origin, e.g., for subscripts

Row-major order, determinate enumeration

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in row-major order. */
   for (int r=0; r<height; r++)
      for (int c=0; c<width; c++)
         /* whatever */

c

r

…

/* Enumerate ⟨r,c⟩ in [1..height][1..width] in row-major order. */
   for (int r=1; r<=height; r++)
      for (int c=1; c<=width; c++)
         /* whatever */

or



0-origin, e.g., for subscripts

Column-major order, determinate enumeration

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in column-major order. */
   for (int c=0; c<width; c++)
      for (int r=0; r<height; r++)
         /* whatever */

c

r

…



Row-major order, indeterminate enumeration

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in row-major order until
   condition, and do whatever for each. */
   int r = 0; int c = 0;
   while ( r<height && !condition ) {
      /* whatever */
      if ( c<width-1 ) c++;  // Not the end of a row; go to next column.
      else { c = 0; r++; }   // The end of a row; go to start of next row.
      }
if ( r==height ) /* fail */ else /* succeed */

c

r

…

0 c

0

r

INVARIANT:

width

height

enumerated



Triangular order

/* Enumerate ⟨r,c⟩ in a closed lower-triangular region
   of [0..size-1][0..size-1] in row-major order.*/
   for (int r=0; r<size; r++)
      for (int c=0; c<=r; c++)
         /* whatever */

c

r

…

c

r

…

/* Enumerate ⟨r,c⟩ in an open lower-triangular region 
   of [0..size-1][0..size-1] in row-major order.*/
   for (int r=1; r<size; r++)
      for (int c=0; c<r; c++)
         /* whatever */

Think of the enumeration as all ways of choosing two distinct values from [0..size-1].



Diagonal order

/* Unbounded enumeration of ordered ⟨r,c⟩ starting at ⟨0,0⟩ until condition. */
   int d = 0;
   while ( !condition ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* whatever */
         r--;
         }
      d++;
      }

c

r

Think of d as the index of the diagonal.



2-D array on a torus

Row and column subscripts wrap around, i.e., after the right-most column comes the 
left-most column, and after the bottom-most row comes the top-most row.



Toroidal diagonal order

/* n-by-n toroidal diagonal-order enumeration in "magical order". */
   int r = 0; int c = n/2;
   for (int d=0; d<n; d++) {
      for (int k=0; k<n; k++) {
         /* whatever */
         r = (r+n-1)%n; c = (c+1)%n;   // up 1 and right 1.
         }
      r = (r+2)%n; c = (c+n-1)%n;      // down 2 and left 1.
      }



Application of triangular-order enumeration: We wish to confirm Ramanujan’s claim that 1729 
is the smallest number that is the sum of two positive cubes in two different ways.  

• The integer part of the cube root of 1729 is 12. Thus, we only need to consider the cubes of 
positive integers that are no larger than 12. 

• Let r^3 and c^3 be the two cubes.



/* Confirm Ramanujan’s claim that 1729 is the smallest number that is the
   sum of two positive cubes in two different ways. */
   /* Record the values of r^3+c^3 that arise for all sets {r,c} of
      distinct positive integers that are no larger than 12. */
   /* Confirm that 1729 is the smallest integer that arose twice. */

Ramanujan’s claim:Application of triangular-order enumeration:



/* Confirm Ramanujan’s claim that 1729 is the smallest number that is the
   sum of two positive cubes in two different ways. */
   /* Record the values of r^3+c^3 that arise for all sets {r,c} of
      distinct positive integers that are no larger than 12. */
      for (int r=2; r<13; r++)
         for (int c=1; c<r; c++)
            /* Keep track of having seen r^3+c^3. */
   /* Confirm that 1729 is the smallest integer that arose twice. */

We complete this code in Chapter 12.

Application of triangular-order enumeration:



Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

Start with an enumeration of positive fractions. 

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 2/5 …

3/1 3/2 3/3 3/4 3/5 …

4/1 4/2 4/3 4/4 4/5 …

5/1 5/2 5/3 5/4 5/5 …

… … … … … …

There are, of course, an infinite number of numerators and 
denominators, so a row-major-order or column-major-order 
enumeration won’t do.



Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

Start with an enumeration of positive fractions. 

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 2/5 …

3/1 3/2 3/3 3/4 3/5 …

4/1 4/2 4/3 4/4 4/5 …

5/1 5/2 5/3 5/4 5/5 …

… … … … … …

There are, of course, an infinite number of numerators and 
denominators, so a row-major-order or column-major-order 
enumeration won’t do.

A diagonal-order enumeration allows both the numerators 
and denominators to grow without bound.



Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

Start with an enumeration of positive fractions. 

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 2/5 …

3/1 3/2 3/3 3/4 3/5 …

4/1 4/2 4/3 4/4 4/5 …

5/1 5/2 5/3 5/4 5/5 …

… … … … … …

/* Output positive fractions. */
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         System.out.println( (r+1) + "/" + (c+1) );
         r--;
         }
      d++;
      }



Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

Start with an enumeration of positive fractions.

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 2/5 …

3/1 3/2 3/3 3/4 3/5 …

4/1 4/2 4/3 4/4 4/5 …

5/1 5/2 5/3 5/4 5/5 …

… … … … … …

/* Output positive fractions. */
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         System.out.println( (r+1) + "/" + (c+1) );
         r--;
         }
      d++;
      }

However, this lists each rational more than once.



Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

/* Output positive fractions. */
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         System.out.println( (r+1) + "/" + (c+1) );
         r--;
         }
      d++;
      }

To avoid duplicate listings, we can:

 



Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

/* Output positive rationals. */
   int d = 0;
   /* set reduced = { }; */
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            int g = gcd(r, c+1);
            /* rational z = ⟨(r+1)/g,(c+1)/g⟩; */
         if ( /* z is not an element of reduced ) {
            System.out.println( (r+1) + "/" + (c+1) );
            /* reduced = reduced ∪ {z}; */
            }
         r--;
         }
      d++;
      }

To avoid duplicate listings, we can: 
• Maintain the set of reduced fractions already listed.
• Only list a fraction if its reduced form is not in the set.



Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

/* Output positive rationals. */
   int d = 0;
   /* set reduced = { }; */
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            int g = gcd(r, c+1);
            /* rational z = ⟨(r+1)/g,(c+1)/g⟩; */
         if ( /* z is not an element of reduced ) {
            System.out.println( (r+1) + "/" + (c+1) );
            /* reduced = reduced ∪ {z}; */
            }
         r--;
         }
      d++;
      }

This introduces two key ideas:
• User-defined types, e.g., rational.
• User-defined types that are collections, e.g., set.



Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

/* Output positive rationals. */
   int d = 0;
   /* set reduced = { }; */
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            int g = gcd(r, c+1);
            /* rational z = ⟨(r+1)/g,(c+1)/g⟩; */
         if ( /* z is not an element of reduced ) {
            System.out.println( (r+1) + "/" + (c+1) );
            /* reduced = reduced ∪ {z}; */
            }
         r--;
         }
      d++;
      }

There are better ways to have proceeded, which we will 
ignore for pedagogical purposes until Chapter 18.



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

A square grid of numbers is a Magic Square if all rows, columns, and both diagonals sum to the 
same value.



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row.



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.
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To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.
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To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.
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To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.
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To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1

3

4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter 
an already-filled cell, move to the row below (in the same column).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1

3 5

4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter 
an already-filled cell, move to the row below (in the same column).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.
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To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter 
an already-filled cell, move to the row below (in the same column).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.
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To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter 
an already-filled cell, move to the row below (in the same column).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15
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4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter 
an already-filled cell, move to the row below (in the same column).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.
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To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter 
an already-filled cell, move to the row below (in the same column).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15
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4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter 
an already-filled cell, move to the row below (in the same column).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

9

8 1 6

3 5 7

4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter 
an already-filled cell, move to the row below (in the same column).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

8 1 6

3 5 7

4 9 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count 
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter 
an already-filled cell, move to the row below (in the same column).



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

/* Let M be an N-by-N Magic Square, for odd N≥1. */
    int M[][] = new int[N][N]; // Initialized to zeros.
    int r = 0; int c = N/2;
    for (int k=1; k<=N*N; k++) {
       M[r][c] = k;
       /* Advance ⟨r,c⟩ in toroidal diagonal order. */
       }



Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

/* Let M be an N-by-N Magic Square, for odd N≥1. */
    int M[][] = new int[N][N]; // Initialized to zeros.
    int r = 0; int c = N/2;
    for (int k=1; k<=N*N; k++) {
       M[r][c] = k;
       /* Advance ⟨r,c⟩ in toroidal diagonal order. */

if ( M[(r+N-1)%N][(c+1)%N]!=0 ) r = (r+1)%N;
else { r = (r+N-1)%N; c = (c+1)%N; }

       }
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