
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Online Algorithms

Copyright©2023 by Tim Teitelbaum; Most recent revision, 12/16/2024

We introduce the online-computation pattern for processing an
unbounded file of input. We use it to:

• Process exam grades
• Compress the file
• Decompress a compressed file

We illustrate many important programming precepts.

Application: Process an input file of unbounded length.

Code

Computer

Processor
Memory

Values

input sequence

input cursor

output sequence

/* Input. */
/* Compute. */
/* Output. */

Code

Computer

Processor
Memory

Values

input sequence

input cursor

output sequence

Offline-computation pattern: calls for reading all values first.

/* Input. */
/* Compute. */
/* Output. */

Code

Computer

Processor
Memory

Values

input sequence output sequence

input cursor

Offline-computation pattern: calls for reading all values first, then processing
them.

/* Input. */
/* Compute. */
/* Output. */

Code

Computer

Processor
Memory

Values

input sequence output sequence

input cursor

Offline-computation pattern: calls for reading all values first, then processing
them, then outputting results.

/* Input. */
/* Compute. */
/* Output. */

Code

Computer

Processor
Memory

Values

input sequence output sequence

input cursor

Offline-computation pattern: A mismatch because the memory is finite, but the
input is unbounded.

/* Input. */
/* Compute. */
/* Output. */

Code

Computer

Processor
Memory

Values

input sequence output sequence

input cursor

*Virtual memory is also effectively unbounded, so the real issue is paging time.

Offline-computation pattern: A mismatch because the memory is finite, but the
input is unbounded.*

v = first-input-value;
/* Initialize. */
while (v != stoppingValue) {
 /* Process v. */
 v = next-input-value;
 }
/* Finalize. */

Online-computation pattern: An alternative is to process input values on the fly.

v = first-input-value;
/* Initialize. */
while (v != stoppingValue) {
 /* Process v. */
 v = /* next input value */;
 }
/* Finalize. */

/* Initialize. */
while (/* not finished */) {
 /* Compute. */
 /* Go on to next. */
 }

Online-computation pattern: A specialization of the general-iteration pattern.

Online-computation pattern: Not all problems amenable to online computation.

v = first-input-value;
/* Initialize. */
while (v != stoppingValue) {
 /* Process v. */
 v = /* next input value */;
 }
/* Finalize. */

Amenable if:
• Inputs are independent and can be

fully processed on the fly.

Online-computation pattern: Not all problems amenable to online computation.

v = first-input-value;
/* Initialize. */
while (v != stoppingValue) {
 /* Process v. */
 v = /* next input value */;
 }
/* Finalize. */

Amenable if:
• Inputs are independent and can be

fully processed on the fly, or
• Inputs can be summarized on the

fly, and the final result computed
from those summary values.

Online-computation pattern: Assume inputs are nonnegative integers,
followed by -1.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
/* Initialize. */
while (v != -1) {
 /* Process v. */
 v = in.nextInt();
 }
/* Finalize. */

Online-computation pattern: Parametric in α, β, and γ.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
/* Initialize. (α) */
while (v != -1) {
 /* Process v. (β) */
 v = in.nextInt();
 }
/* Finalize. (γ) */

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Process exam grades (in range 0-100).

Application: Process exam grades (in range 0-100).

Application α β γ

Print

Count

Average

Highest

Distribution

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Process exam grades (in range 0-100).

Application α β γ

Print

Count

Average

Highest

Distribution

90 80 85 90 100 0 85 -1

☞ There is no shame in reasoning with concrete examples.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Process exam grades (in range 0-100).

☞ Code iterations in the following order: (1) body, (2) termination, (3) initialization,
(4) finalization, (5) boundary conditions.

Application α β γ

Print

Count

Average

Highest

Distribution

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Process exam grades (in range 0-100).

Application α β γ

Print

Count

Average

Highest

Distribution

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Print grades.

Application: Print grades.

☞ Program top-down, outside-in.

Application: Print grades.

☞ Master stylized code patterns, and use them.

Application: Print grades.

☞ Master stylized code patterns, and use them.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Print grades.

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 System.out.println(grade);
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Print grades.

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
while (grade != -1) {
 System.out.println(grade);
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Print grades.

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

Application: Print grades.

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
while (grade != -1) {
 System.out.println(grade);
 grade = in.nextInt();
 }

Application: Count grades.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Count grades.

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Counting the input values.

90 80 85 90 100 0 85 -1

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int count = _________; // count is the number of grades processed so far.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Count grades.

☞ Introduce program variables whose values describe “state”.

A counter . Establish and maintain its representation invariant.valuecount

Application: Count grades.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int count = _________; // count is the number of grades processed so far.
/* Initialize. (α) */
while (grade != -1) {
 count++;
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general caseMaintain invariant.

Application: Count grades.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int count = 0; // count is the number of grades processed so far.
while (grade != -1) {
 count++;
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general caseEstablish invariant.

Application: Count grades.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int count = 0; // count is the number of grades processed so far.
while (grade != -1) {
 count++;
 grade = in.nextInt();
 }
System.out.println(count);

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

Application: Average grade.

90 80 85 90 100 0 85 -1

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Average grade.

Remember to do online, not offline, computation.

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

90 80 85 90 100 0 85 -1

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Average grade.

☞ Introduce program variables whose values describe “state”.

90 80 85 90 100 0 85 -1

Application: Average grade.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int count = _________; // count is the number of grades processed so far.
int sum = _________; // sum is the sum of the grades processed so far.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

A counter and a running sum .valuecount valuesum

☞ Introduce program variables whose values describe “state”.

90 80 85 90 100 0 85 -1

Application: Average grade.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int count = _________; // count is the number of grades processed so far.
int sum = _________; // sum is the sum of the grades processed so far.
/* Initialize. (α) */
while (grade != -1) {
 count++; sum = sum+count;
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general caseMaintain invariants.

Application: Average grade.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int count = 0; // count is the number of grades processed so far.
int sum = 0; // sum is the sum of the grades processed so far.
while (grade != -1) {
 count++; sum = sum+count;
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general caseEstablish invariants.

Application: Average grade.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int count = 0; // count is the number of grades processed so far.
int sum = 0; // sum is the sum of the grades processed so far.
while (grade != -1) {
 count++; sum = sum+count;
 grade = in.nextInt();
 }
System.out.println(sum/count);

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

Application: Average grade.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int count = 0; // count is the number of grades processed so far.
int sum = 0; // sum is the sum of the grades processed so far.
while (grade != -1) {
 count++; sum = sum+count;
 grade = in.nextInt();
 }
if (count==0) System.out.println("no grades");
else System.out.println(sum/count); Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Highest grade.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Highest grade.

Keeping track of highest.

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

90 80 85 90 100 0 85 -1

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int highest = _________; // highest is max of the grades processed so far.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Highest grade.

valuehighest

☞ Introduce program variables whose values describe “state”.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int highest = _________; // highest is max of the grades processed so far.
/* Initialize. (α) */
while (grade != -1) {
 if (grade > highest) highest = grade;
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Highest grade.

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general caseMaintain invariant.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int highest = _________; // highest is max of the grades processed so far.
/* Initialize. (α) */
while (grade != -1) {
 highest = Math.max(highest,grade);
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Highest grade.

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general caseMaintain invariant.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int highest = 0; // highest is max of the grades processed so far.
while (grade != -1) {
 highest = Math.max(highest,grade);
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Highest grade.

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general caseEstablish invariants.

Wrong! Need to distinguish between
no grades and everyone got a 0;

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int highest = -1; // highest is max of grades processed so far, or -1.
while (grade != -1) {
 highest = Math.max(highest,grade);
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Highest grade.

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general caseEstablish invariants.

Application: Highest grade.

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int highest = -1; // highest is max of grades processed so far, or -1
while (grade != -1) {
 highest = Math.max(highest,grade);
 grade = in.nextInt();
 }
if (highest==-1) System.out.println("no grades");
else System.out.println(sum/count);

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Distribution of grades.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Distribution of grades.

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

90 80 85 90 100 0 85 -1

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Application: Distribution of grades.

Counting the number of occurrences of each grade.

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

90 80 85 90 100 0 85 -1

Application: Distribution of grades.

Need 101 counters.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int freq[] = new int[101]; // For each k, freq[k] is # of grades of k so far.
/* Initialize. (α) */
while (grade != -1) {
 /* Process v. (β) */
 grade = in.nextInt();
 }
/* Finalize. (γ) */

0 1 2 ··· 99 100

freq ···

☞ Introduce program variables whose values describe “state”.

90 80 85 90 100 0 85 -1

Application: Distribution of grades.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int freq[] = new int[101]; // For each k, freq[k] is # of grades of k so far.
/* Initialize. (α) */
while (grade != -1) {
 freq[grade]++;
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general caseMaintain invariant.

Application: Distribution of grades.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int freq[] = new int[101] // For each k, freq[k] is # of grades of k so far.
while (grade != -1) {
 freq[grade]++;
 grade = in.nextInt();
 }
/* Finalize. (γ) */

Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general caseEstablish invariant.

Application: Distribution of grades.

int grade = in.nextInt(); // grade is the next grade to be processed, or -1.
int freq[] = new int[101] // For each k, freq[k] is # of grades of k so far.
while (grade != -1) {
 freq[grade]++;
 grade = in.nextInt();
 }
for(int g=0; g<101; g++)
 System.out.println(g + " " + freq[g]); Coding order

(1) body β; grade=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

Application: Compressing a file of integers.

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

10 6 1 8 7 3 8 1 9 1 10 3 -1 -1

A sequence of equal values is called a run. Each run of n instances of r can be
encoded as a pair of integers, ⟨r,n⟩.

A run-encoded file will be shorter if there aren’t too many runs of length one.

Application: Write a program to run encode an input file.

☞ Program top-down, outside-in.
☞ Master stylized code patterns, and use them.

Use the online-computation pattern.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
/* Initialize. (α) */
while (v != -1) {
 /* Process v. (β) */
 v = in.nextInt();
 }
/* Finalize. (γ) */

☞ Program top-down, outside-in.
☞ Master stylized code patterns, and use them.

Use the online-computation pattern.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

☞ Program top-down, outside-in.
☞ Master stylized code patterns, and use them.

Having by now completely mastered the online-computation pattern, you might
just leave blank lines (where placeholders have been) when you instantiate it .

Follow the standard coding order.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

Coding order

(1) body β; v=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

☞ Body. Do 1st. Play “musical chairs” and “stop the music”.

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

Stop the music at an arbitrary, but well-chosen, place marked by the bar.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again.

v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

The state: The next value to be processed is v.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again.

The state: The next value to be processed is v, and we are in a run of r values.

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

The state: The next value to be processed is v, and we are in a run of r values
of length n.

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

The state: The next value to be processed is v, and we are in a run of r values
of length n. All completed runs seen have been output.

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again. If
you had stopped one iteration later, what would have looked the same (the “loop
invariant”), and what would have changed (the “loop variant”)?

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again. If
you had stopped one iteration later, what would have looked the same (the “loop
invariant”), and what would have changed (the “loop variant”)?

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

VARIANT: The number of input values remaining to be processed.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again. If
you had stopped one iteration later, what would have looked the same (the “loop
invariant”), and what would have changed (the “loop variant”)?

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

VARIANT: The number of input values remaining to be processed (which the
online-computation pattern reduces by 1).

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

☞ A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 if (v==r) n++;
 else ___________
 v = in.nextInt();
 }
γ

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

First case: Still in the middle of a run.

☞ A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 if (v==r) n++;
 else {
 System.out.print(r + " " + c + " ");

 }
 v = in.nextInt();
 }
γ

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

Maintain invariant.

Second case: Output the now-completed run.

First case: Still in the middle of a run.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 if (v==r) n++;
 else {
 System.out.print(r + " " + c + " ");
 r = v; n = 1;
 }
 v = in.nextInt();
 }
γ

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

r

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

Second case: Output the now-completed run,
and begin the next run.

First case: Still in the middle of a run.

Maintain invariant.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 if (v==r) n++;
 else {
 System.out.print(r + " " + c + " ");
 r = v; n = 1;
 }
 v = in.nextInt();
 }
γ

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

Second case: Output the now-completed run,
and begin the next run.

First case: Still in the middle of a run.

Completion of the loop body advances v.

Maintain invariant.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
int r = ___; int n = ___; // In a run of r values of length n.
while (v != -1) {
 if (v==r) n++;
 else {
 System.out.print(r + " " + c + " ");
 r = v; n = 1;
 }
 v = in.nextInt();
 }
γ

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

Coding order

(1) body β; v=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

r

v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

Establish invariant.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
int r = v; int n = 0; // In a run of r values of length n.
while (v != -1) {
 if (v==r) n++;
 else {
 System.out.print(r + " " + c + " ");
 r = v; n = 1;
 }
 v = in.nextInt();
 }
γ

Coding order

(1) body β; v=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

r

v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

Establish invariant.

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
int r = v; int n = 0; // In a run of r values of length n.
while (v != -1) {
 if (v==r) n++;
 else {
 System.out.print(r + " " + c + " ");
 r = v; n = 1;
 }
 v = in.nextInt();
 }
γ

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

Coding order

(1) body β; v=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

int v = in.nextInt(); // v is the next integer to be processed, or -1.
int r = v; int n = 0; // In a run of r values of length n.
while (v != -1) {
 if (v==r) n++;
 else {
 System.out.print(r + " " + c + " ");
 r = v; n = 1;
 }
 v = in.nextInt();
 }
System.out.print(r + " " + c + " ");
System.out.println("-1 -1");

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

Coding order

(1) body β; v=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

r v

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 -1

n

int v = in.nextInt(); // v is the next integer to be processed, or -1.
int r = v; int n = 0; // In a run of r values of length n.
while (v != -1) {
 if (v==r) n++;
 else {
 System.out.print(r + " " + c + " ");
 r = v; n = 1;
 }
 v = in.nextInt();
 }
System.out.print(r + " " + c + " ");
System.out.println("-1 -1");

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

Coding order

(1) body β; v=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

r

v

-1

n

int v = in.nextInt(); // v is the next integer to be processed, or -1.
int r = v; int n = 0; // In a run of r values of length n.
while (v != -1) {
 if (v==r) n++;
 else {
 System.out.print(r + " " + c + " ");
 r = v; n = 1;
 }
 v = in.nextInt();
 }
if (n!=0)
 System.out.print(r + " " + c + " ");
System.out.println("-1 -1");

INVARIANT: The next value to be processed is v, and we are in a run of r
values of length n. All completed runs seen have been output.

Coding order

(1) body β; v=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

r

v

-1

n

Application: Write a program to decode a run-encoded file.

☞ Program top-down, outside-in.
☞ Master stylized code patterns, and use them.

int v = in.nextInt(); // v is the next integer to be processed, or -1.
α
while (v != -1) {
 β
 v = in.nextInt();
 }
γ

Use online-computation pattern.

☞ Program top-down, outside-in.
☞ Master stylized code patterns, and use them.

int r = in.nextInt(); int n = in.nextInt(); // Next ⟨r,n⟩ to process, or ⟨-1,-1⟩.
α
while (r != -1) {
 β
 r = in.nextInt(); n = in.nextInt();
 }
γ

Use online-computation pattern, generalized to read values two at a time.

int r = in.nextInt(); int n = in.nextInt(); // Next ⟨r,n⟩ to process, or ⟨-1,-1⟩.
α
while (r != -1) {
 β
 r = in.nextInt(); n = in.nextInt();
 }
γ

INVARIANT: Runs have been output for all ⟨r,n⟩ processed so far.

Coding order

(1) body β; r=in.nextInt(); n=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

int r = in.nextInt(); int n = in.nextInt(); // Next ⟨r,n⟩ to process, or ⟨-1,-1⟩.
α
while (r != -1) {
 for (int k=1; k<=n; k++) System.out.print(r + " ");
 r = in.nextInt(); n = in.nextInt();
 }
γ

Coding order

(1) body β; r=in.nextInt(); n=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

INVARIANT: Runs have been output for all ⟨r,n⟩ processed so far.

Maintain invariant.

int r = in.nextInt(); int n = in.nextInt(); // Next ⟨r,n⟩ to process, or ⟨-1,-1⟩.
while (r != -1) {
 for (int k=1; k<=n; k++) System.out.print(r + " ");
 r = in.nextInt(); n = in.nextInt();
 }
γ

Coding order

(1) body β; r=in.nextInt(); n=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

INVARIANT: Runs have been output for all ⟨r,n⟩ processed so far.

Establish invariant.

int r = in.nextInt(); int n = in.nextInt(); // Next ⟨r,n⟩ to process, or ⟨-1,-1⟩.
while (r != -1) {
 for (int k=1; k<=n; k++) System.out.print(r + " ");
 r = in.nextInt(); n = in.nextInt();
 }
System.out.println (-1);

Coding order

(1) body β; r=in.nextInt(); n=in.nextInt();

(2) termination -

(3) initialization α

(4) finalization γ

(5) boundary conditions exceptions to the general case

☞ Write the representation invariant of an individual variable as an end-of-line
comment.

☞ Invent (or learn) vocabulary for concepts that arise in a problem.
☞ Invent (or learn) diagrammatic ways to express concepts.
☞ Alternate between using a concrete example to guide you in characterizing

“program state”, and an abstract version that refers to all possible examples.

r v

runs already output a (partial) run of r’s ? -1

n

Precepts used without mention.

Precepts used without mention.

☞ Initialization. Do 3rd. Initialize variables so that the loop invariant is
established prior to the first iteration. Substitute those initial values into the
invariant, and bench check the first iteration with respect to that initial
instantiation of the invariant.

☞ Finalization. Do 4th, but don’t forget. Leverage that the looping condition is
false, the loop invariant remains true, and the loop variant is 0.

☞ Boundary conditions. Dead last, but don’t forget them.
☞ Find boundary conditions at extrema, and at singularities, e.g., biggest,

smallest, 0, edges, etc.

	Title
	Slide 1

	Introduction
	Slide 2

	Online Computation Pattern
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

	Data Processing
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

	Data Compression
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

