
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Enumeration Patterns

Copyright©2023 by Tim Teitelbaum; Most recent revision, 12/03/2024

To enumerate is to list off, one by one.

We consider:

• Counting

• 1-D Indeterminate Enumeration

• 1-D Determinate Enumeration

• 2-D Enumerations

and these applications:

•

•

•

•

Counting:

int k = 1;
while (true) k++;

int k = 0;
while (true) k++;

int k = start;
while (true) k++;

1-origin children

0-origin older children

start-origin sophisticated children

Counting:

int k = 1;
while (true) k++;

int k = 0;
while (true) k++;

Linguistic Confusions

First value enumerated Number of increments

1-origin 1 k-1

0-origin 0 k

start-origin start k-start

Off-by-one errors, and their ilk

Number of integers in a range from first to last, inclusive last-first+1

Index of last integer in a range of N integers starting at 0 N-1

int k = start;
while (true) k++;

Counting:

int k = 1;
while (true) k++;

int k = 0;
while (true) k++;

int k = start;
while (true) k++;

Children learn the concept of infinity from counting. Indeed, these
loops run forever, but not because there is no maximum int.
Rather, because after 231-1, the next int is -231. This is called
arithmetic overflow.

0

-231

:
:

:
:

-1

-2

231-2

231-1-231+1

-231+2

2

1

From there, counting proceeds “up” to -1, and then around again.

Counting:

int k = 1;
while (true) k++;

int k = 0;
while (true) k++;

int k = start;
while (true) k++;

0

-231

:
:

:
:

-1

-2

231-2

231-1-231+1

-231+2

2

1

From there, counting proceeds “up” to -1, and then around again
unless condition becomes false first.

int k = start;
while (condition) k++;

Children learn the concept of infinity from counting. Indeed, these
loops run forever, but not because there is no maximum int.
Rather, because after 231-1, the next int is -231. This is called
arithmetic overflow.

1-D Indeterminate Enumeration:

/* Enumerate from start until !condition. */
 int k = start;
 while (condition) k++;

1-D Indeterminate Enumeration:

/* Enumerate from start until !condition, but no further than maximum. */
 int k = start;
 while (k<=maximum && condition) k++;

if (k>maximum) /* condition was true for all k in [start..maximum]. */
else /* k is smallest in [start..maximum] for which condition is false. */

1-D Determinate Enumeration:

/* Do whatever n times. */
 int k = 0;
 while (k<n) {
 /* whatever */
 k++;
 }

/* Do whatever n times. */
 for (int k=0; k<n; k++)
 /* whatever */

or

1-D Determinate Enumeration: Don’t terminate a determinate enumeration prematurely.

/* Do whatever n times. */
 for (int k=0; k<n; k++) {
 /* whatever */
 if (condition) k = n; // Don’t do this.
 }

k = 0;
while (k<n && !condition) {
 /* whatever */
 k++;
 }

Rather, do this:

N.B. The two versions are not exactly equivalent.

Application of 1-D Determinate Enumeration: Print all primes up to n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 Consider each integer from 2 through n.

Application of 1-D Determinate Enumeration: Print all primes up to n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Consider each integer from 2 through n.

If it is not marked out, it is prime: Print it, and
mark out all its multiples.

Application of 1-D Determinate Enumeration: Print all primes up to n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Consider each integer from 2 through n.

If it is not marked out, it is prime: Print it, and
mark out all its multiples.

Application of 1-D Determinate Enumeration: Print all primes up to n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Consider each integer from 2 through n.

If it is not marked out, it is prime: Print it, and
mark out all its multiples.

Application of 1-D Determinate Enumeration: Print all primes up to n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Consider each integer from 2 through n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
If it is not marked out, it is prime: Print it, and
mark out all its multiples.

Application of 1-D Determinate Enumeration: Print all primes up to n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Consider each integer from 2 through n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15
If it is not marked out, it is prime: Print it, and
mark out all its multiples.

Application of 1-D Determinate Enumeration: Print all primes up to n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Consider each integer from 2 through n.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15
If it is not marked out, it is prime: Print it, and
mark out all its multiples.

Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
 /* Initialize sieve to all prime. */
 /* Print each prime in sieve, and cross out its multiples. */

Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
 /* Initialize sieve to all prime. */
 for (int j=2; j<=n; j++) _____________
 /* Print each prime in sieve, and cross out its multiples. */

Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
 /* Initialize sieve to all prime. */
 for (int j=2; j<=n; j++) _____________
 /* Print each prime in sieve, and cross out its multiples. */
 for (int j=2; j<=n; j++) _____________

Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
 /* Initialize sieve to all prime. */
 for (int j=2; j<=n; j++) _____________
 /* Print each prime in sieve, and cross out its multiples. */
 for (int j=2; j<=n; j++)
 if (________) {
 System.out.println(j);
 for (int k=2*j; k<=n; k=k+j) _____________
 }

Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
 boolean prime[] = new boolean[____]; // prime[k] true iff k is prime.
 /* Initialize sieve to all prime. */
 for (int j=2; j<=n; j++) prime[j] = true;
 /* Print each prime in sieve, and cross out its multiples. */
 for (int j=2; j<=n; j++)
 if (prime[j]) {
 System.out.println(j);
 for (int k=2*j; k<=n; k=k+j) prime[k] = false;
 }

Application of 1-D Determinate Enumeration: Print all primes up to n.

/* Print primes up to n. */
 boolean prime[] = new boolean[n+1];
 /* Initialize sieve to all prime. */
 for (int j=2; j<=n; j++) prime[j] = true;
 /* Print each prime in sieve, and cross out its multiples. */
 for (int j=2; j<=n; j++)
 if (prime[j]) {
 System.out.println(j);
 for (int k=2*j; k<=n; k=k+j) prime[k] = false;
 }

1-origin, e.g., for itemization

0-origin, e.g., for subscripts

Row-major order, determinate enumeration

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in row-major order. */
 for (int r=0; r<height; r++)
 for (int c=0; c<width; c++)
 /* whatever */

c

r

…

/* Enumerate ⟨r,c⟩ in [1..height][1..width] in row-major order. */
 for (int r=1; r<=height; r++)
 for (int c=1; c<=width; c++)
 /* whatever */

or

0-origin, e.g., for subscripts

Column-major order, determinate enumeration

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in column-major order. */
 for (int c=0; c<width; c++)
 for (int r=0; r<height; r++)
 /* whatever */

c

r

…

Row-major order, indeterminate enumeration

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in row-major order until
 condition, and do whatever for each. */
 int r = 0; int c = 0;
 while (r<height && !condition) {
 /* whatever */
 if (c<width-1) c++; // Not the end of a row; go to next column.
 else { c = 0; r++; } // The end of a row; go to start of next row.
 }
if (r==height) /* fail */ else /* succeed */

c

r

…

0 c

0

r

INVARIANT:

width

height

enumerated

Triangular order

/* Enumerate ⟨r,c⟩ in a closed lower-triangular region
 of [0..size-1][0..size-1] in row-major order.*/
 for (int r=0; r<size; r++)
 for (int c=0; c<=r; c++)
 /* whatever */

c

r

…

c

r

…

/* Enumerate ⟨r,c⟩ in an open lower-triangular region
 of [0..size-1][0..size-1] in row-major order.*/
 for (int r=1; r<size; r++)
 for (int c=0; c<r; c++)
 /* whatever */

Think of the enumeration as all ways of choosing two distinct values from [0..size-1].

Diagonal order

/* Unbounded enumeration of ordered ⟨r,c⟩ starting at ⟨0,0⟩ until condition. */
 int d = 0;
 while (!condition) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* whatever */
 r--;
 }
 d++;
 }

c

r

Think of d as the index of the diagonal.

2-D array on a torus

Row and column subscripts wrap around, i.e., after the right-most column comes the
left-most column, and after the bottom-most row comes the top-most row.

Toroidal diagonal order

/* n-by-n toroidal diagonal-order enumeration in "magical order". */
 int r = 0; int c = n/2;
 for (int d=0; d<n; d++) {
 for (int k=0; k<n; k++) {
 /* whatever */
 r = (r+n-1)%n; c = (c+1)%n; // up 1 and right 1.
 }
 r = (r+2)%n; c = (c+n-1)%n; // down 2 and left 1.
 }

Application of triangular-order enumeration: We wish to confirm Ramanujan’s claim that 1729
is the smallest number that is the sum of two positive cubes in two different ways.

• The integer part of the cube root of 1729 is 12. Thus, we only need to consider the cubes of
positive integers that are no larger than 12.

• Let r^3 and c^3 be the two cubes.

/* Confirm Ramanujan’s claim that 1729 is the smallest number that is the
 sum of two positive cubes in two different ways. */
 /* Record the values of r^3+c^3 that arise for all sets {r,c} of
 distinct positive integers that are no larger than 12. */
 /* Confirm that 1729 is the smallest integer that arose twice. */

Ramanujan’s claim:Application of triangular-order enumeration:

/* Confirm Ramanujan’s claim that 1729 is the smallest number that is the
 sum of two positive cubes in two different ways. */
 /* Record the values of r^3+c^3 that arise for all sets {r,c} of
 distinct positive integers that are no larger than 12. */
 for (int r=2; r<13; r++)
 for (int c=1; c<r; c++)
 /* Keep track of having seen r^3+c^3. */
 /* Confirm that 1729 is the smallest integer that arose twice. */

We complete this code in Chapter 12.

Application of triangular-order enumeration:

Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

Start with an enumeration of positive fractions.

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 2/5 …

3/1 3/2 3/3 3/4 3/5 …

4/1 4/2 4/3 4/4 4/5 …

5/1 5/2 5/3 5/4 5/5 …

… … … … … …

There are, of course, an infinite number of numerators and
denominators, so a row-major-order or column-major-order
enumeration won’t do.

Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

Start with an enumeration of positive fractions.

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 2/5 …

3/1 3/2 3/3 3/4 3/5 …

4/1 4/2 4/3 4/4 4/5 …

5/1 5/2 5/3 5/4 5/5 …

… … … … … …

There are, of course, an infinite number of numerators and
denominators, so a row-major-order or column-major-order
enumeration won’t do.

A diagonal-order enumeration allows both the numerators
and denominators to grow without bound.

Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

Start with an enumeration of positive fractions.

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 2/5 …

3/1 3/2 3/3 3/4 3/5 …

4/1 4/2 4/3 4/4 4/5 …

5/1 5/2 5/3 5/4 5/5 …

… … … … … …

/* Output positive fractions. */
 int d = 0;
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 System.out.println((r+1) + "/" + (c+1));
 r--;
 }
 d++;
 }

Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

Start with an enumeration of positive fractions.

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 2/5 …

3/1 3/2 3/3 3/4 3/5 …

4/1 4/2 4/3 4/4 4/5 …

5/1 5/2 5/3 5/4 5/5 …

… … … … … …

/* Output positive fractions. */
 int d = 0;
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 System.out.println((r+1) + "/" + (c+1));
 r--;
 }
 d++;
 }

However, this lists each rational more than once.

Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

/* Output positive fractions. */
 int d = 0;
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 System.out.println((r+1) + "/" + (c+1));
 r--;
 }
 d++;
 }

To avoid duplicate listings, we can:

Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

/* Output positive rationals. */
 int d = 0;
 /* set reduced = { }; */
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 int g = gcd(r, c+1);
 /* rational z = ⟨(r+1)/g,(c+1)/g⟩; */
 if (/* z is not an element of reduced) {
 System.out.println((r+1) + "/" + (c+1));
 /* reduced = reduced ∪ {z}; */
 }
 r--;
 }
 d++;
 }

To avoid duplicate listings, we can:
• Maintain the set of reduced fractions already listed.
• Only list a fraction if its reduced form is not in the set.

Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

/* Output positive rationals. */
 int d = 0;
 /* set reduced = { }; */
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 int g = gcd(r, c+1);
 /* rational z = ⟨(r+1)/g,(c+1)/g⟩; */
 if (/* z is not an element of reduced) {
 System.out.println((r+1) + "/" + (c+1));
 /* reduced = reduced ∪ {z}; */
 }
 r--;
 }
 d++;
 }

This introduces two key ideas:
• User-defined types, e.g., rational.
• User-defined types that are collections, e.g., set.

Application of diagonal-order enumeration: We wish to enumerate positive rational numbers.

/* Output positive rationals. */
 int d = 0;
 /* set reduced = { }; */
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 int g = gcd(r, c+1);
 /* rational z = ⟨(r+1)/g,(c+1)/g⟩; */
 if (/* z is not an element of reduced) {
 System.out.println((r+1) + "/" + (c+1));
 /* reduced = reduced ∪ {z}; */
 }
 r--;
 }
 d++;
 }

There are better ways to have proceeded, which we will
ignore for pedagogical purposes until Chapter 18.

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

A square grid of numbers is a Magic Square if all rows, columns, and both diagonals sum to the
same value.

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row.

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

2

1

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1

2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1

3

2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1

3

2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1

3

4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter
an already-filled cell, move to the row below (in the same column).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1

3 5

4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter
an already-filled cell, move to the row below (in the same column).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1 6

3 5

4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter
an already-filled cell, move to the row below (in the same column).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

7

1 6

3 5

4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter
an already-filled cell, move to the row below (in the same column).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1 6

3 5 7

4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter
an already-filled cell, move to the row below (in the same column).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

1 6 8

3 5 7

4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter
an already-filled cell, move to the row below (in the same column).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

8 1 6

3 5 7

4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter
an already-filled cell, move to the row below (in the same column).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

9

8 1 6

3 5 7

4 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter
an already-filled cell, move to the row below (in the same column).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

15

8 1 6 15

3 5 7 15

4 9 2 15

15 15 15 15

8 1 6

3 5 7

4 9 2

To make an n-by-n Magic Square, for odd n, start with a 1 in the middle of the top row, and count
up as you proceed diagonally up and to the right (on the surface of a torus). When you encounter
an already-filled cell, move to the row below (in the same column).

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

/* Let M be an N-by-N Magic Square, for odd N≥1. */
 int M[][] = new int[N][N]; // Initialized to zeros.
 int r = 0; int c = N/2;
 for (int k=1; k<=N*N; k++) {
 M[r][c] = k;
 /* Advance ⟨r,c⟩ in toroidal diagonal order. */
 }

Application of toroidal diagonal-order enumeration: n-by-n Magic Squares, for odd n.

/* Let M be an N-by-N Magic Square, for odd N≥1. */
 int M[][] = new int[N][N]; // Initialized to zeros.
 int r = 0; int c = N/2;
 for (int k=1; k<=N*N; k++) {
 M[r][c] = k;
 /* Advance ⟨r,c⟩ in toroidal diagonal order. */

if (M[(r+N-1)%N][(c+1)%N]!=0) r = (r+1)%N;
else { r = (r+N-1)%N; c = (c+1)%N; }

 }

	Title
	Slide 1

	Introduction
	Slide 2

	Counting
	Slide 3
	Slide 4
	Slide 5
	Slide 6

	1-D Indeterminate Enumeration
	Slide 7
	Slide 8

	1-D Determinate Enumeration
	Slide 9
	Slide 10

	Sieve of Erastosthenes
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

	2-D Enumerations
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

	Ramanujan Cubes
	Slide 31
	Slide 32
	Slide 33

	Rational Numbers
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

	Magic Squares
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

