
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Specifications and Implementations

Copyright©2024 by Tim Teitelbaum; Most recent revision, 12/12/2024

We describe the specification of various kinds of programming-language constructs,
and how their implementations contribute to a program that meets its requirements:

• Statements, which define effects.

• Declarations, which create program variables.

• Methods, which group statements and declarations into meaningful operations.

• Classes, which aggregate methods and declarations into coherent modules.

Programs serve a purpose. They satisfy a requirement.

Programs serve a purpose. They satisfy a requirement.

Some requirements are small: Square a number.

Some requirements are large: Control a rocket to the moon.

Regardless, our goal is to write a program that satisfies a requirement.

#.Specification.

A specification, written as comment, is a precise articulation of a requirement.

#.Specification.

A specification, written as comment, is a precise articulation of a requirement.

The dot (.) after the hash mark (#) signifies that the specification has not yet been implemented.

Specification.
Implementation

An implementation, aligned below it, says how to meet the requirement.

Write specifications as imperatives that say what must be accomplished.

Specification.
Implementation

Write specifications as imperatives that say what must be accomplished.

Specification.
Implementation

Sample program-segment derivations starting with the specification-implementation pattern.

Write specifications as imperatives that say what must be accomplished.

Specification.
Implementation

Specification.
Implementation

Specification.
Implementation

Output the square of an integer that is provided as input.
Implementation

Write specifications as imperatives that say what must be accomplished.

Write implementations that say how to do so.

Specification.
Implementation

Output the square of an integer that is provided as input.
n = int(input())
print(n * n)

Specification.
Implementation

A given specification can be implemented in multiple ways.

Output the square of an integer that is provided as input.
n = int(input())
print(n * n) W

A
Y

1

Specification.
Implementation

A given specification can be implemented in multiple ways.

Output the square of an integer that is provided as input.
--
n = int(input())
#.Let s be the square of n.
print(s)

W
A

Y
2

Specification.
Implementation

A given specification can be implemented in multiple ways.

Output the square of an integer that is provided as input.
--
n = int(input())
#.Let s be the square of n.
print(s)

W
A

Y
2

When the implementation of one specification contains another specification, the first
should be followed by a line of dashes to indicate that the first specification is a level
above its implementation.

Specification.
Implementation

A given specification can be implemented in multiple ways.

Output the square of an integer that is provided as input.
--
n = int(input())
#.Let s be the square of n.
print(s)

W
A

Y
2

When the specification is not yet implemented, it can stand as a single line within
other lines, with no vertical whitespace around it.

Specification.
Implementation

A given specification can be implemented in multiple ways.

Output the square of an integer that is provided as input.
--
n = int(input())

Let s be the square of n.
s = n * n

print(s)

W
A

Y
2

a

Specification.
Implementation

A given specification can be implemented in multiple ways.

Output the square of an integer that is provided as input.
--
n = int(input())

Let s be the square of n.
s = n * n

print(s)

W
A

Y
2

a
When the specification is not yet implemented, it can stand as a single line within
other lines, with no vertical whitespace around it. But once it has been implemented,
it (together with its implementation) should be set off from the rest with blank lines.

Specification.
Implementation

A given specification can be implemented in multiple ways.

Output the square of an integer that is provided as input.
--
n = int(input())

Let s be the square of n.
m = abs(n)
s = 0
for k in range(0, m):
 s = s + m

print(s)

W
A

Y
2

b

Output the square of an integer that is provided as input.
n = int(input()); print(n * n)

Write specifications as imperatives.

Avoid meandering descriptions.

Output the square of an integer that is provided as input.
n = int(input()); print(n * n)

Be succinct. Eliminate needless words.

☞ Repeatedly improve comments by relentless copy editing.

Input an integer, and output the square of that integer.
n = int(input()); print(n * n)

By convention, state input before output.

Input an integer, and output its square.
n = int(input()); print(n * n)

Use pronouns.

Input integer k, and output k squared.
n = int(input()); print(n * n)

Use letters as pronouns.

Input integer j, and output j squared.
n = int(input()); print(n * n)

Use letters as pronouns.

The scope of such a pronoun is local to the specification.

Input integer n, and output n squared.
n = int(input()); print(n * n)

Use letters as pronouns, or as the names of variables.

Input integer n, and output n squared.
print(math.pow(int(input()), 2)

But in this implementation there is no variable n, so n must be a pronoun.

Use letters as pronouns, or as the names of variables.

Input integer n, and output n*n.
n = int(input()); print(n * n)

Use programming-language expressions in specifications, if you wish.

Input integer x, and output the number n such that n*n=x.
print(math.sqrt(int(input()))

But an expression in a specification isn’t necessarily computed.

Suppose, in a program, you need to exchange the values of variables x and y.

Program

Write the specification as if in a higher-level programming language.

#.Swap x and y.

☞ Write comments as an integral part of the coding process, not as
afterthoughts.

Defer implementation so you don’t get distracted. Move on to other matters.

#.Swap x and y.

other matters

☞ Write comments as an integral part of the coding process, not as
afterthoughts.

Or implement it now, if simple enough to not get distracted.

Swap x and y.
temp = x
x = y
y = temp

other matters

☞ Write comments as an integral part of the coding process, not as
afterthoughts.

Then ignore it in considering the specification’s relationship to other matters.

Swap x and y.
temp = x
x = y
y = temp

other matters

Let your eye skip over the implementation.

☞ Write comments as an integral part of the coding process, not as
afterthoughts.

Swap x and y.
...

other matters

Let your eye skip over the implementation
as if it were elided.

Then ignore it in considering the specification’s relationship to other matters.

☞ Write comments as an integral part of the coding process, not as
afterthoughts.

An implementation can include another specification

Swap x and y.

x = y
y = temp

other matters

#.Copy x to temp.

which is then implemented.

Swap x and y.

x = y

y = temp

other matters

Copy x to temp.
temp = x

A specification faces two directions, like the Roman god Janus.

Swap x and y.

x = y

y = temp

other matters

Copy x to temp.
temp = x

Outward, it is part of the implementation of an encompassing specification.

Swap x and y.

x = y

y = temp

other matters

Copy x to temp.
temp = x

Inward, it is a specification that is being implemented.

Swap x and y.

x = y

y = temp

other matters

Copy x to temp.
temp = x

Avoid redundant specifications that say the obvious.

other matters

☞ Omit specifications whose implementations are at least as brief and
clear as the specification itself.

Copy x to temp.
temp = x

Avoid redundant specifications that say the obvious.

☞ Omit specifications whose implementations are at least as brief and
clear as the specification itself.

other matters

temp = x

Program

Specification.

Implementation

A specification is a contract with the rest of the program that says what
must be accomplished, not how to do so.

Proviso: As long as the program does this and that.
Promise: The specification (and its implementation) will do thus and such.

A specification helps to control complexity.

The contract (double line) partitions code into the specification and its
implementation (on the one hand), and the rest of the program (on the other).

Program

Specification.

Implementation

A specification is both constraining and liberating.

Constraining: (If the proviso is met) then it must do what is required.
Liberating: But its implementation is free to do so in any way it wants.

Program

Specification.

Implementation

A specification promotes pliability and comprehensibility.

Pliability: The implementation can be changed without affecting the rest of
the program.

Comprehensibility: The program can ignore implementation details not
mentioned by the specification.

Program

Specification.

Implementation

Specifications encapsulate details and hide information behind abstraction
barriers.

Encapsulates detailsThese notions are central to object-oriented programming (discussed later, but
already relevant at the level of statement specifications).

Program

Specification.

Implementation

#.Input integer n, and output n squared.

An Input/Output specification (“I/O spec”) reads and writes external data

Code

Computer

Processor
Memory

Values

input sequence

input cursor

output sequence

#.Given integer variable n, let variable s be n squared.

Alternatively, an I/O spec sets values of some variables from values of
other variables, leaving the external data unchanged.

Code

Computer

Processor
Memory

Values

input sequence

input cursor

output sequence

#.Given integer variable n, let variable s be n squared.

4n

9s

Before

4n

16s

After

input variable

output variable

Alternatively, an I/O spec sets values of some variables from values of
other variables, leaving the external data unchanged.

#.Given before state, establish after state.

In general, an I/O spec requires changing a before state into an after state.

#.Given precondition, establish postcondition.

Before After

In general, an I/O spec requires changing a before state into an after state.

described by precondition described by postcondition

#.Swap x and y.

Use pronouns to distinguish the before and after values of a variable that
is both input and output

4x

9y

Before

9x

4y

After

input variable

output variableinput variable

output variable

#.Given x=X and y=Y, establish x=Y and y=X.

Use pronouns to distinguish the before and after values of a variable that
is both input and output

4x

9y

Before

9x

4y

After

input variable

output variableinput variable

output variable

#.Given x≥0, let y be the square root of x.

A specification says what must happen when the precondition holds

4x

9y

Before

4x

2y

After

input variable

output variable

#.Given x≥0, let y be the square root of x.

But says nothing about what may happen otherwise.

-4x

9y

Before

-4x

9y

After

input variable

output variable

#.Given x≥0, let y be the square root of x.

But says nothing about what may happen otherwise.

-4x

9y

Before After

input variable
arbitrary

#.Given x≥0, let y be the square root of x.

Reaching a specification whose precondition doesn’t hold is indicative of an
error, e.g., we expect x to be nonnegative, so it was incorrectly computed.

-4x

9y

Before After

input variable
arbitrary

Interrupt a program’s execution. Before powering the computer down,
save all that you will need to resume later. This is the state.

state and state space

The effect of executing code is to transition from one state to another.

state transition

The specification requires transition from any
state satisfying the precondition to some state
satisfying the postcondition.

precondition to postcondition

#.Given precondition, establish postcondition .

The specification requires transition from any
state whatsoever to a state where the output
ends with “Hello World”.

precondition to postcondition

#.Output “Hello World”.

The specification requires transition from any state
containing variables x and y to a state where the
contents of x and y have been exchanged.

#.Swap x and y.

precondition to postcondition

In code, Boolean expressions control execution flow:

Set y to the square root of x if x is
not negative, and 0 otherwise.
if x >= 0:
 y = math.sqrt(x)
else:
 y = 0

precondition to postcondition

Define sets of states either in English, or using Boolean expressions.

In specifications, Boolean expressions define state sets:

#.Given x≥0, let y be the square root of x.

Specifically, the set of all states in which the given
Boolean expression is true.

precondition to postcondition

Define sets of states either in English, or using Boolean expressions.

For example,

Given x≥0, let y be the square root of x.
y = math.sqrt(x)

or

Given x≥0, let y be the square root of x.
y = -math.sqrt(x)

precondition to postcondition

Transition to any state satisfying the postcondition is allowed.

A state either satisfies a condition, or it doesn’t.

condition

B

A

A weakened condition satisfies more states than the original condition.

weakened condition

A strengthened condition satisfies fewer states than the original condition.

strengthened condition

A geographical example:

condition

NYC, the city of New York.

weakened condition

NY, the (USA) state of New York.

NYC, the city of New York.

A geographical example:

strengthened condition

NY, the (USA) state of New York.

NYC, the city of New York.

Manhattan, the borough of NYC.

A geographical example:

Given n!=0, return x/n.
def nth(x:int, n:int) -> int:
 return x / n

Methods can protect themselves from misuse by their clients by explicitly
checking the validity of their arguments, and aborting execution if any are
invalid.

Such a protection may derive from a built-in check, e.g., integer division by
0 aborts execution:

Given n!=0, let y be the nth part of x.
y = nth(x, n)

Consider this computation. If n turns out to be 0 by mistake, method nth
will abort execution:

Compute n!=0 such that blah blah.
...

Whatever.
...

Aborting execution early is far better than having Whatever crash
(possibly) much later due to a crazy value of n.

Given n!=0, do Whatever.
...

This similar code is just as vulnerable to the error in the computation of n,
but without the protection of nth, will likely crash in Whatever.

Compute n!=0 such that blah blah.
...

Given n!=0, do Whatever.
assert n!=0, "blah blah computed a zero n"
...

It can protect itself by doing the same check as nth using an assert:

Compute n!=0 such that blah blah.
...

Abort execution early if the precondition of Whatever doesn’t hold

Given n!=0, do Whatever.
...

Compute n!=0 such that blah blah.
...
assert n!=0, "blah blah computed a zero n"

or if the postcondition of blah blah doesn’t hold.

It can protect itself by doing the same check as nth using an assert:

Use of assert is preferable to debugging.

Given n!=0, do Whatever.
...

Compute n!=0 such that blah blah.
...
assert n!=0, "blah blah computed a zero n"

It can protect itself by doing the same check as nth using an assert:

#.This allows each specification to be read separately and
not confused with a next, quite different specification.

#.This is a long specification stretching over multiple
lines. When it does so, the “continuation lines” have
their own hash marks (#), followed by three spaces.

Long specifications can continue on multiple lines, but need their own #.

Declaration Specifications take a data-centric perspective.

Declaration-of-one-variable # Specification.

A declaration specification provides a representation invariant for the variable
that characterizes the value contained therein. It is a global precondition for
every statement in the scope of the variable (except for brief moments before
the variable has been updated).

The specification is akin to a glossary entry, and can be used as such. Think of
the specification as being exactly what you want to know (or be reminded of)
when inspecting or writing code that uses the variable.

Example: Suppose input values are to be read and “processed”.

Here are two specifications that provide different possible representation invariants
for the variable count.

count: int # Number of input values read so far.

count: int # Number of input values processed so far.

In the first case, count should be incremented immediately upon reading a value. In
the second case, count is only incremented when the program gets around to
processing the value it has already read.

Example: A group of related variables, called a data structure, may share a
representation invariant. In this case, it is advantageous to provide a specification for
the whole group as well as for the individual components.

A[0..size-1] are the current int items in a list, 0≤size≤max_size.
A: list[int] # A[] is the receptacle for items of a list.
size: int # size is the current number of items in A[], 0≤size≤max_size.
max_size: int # max_size is the maximum number of items storable in A[].

The representation invariant characterizes how A, size, and max_size relate to one
another.

0

A items of list unused

s
iz

e

m
a

x
S

iz
e

Alternate form:

Some IDE editors also support a slightly different syntax for Declaration Specifications:

Declaration-of-one-variable
"""Specification."""

In such editors, you may hover over the variable name (in a use distant from
the declaration) and a helpful pop-up containing the specification appears.

Alternate form:

Some IDE editors also support a slightly different syntax for Declaration Specifications:

Declaration-of-one-variable
"""Specification."""

In such editors, you may hover over the variable name (in a use distant from
the declaration) and a helpful pop-up containing the specification appears.

If you use this form of Declaration Specification, it is best to separate it from
the next line with blank line, so that it is clear that the specification goes with
the variable being declared before it.

def name(parameters) -> type:
 """Specification."""
 block

A method specification describes the effects (if any) and the return value (if any)
of the method in terms of its parameters. This is its postcondition.

def name(parameters) -> type:
 """Specification."""
 block

def sort(A:list[int], n:int) -> None:
 """sort(A, n) rearranges array A[0..n-1] to be in non-decreasing order."""
 ⟨body of sort⟩

Example

A method specification describes the effects (if any) and the return value (if any)
of the method in terms of its parameters. This is its postcondition.

def max(x: int, y: int) -> int:
 """max(x, y) returns the larger of the values x and y."""
 if x < y:
 return y
 else:
 return x

Example

def name(parameters) -> type:
 """Specification."""
 block

A method specification describes the effects (if any) and the return value (if any)
of the method in terms of its parameters. This is its postcondition.

A method specification may restrict its parameters. This is its precondition.

def find(A: list[int], n: int, v: int) -> int:
 """
 Given int array A[0..n-1] sorted in non-decreasing order, and int v, find(A, n, v)
 returns an index k where A[k]==v, or returns n if v does not occur in A.
 """"
 ⟨blank line⟩
 ⟨body of find⟩

Example

def name(parameters) -> type:
 """Specification."""
 block

A method specification may restrict its parameters. This is its precondition.

def find(A: list[int], n: int, v: int) -> int:
 """
 Given int array A[0..n-1] sorted in non-decreasing order, and int v, find(A, n, v)
 returns an index k where A[k]==v, or returns n if v does not occur in A.
 """
 ⟨blank line⟩
 ⟨body of find⟩

Example

def name(parameters) -> type:
 """Specification."""
 block

As with variable specifications, think of a method specification as being exactly
what you want to know (or be reminded of) in a pop up of an IDE’s editor either
when inspecting code that uses the method, or when contemplating a call to it.

class name:
 """Specification."""
 declarations-statements-and-method-definitions

A class specification summarizes the class’s purpose, functionality, and history.
The specifications of the class’s public methods (and variables) are implicitly part
of the class specification, but a list of them (without specifications) is common.

class Rational:
 """
 Rational. A module for the manipulation of rationals, including operations
 for +, -, *, /, conversion to Str, and equality.
 Author: Joe Blow.
 Created: 12/25/2022.
 Revision History: Converted to use unbounded integers, 12/25/2023.
 """
 ⟨blank line⟩
 ⟨body of class Rational⟩

Class specifications are often more descriptive and historical than the other
forms of specification.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

