
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Prerequisites

Copyright©2024 by Tim Teitelbaum; Most recent revision, 12/12/2024

Prerequisite notions used for the rest of the book are presented here:

• Programming Concepts
• Programming Constructs
• English Conventions
• Hardware/OS Concepts [optional]

Programming Concepts

algorithm. An algorithm is a method for solving a problem, or
performing a task.

program. A program is an algorithm written down in a programming
language.

programming language. A programming language is a system of
notation for programs that can be executed by a computer.

computer. A computer is a device for executing programs written in a
programming language. A computer has a processor and a
memory.

processor. A processor is a device that can obey the instructions of a
machine-code program.

memory. A memory is a device that stores both machine code and
values.

machine code. Machine code is a low-level programming language
specific to a particular processor.

execution. To execute a program is to perform the steps it dictates.
Execution is also known as running the program. Execution of a
machine-code program follows the fetch-execute cycle, whereby
the processor repeatedly performs the two steps:

• Fetch the next machine-code instruction from memory.

• Execute that instruction.

Analogously, execution of a program written in a high-level
language repeatedly performs two steps:

• Fetch the next statement.

• Execute that statement.

environment. A program is executed by a computer in an environment
that includes its external data, i.e., its input data and its output
data:

external data. Input data are a linear sequence of characters, with a

distinguished point denoted by the input cursor that indicates

the next character to be input. Output data are a linear
sequence of characters, to which the program can append at the
end.

Code

Computer

Processor
Memory

Values

input sequence

input cursor

output sequence

compiler. A compiler is a program that can translate a program written
in a high-level programming language, e.g., Java, into an
equivalent program written in a low-level programming language,
e.g., machine code for the Intel x86 family of processors.

interpreter. An interpreter is a program that can execute a program
written in a high-level language without first using a compiler to
translate it to machine code.

value. A value is an entity that is manipulated by a program. Values have
types.

type. The type of a value is a categorization that determines how the
value can be used in computation.

variable. A variable is a named memory location that can contain a
value. A variable is depicted by a box, prefixed by its name, and
containing its value.

assignment. Assignment is the act of storing a value in a variable,
thereby overwriting its previous contents.

valuename

statement. A statement is a programming language construct whose
execution has an effect on the state of execution.

state. The state of a program’s execution consists of a location in its
code, the values of its variables, the text in its input and output
data, and the position of its input cursor.

effect. An effect is a change in the state of a program’s execution. The
program is said to transition from one state to another.

location. A location in code is the statement being executed, and the
ordered list of method call sites whose invocations are not yet
complete.

expression. An expression is a programming language construct whose
evaluation yields a value. An arithmetic expression is an
expression whose value has a numeric type.

condition. A condition is an expression whose value is logical rather than
numeric, i.e., either True or False. Such values are also known as
type bool.

evaluation. To evaluate an expression is to perform its operations on its
operands. To evaluate a statement (or a declaration) is to cause
its effect. To evaluate a definition is to cause the defined entity to
come into existence.

dynamic typing. Some languages (e.g., Python) do not require that
variables have fixed and specific types, i.e., a variable that has been
assigned a value of one type can subsequently be assigned a value
of a different type. This is known as dynamic typing. In such
languages, type errors (e.g., attempting to add non-arithmetic
values) can only be detected during program evaluation.

static typing. Other languages (e.g., Java), in contrast, require that variables
have a single fixed and specific type that is established in advance of
the variable’s creation. Values assigned to a variable are required to
have types that are compatible with the given type of the variable.
This is known as static typing. In such languages, type errors (e.g.,
attempting to add non-arithmetic values) can be detected and
prevented by the compiler before program evaluation.

declaration. A declaration is a programming language construct whose
execution has the effect of creating a variable. The name of a variable
has a scope, and the variable has a lifetime. In statically-typed
languages, the type of a variable is typically provided in its declaration.

scope. The scope of a variable is the portion of a program’s text where the
variable’s name is meaningful.

lifetime. The lifetime of a variable is the time interval within a program’s
execution during which the variable exists.

soft typing. Optional type hints on variables allow some type errors to be
flagged statically, i.e., before program execution, but allow execution to
proceed regardless, with execution aborted if a type error is detected
dynamically.

1-D array. A one-dimensional array is a linear sequence of variables
indexed by consecutive integers, starting at 0.

2-D array. A two-dimensional array is a rectangular arrangement of
variables indexed by pairs of integers, the row and column, each
of which starts at 0.

scalar. A scalar variable is a variable that is not an array.

0 1 2 3 …

name …

name 0 1 2 …

0 …

1 …

2 …

3

… … … … …

definition. A definition is a programming language construct that creates
a method or a class.

method / procedure / function. A method is a named, parameterized
sequence of declarations and statements that can executed by
invoking (or calling) it from a statement or an expression.
Methods have return-types. If the return type is None, the
invocation only has effect, and can only appear in a statement. If
the return-type is non-None, the method is known as a function,
its invocation yields a value of the given type, and can appear in
appear in an expression or statement. The return value of a
function that is invoked as a statement is discarded. Methods are
also known as procedures.

class. A class is a group of related declarations and definitions. It is
common to reserve the term “method” for a procedure this is
defined within a class, and to reserve the term “function” for a
procedure that is defined outside of a class.

read-eval-print loop. An interactive programming language environment
in which a language construct (e.g., an expression, statement,
declaration, or definition) is obtained from the user, evaluated,
and its value printed to the console. This is also known as a REPL
or a shell.

Programming Constructs

def main() -> None:
 """Output the Integer Square Root of an integer input."""
 # Obtain an integer n≥0 from the user.
 n: int = int(input("Enter integer:"))

 # Given n≥0, output the Integer Square Root of n.
 # ---
 # Let r be the integer part of the square root of n≥0.
 r: int = 0
 while (r + 1) * (r + 1) <= n:
 r += 1

 print(r)
main()

☞

def main() -> None:
 """Output the Integer Square Root of an integer input."""
 # Obtain an integer n≥0 from the user.
 n: int = int(input("Enter integer:"))

 # Given n≥0, output the Integer Square Root of n.
 # ---
 # Let r be the integer part of the square root of n≥0.
 r: int = 0
 while (r + 1) * (r + 1) <= n:
 r += 1

 print(r)
main()

☞

def main() -> None:
 """Output the Integer Square Root of an integer input."""
 # Obtain an integer n≥0 from the user.
 n: int = int(input("Enter integer:"))

 # Given n≥0, output the Integer Square Root of n.
 # ---
 # Let r be the integer part of the square root of n≥0.
 r: int = 0
 while (r + 1) * (r + 1) <= n:
 r += 1

 print(r)
main()

☞

def main() -> None:
 """Output the Integer Square Root of an integer input."""
 # Obtain an integer n≥0 from the user.
 n: int = int(input("Enter integer:"))

 # Given n≥0, output the Integer Square Root of n.
 # ---
 # Let r be the integer part of the square root of n≥0.
 r: int = 0
 while (r + 1) * (r + 1) <= n:
 r += 1

 print(r)
main()

☞

def main() -> None:
 """Output the Integer Square Root of an integer input."""
 # Obtain an integer n≥0 from the user.
 n: int = int(input("Enter integer:"))

 # Given n≥0, output the Integer Square Root of n.
 # ---
 # Let r be the integer part of the square root of n≥0.
 r: int = 0
 while (r + 1) * (r + 1) <= n:
 r += 1

 print(r)
main()

We refer to statements that create variables as declarations.
Standard usage would just refer to them as statements.

☞

def main() -> None:
 """Output the Integer Square Root of an integer input."""
 # Obtain an integer n≥0 from the user.
 n: int = int(input("Enter integer:"))

 # Given n≥0, output the Integer Square Root of n.
 # ---
 # Let r be the integer part of the square root of n≥0.
 r: int = 0
 while (r + 1) * (r + 1) <= n:
 r += 1

 print(r)
main()

☞

def main() -> None:
 """Output the Integer Square Root of an integer input."""
 # Obtain an integer n≥0 from the user.
 n: int = int(input("Enter integer:"))

 # Given n≥0, output the Integer Square Root of n.
 # ---
 # Let r be the integer part of the square root of n≥0.
 r: int = 0
 while (r + 1) * (r + 1) <= n:
 r += 1

 print(r)
main()

☞

def main() -> None:
 """Output the Integer Square Root of an integer input."""
 # Obtain an integer n≥0 from the user.
 n: int = int(input("Enter integer:"))

 # Given n≥0, output the Integer Square Root of n.
 # ---
 # Let r be the integer part of the square root of n≥0.
 r: int = 0
 while (r + 1) * (r + 1) <= n:
 r += 1

 print(r)
main()

☞

def main() -> None:
 """Output the Integer Square Root of an integer input."""
 # Obtain an integer n≥0 from the user.
 n: int = int(input("Enter integer:"))

 # Given n≥0, output the Integer Square Root of n.
 # ---
 # Let r be the integer part of the square root of n≥0.
 r: int = 0
 while (r + 1) * (r + 1) <= n:
 r += 1

 print(r)
main()

☞

def main() -> None:
 """Output the Integer Square Root of an integer input."""
 # Obtain an integer n≥0 from the user.
 n: int = int(input("Enter integer:"))

 # Given n≥0, output the Integer Square Root of n.
 # ---
 # Let r be the integer part of the square root of n≥0.
 r: int = 0
 while (r + 1) * (r + 1) <= n:
 r += 1

 print(r)
main()

☞

def main() -> None:
 """Output the Integer Square Root of an integer input."""
 # Obtain an integer n≥0 from the user.
 n: int = int(input("Enter integer:"))

 # Given n≥0, output the Integer Square Root of n.
 # ---
 # Let r be the integer part of the square root of n≥0.
 r: int = 0
 while (r + 1) * (r + 1) <= n:
 r += 1

 print(r)
main()

A statement is evaluated for its effect.

variable = expression

Meaning: Assign the value of expression to the variable.

variable += 1

Meaning: Short for variable=variable+1; and called auto-increment.

variable -= 1

Meaning: Short for variable=variable-1; and called auto-decrement.

if condition1: block1
elif condition2: block2
...
elif: conditionn-1: blockn-1
else: blockn
Meaning: Evaluate each conditionk, in turn, until the first that is found to be True;

then execute the corresponding blockk. If all conditionk are False, execute
blockn. If there are no elif clauses present, and if condition1 is False,
execute blockn, and if no else clause is present, do nothing.

while condition: block

Meaning: Repeatedly execute the block provided the condition is True
before each execution. A while-statement is called a loop, and its
constituent block is called its body. Executing the body zero or
more times is called iterating.

for name in range(start, stop, step): block

Meaning: Repeatedly execute block, letting name take on the ordered
sequence of values in the designated range. Those values may be
ascending or descending, depending on the sign of step. Each of
start, stop, and step are expressions. It is a runtime error for the
value of step to be 0. If step is omitted, it is assumed to be +1,
and if start is also omitted, it is assumed to be 0.

For a positive step, the k-th value in the range is start+step*k,
where k starts at 0, and the k-th value is strictly less than stop.

For a negative step, the k-th value in the range is also
start+step*k, where k starts at 0, but the value must be strictly
greater than stop.

If-statements, while-statements, and for-statements are compound-statements;
all others (in our limited language) are simple-statements.

A block is either:
• A sequence of semicolon-separated simple-statements (on the same line), or
• A NEWLINE, followed by an indented list (on separate lines) of compound-

statements or semicolon-separated simple-statements (on the same line).

Meaning: Execute the statements in sequence.

if condition: block
else: block

A block is either:
• A sequence of semicolon-separated simple-statements (on the same line), or
• A NEWLINE, followed by an indented list (on separate lines) of compound-

statements or semicolon-separated simple-statements (on the same line).

Meaning: Execute the statements in sequence.

A block is either:
• A sequence of semicolon-separated simple-statements (on the same line), or
• A NEWLINE, followed by an indented list (on separate lines) of compound-

statements or semicolon-separated simple-statements (on the same line).

if condition: print(1); n = 0; print(3)
else: block

Meaning: Execute the statements in sequence.

if condition: print(1); n = 0; print(3)
else: block

A block is either:
• A sequence of semicolon-separated simple-statements (on the same line), or
• A NEWLINE, followed by an indented list (on separate lines) of compound-

statements or semicolon-separated simple-statements (on the same line).

Meaning: Execute the statements in sequence.

if condition: print(1); n = 0; print(3)
else: block

A sequence of semicolon separated simple-statements

simple-statement
simple-statement

simple-statement

Meaning: Execute the statements in sequence.

if condition: print(1); n = 0; print(3)
else: block

A block is either:
• A sequence of semicolon-separated simple-statements (on the same line), or
• A NEWLINE, followed by an indented list (on separate lines) of compound-

statements or semicolon-separated simple-statements (on the same line).

Meaning: Execute the statements in sequence.

if condition: print(1); n = 0; print(3)
else:
 print(4); print(5)
 while condition: block

 n = n + 1

A block is either:
• A sequence of semicolon-separated simple-statements (on the same line), or
• A NEWLINE, followed by an indented list (on separate lines) of compound-

statements or semicolon-separated simple-statements (on the same line).

A compound-statement

A sequence of semicolon separated simple-statements

A sequence of semicolon separated simple-statementsin
d

en
te

d
 li

st

Meaning: Execute the statements in sequence.

if condition: print(1); n = 0; print(3)
else:
 print(4); print(5)
 while condition:
 print(6)
 print(7); print(8)
 n = n + 1

A block is either:
• A sequence of semicolon-separated simple-statements (on the same line), or
• A NEWLINE, followed by an indented list (on separate lines) of compound-

statements or semicolon-separated simple-statements (on the same line).

in
d

en
te

d
 li

st
s

A sequence of semicolon separated simple-statements

A sequence of semicolon separated simple-statements

A sequence of semicolon separated simple-statements

A sequence of semicolon separated simple-statements

Meaning: Execute the statements in sequence.

print(expressions)

Meaning: Append the values of expressions to the output data separated
by spaces, and advance to the beginning of the next line in the
output data.

print(expressions, end='')

Meaning: Append the values of expressions to the output data separated
by spaces, and remain on the same line in the output data.

print()

Meaning: Advance to the beginning of the next line in the output data.

name(arguments)

Meaning: Invoke the named void method with the values of arguments,
which is a comma-separated list of expressions. Invoking a
method with a list of arguments has the effect of:

• evaluating each argument expression,
• declaring new variables for the method’s parameters,
• assigning the argument values to the corresponding

parameters,
• evaluating the block of the method, and
• returning to the invocation site, either by execution of a

return statement, or by completing execution of the
method’s body.

return

Meaning: Return to the method invocation site. This form of return
statement is only permitted in a method of type None.

return expression

Meaning: Return to the method invocation site with the value of
expression. If the method has non-None type t, expression must
have type t. This form of return statement is not permitted in a
method of type None.

pass

Meaning: Do nothing.

A variable is a location in memory that can contain a value.

Meaning: The variable with the given name.

name

Meaning: The named variable that is declared in class class-name, e.g.,
math.pi. Also, a named method of class-name, e.g.,
math.sqrt.

class-name.name

Meaning: The value of expression is known as an index, and the named 1-D
array is known as a subscripted variable. Let k be the value of
expression. The variable denoted by name[expression] is the kth
variable of the array, starting at the 0th variable. If k is not less than
the length of the array, a runtime error is triggered. Negative
indices do not raise an error, but should be avoided.

name[expression]

Meaning: The named variable is a 2-D array, and the meaning is similar to
the 1-D case. Expression1 and expression2, known as the row and
column indices, are required to be less than the height and width
of the named array, respectively.

name[expression1][expression2]

Meaning: The value of expression is known as an index, and the named 1-D
array is known as a subscripted variable. Let k be the value of
expression. The variable denoted by name[expression] is the kth
variable of the array, starting at the 0th variable. If k is not less than
the length of the array, a runtime error is triggered. Negative
indices do not raise an error, but should be avoided.*

name[expression]

Meaning: The named variable is a 2-D array, and the meaning is similar to
the 1-D case. Expression1 and expression2, known as the row and
column indices, are required to be less than the height and width
of the named array, respectively.*

name[expression1][expression2]

* In most programming languages, negative indices
are considered an error. In contrast, Python interprets
negative indices as offsets from the end of the array.

A expression is evaluated to obtain its value.

• Constants

• Primitives

• Binary Operations

• Unary Operations

• Grouping

0, 1, 2, …, -1, -2, … (type int)
6.0221409e+23, … (type float)
True, False (type bool)
'a', 'b', 'c’, …, '\u0000' (type Str)
"characters" (type Str)

Meaning: The value contained in the variable.

variable

Meaning: The value returned by an invocation of the named non-None
method with the values of the arguments. The final statement
executed by the method must be a return-statement, which
provides the value for the method invocation. (See method
invocation under statements.)

name(arguments)

Meaning: Read the next line of input, which is assumed to contain a
single base-10 integer numeral, convert it to its binary fixed-point
form, return that int, and advance the input cursor to the
beginning of the next line. The second form prints a prompt to
the terminal given by the str value of expression.

int(input())

int(input(expresson))

Meaning: A 1-dimensional array of variables whose length is given by the
value of expression2, and whose initial values are the value of
expression1. The variables of the array are known as its elements,
and are indexed by nonnegative integers, starting at 0.

[expression1 for _ in range(expression2)]

Meaning: A 2-dimensional array of variables whose height and width are
given by the values of expressions h and w, respectively, and
whose initial values are given by the value of expression. The
variables of the array are known as its elements, and are indexed
by pairs of nonnegative integers, starting at 0.

[[expression for _ in range(w)] for _ in range(h)]

Meaning: A 1-dimensional array of variables whose length is given by the
value of expression2, and whose initial values are the value of
expression1. The variables of the array are known as its elements,
and are indexed by nonnegative integers, starting at 0.

[expression1] * expression2

Meaning: A 2-dimensional array of variables whose height and width are
given by the values of expressions h and w, respectively, and
whose initial values are given by the value of expression. The
variables of the array are known as its elements, and are indexed
by pairs of nonnegative integers, starting at 0.

[[expression for _ in range(w)] for _ in range(h)]

[expression1 for _ in range(expression2)]

The second, simpler form, is permissible when the type of
expression1 is a simple type such as int, float, or bool.

 +, -, *, /, //, %, ** (arithmetic)

Meaning: Arithmetic operators “+”, “-”, “*”, and “**” (addition, subtraction,
multiplication, and exponentiation) are standard. Operation “/”
(floating-point division) produces a float quotient . Operation “//”
(integer division) produces an int quotient after truncating the
fractional part. Operation “%” (modulus) is the integer remainder after
integer division.

 <, <=, >, >=, ==, != (relational)

Meaning: Relational operations “<”, “<=”, “>”, “>=”, “==”, and “!=” (less,
less or equal, greater, greater or equal, equal, and not equal) are
standard, and yield bool results, i.e., True or False.

and, or (bool)

Meaning: Logical operation “and” is False if the left operand is False, and is
the value of the right operand, otherwise. Logical operation “or” is
True if the left operand is True, and is the value of the right operand,
otherwise.

 + (concatenation)

Meaning: The operation “+” is concatenation if both operands have type Str.
The function str(…) can be used to convert an arithmetic argument
to its Str representation.

- (arithmetic)
not (bool)

Meaning: The unary operation “-” is arithmetic negation. The unary
operation “not” is logical negation, i.e., “not expression” is True
if expression is False, and False if expression is True.

(expression)

A type is a characterization of a set of values.

int

Meaning: A fixed-point binary integer of unbounded magnitude.

float

Meaning: A signed, 64-bit, floating-point number.

bool

Meaning: Either True or False.

Str

Meaning: A linear sequence of 0 or more Unicode characters.

None

Meaning: There are no values or variables of type None. A method
defined with None as its return type can only be invoked as a
statement for its effect.

list[type]

Meaning: A value of type list[type] is a 1-dimensional array of
variables, each of which has type type.

list[list[type]]

Meaning: A value of type list[list[type]] is a 2-dimensional array of
variables, each of which has type type.

A declaration creates a named variable.

Variables need not be declared; rather, the dynamically first assignment to
a variable creates it.

A lexically-first such assignment to the variable can be considered its
declaration, and can be adorned with an optional type-annotation “:type”
that is available to development tools as a hint.

Variables have scope (the textual region with a program where they
matter), and the position of the declaration identifies that scope. Variables
also have a lifetime, the interval of an execution during which they exist:

• Local variables. Declared or first assigned a value in a method, their
scope is the enclosing method. The lifetime of (each dynamic instance
of) a local variable begins when the variable is first assigned a value (in
a new dynamic instance of the method), and ends when (that instance
of) the method returns.

• Class variables. Declared or assigned a value in a class outside of a
method, their scope is the enclosing class. The lifetime of a class
variable begins when the variable is first assigned a value, and lasts for
the rest of program execution.

name: type = expression

Meaning: Create a variable name and initialize it with the value of
expression. The type-annotation “: type” is optional.

name: list[type] = [list-of-expressions]

Meaning: Create a variable name , which is a 1-D array of type elements,
and initialize it with the values in the comma-separated list-of-
expressions. The type-annotation “: type” is optional.

def name(parameters) -> type: block

Meaning: Define a method with the given name and parameters. If type
is None, the method can only be invoked as a statement for its
effect. If type is non-None, the method can be invoked as an
expression that computes a value. The block is called the body of
the method. Methods with return type None are referred to as
procedures, and methods with non-None return type are referred
to as functions. The type-annotation “-> type” is optional.

class name:
 declarations-and-statements-and-methods

Meaning: Declarations-and-statements-and-methods is a list of
intermixed declarations, statements, and method definition
constructs. A class is a scope within which names of variables and
methods are made accessible to the code therein. Outside the
class, the names of variables, e.g., v, and methods, e.g., m, must
be qualified by the class name, e.g., class-name.v and class-
name.m.

Arguments are values that are provided to a method when it is invoked.

Parameters are variables created when a method is invoked that are initialized
with the values of the corresponding arguments.

Meaning: Before entry to the method being invoked, each argument
expression is evaluated.

arguments is a comma-separated list of expressions

Meaning: On entry to the method being invoked, a variable is created for each name.
Each such variable, known as a parameter, is initialized with the value of the
corresponding argument given in the method invocation. The scope of a
parameter is the method definition in which it appears. The lifetime of
(each dynamic instance of) a parameter begins on the invocation of (a new
dynamic instance of) the method, and ends when (that instance of) the
method returns. Each parameter can have an optional “: type” annotation.

parameters is a comma-separated list of names or name:type pairs

Comments (#) and docstrings (""") are ignored, but are essential to our methodology.

Meaning: Ignored.

any-text-to-end-of-line

Meaning: Ignored.

any-text-to-end-of-line
continuation-of-text-that-doesn’t-fit-on-one-line
. . .
continuation-of-text-that-doesn’t-fit-on-one-line

Meaning: Ignored by execution, but when positioned immediately after

• A method def
• A variable declaration
• A class header

provide standardized places to define:

• What function a method performs
• What data a variable contains
• What interface a class implements

and thereby supports

• Integrated Development Environment (IDE) tools that accelerate coding
• Automatic documentation preparation tools
• Enhanced understanding of your own code.

"""any-text-not-including-triple-quotes"""

English conventions in comments

☞ Write comments as an integral part of the coding process, not as
afterthoughts.

Let variable be text

Meaning: Set the variable (or variables) equal to the value(s) described by text.
Synonymous with “Set variable equal to text”.

Given text1, text2
Meaning: Provided that the state is as described by text1, establish text2.

name

Meaning: The name is either a local indeterminate used in the comment as a
pronoun, or it is an actual program variable, in which case it either
already exists, or is to be declared.

variable[expression1..expression2]

Meaning: The consecutive elements of the array variable with indices in the range
expression1 to expression2, inclusive. When expression2 is less than
expression1, the sub-array referred to is empty, i.e., contains no elements.

⟨expression1, expression2⟩

Meaning: A pair of values, considered as a single entity, consisting of the value of
expression1 and the value of expression2.

s.t. text

Meaning: Such that text.

i.e., text

Meaning: That is to say, text.

e.g., text

Meaning: For example, text.

iff text

Meaning: if and only if text.

resp. text

Meaning: Respectively, text.

in situ

Meaning: In place, e.g., without an extra array of variables.

variable^expression

Meaning: Variable raised to the power given by the value of expression.

Additional concepts [optional]

• Hardware representations

• Operating System mechanisms

bit. A bit is the smallest unit of information in a computer. The word “bit”
is both descriptive (as in, “a small quantity”) and an acronym
(binary digit). A bit can be stored in a 2-state physical device, i.e.,
a switch that is either “on” or “off”, “up” or “down”, etc. By
convention, the two possible states of a bit are known as 0 and 1.

byte. A byte is eight bits. Because each bit in a byte can independently
be 0 or 1, a byte has 28=256 possible values.

byte-addressable memory. A byte-addressable memory consists of an
ordered sequence of bytes (depicted by gray boxes) each of
which has an individual numerical address.

address. An address is the name by which a byte in a memory is known.
A memory’s set of addresses is known as its address space.

0
address

word. A word is the unit of information conveyed to or from a memory in a
single operation. Modern computers typically have 8-byte (64-bit)
words. The locus of a memory-transfer operation is specified by the
address of a single byte, but the transfer involves a whole word in the
vicinity of that byte.

access time. The access time of a memory reference is the time required to
convey a word of information to or from the memory.

RAM. A RAM is a physical device that implements a byte-addressable memory
for which the access time is uniform and independent of the address.
RAM is an acronym for Random Access Memory.

memory hierarchy. A stratification by size, access time, and price. Large memories
are slow, but less expensive/byte. Smaller memories are faster, but more
expensive/byte. Three strata: virtual, physical and cache. Efficiency gain from
locality of memory accesses.

locality. Locality is a measure of the confinement of memory accesses to limited
regions of an address space for extended periods of time. Locality allows
bytes to temporarily reside in a smaller but faster stratum of the memory
hierarchy.

address translation. When a byte at address b in stratum s of one memory
temporarily resides at address b′ in another stratum s′ of memory,
references to b in s is address translated to b′ in s′.

process. A process is a machine-code program in the midst of being executed. A
computer may have multiple active processes at any given moment.
Processes reference locations in virtual memory, where a virtual address
typically corresponds to an offset in a region of disk memory reserved for
the process. A disk may be an actual rotating device, or a solid-state
facsimile of one. Disks have a large address space, and are inexpensive per
byte.

virtual memory. Processes run in a virtual address space, but processors execute
programs in physical memory, where the correspondence between virtual
and physical addresses is maintained dynamically by address translation.

physical memory. The physical memory of a computer is a RAM that is shared by
all active processes of the computer. Incremental installation of additional
RAM increases the amount of virtual memory that can be mapped into
physical memory at the same time, thereby reducing paging, and speeding
execution.

0
virtual address

0
physical address

b

b′

Processor

address request

0
virtual address

0
physical address

b

b′

Processor

address request

0
virtual address

0
physical address

b

b′

Processor

address request

0
virtual address

0
physical address

b

b′

Processor

value transfer

0
virtual address

0
physical address

b

Processor
address request

0
virtual address

0
physical address

b

Processor
address request

not currently in physical memory

address request

0
virtual address

0
physical address

b

b′

Processor

not currently in physical memory

address request

0
virtual address

0
physical address

b

b′

Processor

not currently in physical memory

address request

0
virtual address

0
physical address

b

b′

Processor

not currently in physical memory

address request

0
virtual address

0
physical address

b

b′

Processor

address request

0
virtual address

0
physical address

b

b′

Processor

address request

0
virtual address

0
physical address

b

b′

Processor

value transfer

cache memory. A cache is a small but very fast memory that temporarily
represents bytes of physical memory. Abstractly, address mapping from
physical to cache memory is similar to address mapping from virtual
memory to physical memory.

array layout. One-dimensional arrays of length n of m-byte elements are typically
laid out in n consecutive m-byte groups, starting at some base address in
virtual memory:

Access to the kth array element requires computing its virtual address as base+m·k,
and then using an operation that either loads or stores values at that location,
where the corresponding physical-memory location is obtained by address
mapping.

The simple model whereby the time to access an array element A[k] is constant,
and is independent of the value of k, assumes that entire array already resides in
physical memory, and ignores the time involved in paging regions of the array into
physical memory.

0 1 kbase n
address

array layout. One-dimensional arrays of length n of m-byte elements are typically
laid out in n consecutive m-byte groups, starting at some base address in
virtual memory:

Access to the kth array element requires computing its virtual address as base+m·k,
and then using an operation that either loads or stores values at that location,
where the corresponding physical-memory location is obtained by address
mapping.

The simple model whereby the time to access an array element A[k] is constant,
and is independent of the value of k, assumes that entire array already resides in
physical memory, and ignores the time involved in paging regions of the array into
physical memory.

0 1 kbase n
address

We assume (as a fiction until Chapter 12) that the type list[type] is represented in memory as an array.

numerical representation. A numerical representation is a convention whereby a
sequence of bits is interpreted as the representation of a number. There are
two principal forms of numerical representation: fixed point and floating
point.

fixed-point binary integer. A fixed-point binary integer is a sequence of bits
interpreted positionally as powers of 2. Thus, just as the decimal fixed-point
integer 101 represents (1·102)+(0·101)+(1·100), i.e., a hundred and one, so
the binary fixed-point integer 101 represents (1·22)+(0·21)+(1·20), i.e., five.

When N-bits are interpreted as an unsigned integer, they can represent 0
through 2N-1 The type int is an unbounded integer.

two’s-complement integer. A convention for the representation of signed
integers in N bits. A leading 0 bit followed by the remaining N-1 bits is
interpreted as a positive (N-1)-bit binary integer, and a leading 1 bit followed
by the remaining N-1 bits is interpreted as a negative binary integer.

In this case, instead of the next number after 2N-1-1 being interpreted as the
positive number, 2N-1, it is interpreted as the most negative negative number, -2N-1.
Continuing “up”, we eventually reach all 1s, which as an unsigned integer would be
the largest value, but in two’s complement, is interpreted as -1.

0 2N-1 2N-1

-1-2N-1 0 2N-1-1

N bits as unsigned

N bits as signed

floating-point number. A floating-point number is a number in scientific notation.
It consists of a signed mantissa, and a signed exponent. In base-2, if the
value of the mantissa is m, and the value of the exponent is e, then the
number represented is m·2e.

The float type has 64 bits. The exact interpretation of bits need not be
understood.

The correspondence between binary (base-2) floating-point numbers (used
internally) and decimal (base-10) floating-point numbers (used externally for
input and output) is approximate.

character set. A character set is an encoding of symbols as a sequence of bits, e.g.,
Unicode.

Unicode. The international Unicode standard is a character set intended to
represent almost every known symbol on Earth, including many emojis. The
characters in a Str are Unicode.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109

