
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Debugging

Copyright©2024 by Tim Teitelbaum; Most recent revision, 12/03/2024

To err is human, and despite best efforts, problems inevitably arise.
Errors in code are called bugs, and finding them is debugging.

☞ Validate program output thoroughly.

☞ Avoid debugging like the plague.

Bugs can be overt, i.e., their presence is manifest, or bugs can be
latent, i.e., not manifest, and lying in wait to bite.

The purpose of testing is to make as many bugs apparent as possible.

Bugs are revealed when code is run on particular test data. A program
that runs to correctly on some particular test data is not necessarily
bug free.

Bugs may manifest as:

• Wrong output
• Infinite loops
• Execution crashes
• Abysmal performance

We present six bugs in real code, and describe how one can track
them down.

We then demonstrate a debugger, a tool that assists in debugging.

Finally, we describe defensive programming, a prophylactic technique
for revealing bugs in a helpful manner.

☞ Validate program output thoroughly.

In Bugs A through F, we deliberately introduce bugs into the code for Running
a Maze from Chapter 15, or Appendix V.

For each bug, we run the program on the input maze shown.

Each bug is presented in four sections:

• Mistake
• Observed effect
• Forward trace
• Debugging

A mistake made in the code results in an observed effect, which is explained
with the aid of a forward trace of execution. We then present how debugging
could start from the observed effect, and discover the offending mistake.

The essence of the approach is to selectively instrument code so that it emits
increasingly useful, partial forward traces that eventually allow you to
pinpoint the bug.

Example Bugs:

• Mistake: We coded is_facing_wall incorrectly, writing “>=” instead of “==”:

• Observed effect: Execution completes normally after emitting the incorrect
output: “Unreachable”.

• Forward trace: Recall that _WALL is -1 and _NO_WALL is 0. Because the bug in
is_facing_wall causes it to always return True, the rat fails to find a way
out of the upper-left cell. After three consecutive clockwise turns, it faces
left (d=3), at which point method about_to_repeat returns True, and
_solve completes.

Routine RunMaze.output then calls is_at_cheese, which returns False, so it
prints “Unreachable”.

Bug A: Code instrumentation.

49 def is_facing_wall() -> bool:

50 return MRP._M[MRP._r + MRP._deltaR[MRP._d]

51][MRP._c + MRP._deltaC[MRP._d]] >= MRP._WALL

• Debugging. The output is wrong. Perhaps MRP.input failed to establish a
correct maze in _M. To check, we insert a call to print_maze immediately after
the maze is read in:

We run the program again, and see that input seems to have worked fine.

Method _solve emits no output, so we need to instrument it to get a forward
trace of its actions. We write MRP.print_state, which emits the parameter
string s followed by the _r, _c, _d, and _move components of MRP state:

Bug A: Code instrumentation.

24 # Input a maze of arbitrary size, or output “malformed input”

25 # and stop if the input is improper.

26 def _input() -> None:

27 MRP.input();

MRP.print_maze()

@classmethod
def print_state(self, s: str) -> None:

print(s, MRP._r, MRP._c, MRP._d, MRP._move)

A convenient place to invoke print_state is at the beginning of each iteration
of the loop in _solve, which will provide a top-level trace of the algorithm:

Bug A: Code instrumentation.

29
 30

 31
 32
 33
 34
 35

def _solve() -> None:
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 MRP.print_state("_solve")
 if MRP.is_facing_wall(): MRP.turn_clockwise();
 elif MRP.is_facing_unvisited():
 MRP.step_forward();
 MRP.turn_counter_clockwise()
 else: RunMaze._retract()

We run the program again, and luck out because the output is very short.

It is clear from this trace that line 31 of _solve is repeatedly invoking
turn_clockwise, and that the rat never moves from the upper-left cell. This
can only happen if is_facing_wall is True in every direction.

We have confirmed from the output of print_maze that there is no wall to
the right of the upper-left cell, so the problem must be in is_facing_wall.

Inspection of its code reveals the bug.

This is about as easy as debugging gets: From the observed effect, i.e., the
incorrect output, and from our first attempt at instrumentation, we
converged on the bug in short order.

_solve: 1 1 0 1
_solve: 1 1 1 1
_solve: 1 1 2 1
Unreachable

Bug A: Code instrumentation.

Bug B: Instrumentation can produce vast amounts of output.

• Mistake: We coded is_at_cheese incorrectly, writing “MRP._hi+1” rather than “MRP._hi”:

• Observed effect: Execution completes normally after emitting the same incorrect output
as Bug A: “Unreachable”.

• Forward trace: The rat exhaustively explores the maze, not stopping at the cheese in the
lower-right cell because the bug in is_at_cheese causes it to always return False.

When the rat returns to the upper left, and faces left (d=3), the exploration completes,
and the output routine prints “Unreachable”.

53 def is_at_cheese() -> bool:

54 return (MRP._r == MRP._hi + 1) and (MRP._c == MRP._hi + 1)

Bug B: Instrumentation can produce vast amounts of output.

• Debugging: The observed effect is exactly the same as in Bug A, so we
proceed in the same manner. However, this time the diagnostic output
reveals an exhaustive maze exploration that blows right by the cheese at
⟨r,c⟩ = ⟨9,9⟩.

This is enough information to focus our attention on method
is_at_cheese. Inspection reveals why it returned False when the rat
entered the lower-right cell.

The example illustrates that instrumentation can easily produce vast
amounts of diagnostic output. However, we need not study it in detail
because the salient information is apparent from the sole fact that the rat
reached the cheese at ⟨r,c⟩ = ⟨9,9⟩, and didn’t stop.

Bug B was not much more difficult to diagnose than Bug A.

_solve: 1 1 0 1
_solve: 1 1 1 1
_solve: 1 3 0 2
_solve: 1 3 1 2
_solve: 1 5 0 3
...
_solve: 7 5 2 8
_solve: 9 5 1 9
_solve: 9 7 0 10
_solve: 9 7 1 10
_solve: 9 9 0 11
_solve: 9 9 1 11
_solve: 9 9 2 11
_solve: 9 9 3 11
_solve: 9 7 2 10
...
_solve: 3 1 3 2
_solve: 3 1 0 2
Unreachable

Bug C: Error diagnostics contain vital information.

• Mistake: We coded turn_clockwise incorrectly, forgetting to take the
result of the incrementing expression mod 4:

39 def turn__clockwise() -> None:

40 MRP._d = (MRP._d + 1)

• Observed effect: Execution stops with an “IndexError” exception,
whereupon the following diagnostic message is printed:

Traceback (most recent call last):
 File "...\run_maze.py", line 84, in <module>
 RunMaze.main()
 File "...\run_maze.py", line 13, in main
 RunMaze._solve()
 File "...\run_maze.py", line 31, in _solve
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 File "...\mrp.py", line 50, in is_facing_wall
 return MRP._M[MRP._r + MRP._deltaR[MRP._d]
IndexError: list index out of range

Bug C: Error diagnostics contain vital information.

The message states that there has been an attempt to index an array with
a subscript that is out of range, and that the exception was triggered in
method is_facing_wall on line 50. The remaining lines are the call stack
at the time of the error, and list method invocations that have not yet
returned, i.e., line 84 in the RunMaze module invoked main, which on line
13 invoked _solve, which on line 31 invoked is_facing_wall.

• Forward trace: Because the (incorrect) expression (MRP._d+1) in
turn_clockwise correctly increments _d when it is less than 3, the bug has
no effect until we reach cell 6. There, initially facing left, we expect to turn
clockwise (to face up), and turn clockwise again (to face right). After each
turn, _solve would normally call is_facing_wall to see if another turn is
needed, but the first such invocation attempts to subscript arrays deltaR

and deltaC with an out-of-bounds subscript of 4, and the program stops.

1 2 3 6

4 5

• Debugging: The example illustrates three all-important facts:

1. When a crash occurs, you may know little about how far execution
progressed before stopping.

2. The location where a bug triggers a crash (e.g., is_facing_wall) may
be arbitrarily distant from the location that contains the flaw (e.g.,
turn_clockwise).

3. Error diagnostics can contain vital information.

We know from the diagnostic text that something has gone wrong in:

so the offending index is necessarily attempting to subscript into one of the
three arrays _deltaR, _deltaC, or _M, but we don’t know which.

Bug C: Error diagnostics contain vital information.

49 def is_facing_wall() -> bool:

50
 51

return MRP._M[MRP._r + MRP._deltaR[MRP._d]
][MRP._c + MRP._deltaC[MRP._d]] == MRP._WALL

To learn how far execution progressed before the crash, an easy approach is
to place a call to

after line 30 in the loop of method _solve, i.e., the same as we did for Bugs
A and B. While a vast amount of text may fly by us on the screen, we are
only interested in the last few lines before the crash, so it is of no matter.

We can readily interpret the last two lines as:

• We are in cell 6, and _d was 3.
• We remained in cell 6, and _d became 4.

Knowing that the valid subscript range of deltaR and deltaC is 0-3, we
readily infer that the problem is likely to be the value of _d, i.e., 4.
Staring at the code of turn_clockwise reveals the cause of the problem.

Bug C: Error diagnostics contain vital information.

_solve 1 1 0 1
_solve 1 1 1 1
_solve 1 3 0 2
_solve 1 3 1 2
_solve 1 5 0 3
_solve 1 5 1 3
_solve 1 5 2 3
_solve 3 5 1 4
_solve 3 7 0 5
_solve 1 7 3 6
_solve 1 7 4 6
Traceback…

@classmethod
def print_state(self, s: str) -> None:

print(s, MRP._r, MRP._c, MRP._d, MRP._move)

Bug D: Interleave iterative debugging steps with deduction.

• Mistake: We coded is_facing_unvisited incorrectly, failing to scale the row offset by 2:

59 def is_facing_unvisited() -> bool:

60 return MRP._M[MRP._r + MRP._deltaR[MRP._d]

61][MRP._c + 2 * MRP._deltaC[MRP._d]] == MRP._UNVISITED

• Observed effect: Execution stops with an “IndexError” exception.
The following diagnostic message is printed:

Traceback (most recent call last):
 File "...\run_maze.py", line 84, in <module>
 RunMaze.main()
 File "...\run_maze.py", line 13, in main
 RunMaze._solve()
 File "...\run_maze.py", line 35, in _solve
 else: RunMaze._retract()
 File "...\run_maze.py", line 42, in _retract
 MRP.face_previous()
 File "...\mrp.py", line 69, in face_previous
 while MRP.is_facing_wall() or (MRP._M[MRP._r][MRP._c] - 1 !=
 File "\mrp.py", line 50, in is_facing_wall
 return MRP._M[MRP._r + MRP._deltaR[MRP._d]
IndexError: list index out of range

Bug D: Interleave iterative debugging steps with deduction.

• Forward trace: As the rat proceeds forward, the algorithm in _solve steps
into any cell it is facing that is not blocked by a wall, provided that that cell
is not on the current path, which it determines by invoking the (flawed)
method is_facing_unvisited. Despite the bug, these checks will work
correctly when d=1 or d=3 because, in these cases, the (correct) row
increment is 0, and therefore the missing scaling factor is irrelevant.

However, when d=0 or d=2, is_facing_unvisited will always return
True. Why? Because it will (erroneously) inspect the very same element of
_M that is_facing_wall just inspected. Since there was no wall,
is_facing_unvisited will compare _NO_WALL (which is 0) with
_UNVISITED (which is 0), and return True.

Thus, the rat makes it all the way to the end of the cul-de-sac at cell 8,
whereupon it (correctly) discovers walls in the right, down, and left
directions, but no wall in the up direction. This is the precise moment
when correct execution of is_facing_unvisited to detect the cul-de-sac
is critical.

1 2 3 6 7

4 5 8

Bug D: Interleave iterative debugging steps with deduction.

Because d=0, the element of _M that is_facing_unvisited inspects is
the one that encodes that there is no wall between cells 8 and 7, not the
element that contains the 7 itself. Accordingly, the rat blithely steps
forward into the upper-right cell, overwriting 7 with 9, and then turns
counterclockwise, facing left (d=3).

The program has begun to go haywire.

You may think that the rat will proceed forward, overwriting the existing
path, but this is not what happens.

Recall that is_facing_unvisited works correctly when d=1 or d=3.
Accordingly, the rat now (correctly) detects cell 6 as already visited, which
stops its forward momentum.

Method _retract is then invoked to back out of a (supposed) cul-de-sac
at 9.

1 2 3 6 9

4 5 8

Bug D: Interleave iterative debugging steps with deduction.

In preparation for backing out, _retract invokes face_previous,

which (correctly) identifies cell 8 as the predecessor of cell 9, and orients
the rat facing down.

Method _retract then invokes StepBackward, which sets the upper-right
cell to _UNVISITED, i.e., 0, and moves the rat back into cell 8.

67 def face_previous() -> None:

68 MRP._d = 0

69 while MRP.is_facing_wall() or (MRP._M[MRP._r][MRP._c] - 1 !=

70 MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]

71][MRP._c + 2 * MRP._deltaC[MRP._d]]

72): MRP._d += 1

1 2 3 6 0

4 5 8

Bug D: Interleave iterative debugging steps with deduction.

We are in the unwinding loop of _retract, so once again, face_previous,
is invoked, this time to search for the predecessor of the cell now
numbered 8, but none of its neighbors is numbered 7.

This is a situation that is supposed to never arise. The search runs through
all four legal values of _d, and then invokes is_facing_wall with (an
illegal value of) d=4. This triggers the “IndexError” exception, with the call
stack, as shown.

An important general-purpose takeaway from this forward trace is that
once a bug upsets a carefully-crafted program design, “all hell can break
loose”, at which point anything may happen.

Bug D: Interleave iterative debugging steps with deduction.

• Debugging: We now have to find the bug by reasoning backwards, and
without the benefit of having seen the forward trace in advance.

As with Bug C, the crash occurs in is_facing_wall, but this time in a
different context: _retract called face_previous, which called
is_facing_wall.

As with Bugs A, B, and C, we arrange to call MRP.print_state("_solve")
from the loop of method _solve, and we obtain the output shown at right.
What can we infer from it?

• We are in cell ⟨r,c⟩ = ⟨1,9⟩, and believe that we have made 9 moves.
• We have been in this cell before, when move was 7. We have no

business being there again, but have no idea how this happened.

• We can see that our recent trajectory has been ⟨1,9⟩⇒⟨3,9⟩⇒⟨1,9⟩.

• We can see in the Traceback that we are in the midst of a retraction,
but don’t know when it started.

We place the call print("Enter retract") in _retract, and rerun.

_solve 1 1 0 1
_solve 1 1 1 1
_solve 1 3 0 2
_solve 1 3 1 2
_solve 1 5 0 3
_solve 1 5 1 3
_solve 1 5 2 3
_solve 3 5 1 4
_solve 3 7 0 5
_solve 1 7 3 6
_solve 1 7 0 6
_solve 1 7 1 6
_solve 1 9 0 7
_solve 1 9 1 7
_solve 1 9 2 7
_solve 3 9 1 8
_solve 3 9 2 8
_solve 3 9 3 8
_solve 3 9 0 8
_solve 1 9 3 9
Traceback…

Bug D: Interleave iterative debugging steps with deduction.

, But this output is anomalous, as the retraction should have started
earlier, when we were in ⟨r,c⟩ = ⟨3,9⟩ facing up (d=0) at the 7, which we
must not overwrite. Somehow, the test is_facing_unvisited must have
failed then, i.e., concluded that we were facing an unvisited cell at ⟨1,9⟩
despite its containing 7. How could this be?

Inspection of is_facing_unvisited, and the obvious dissimilarity
between the codes for the row and column coordinates, reveals the bug.

Interestingly, the bug was identified without our having to understand the
horrors of the detailed forward trace.

_solve 1 1 0 1
_solve 1 1 1 1
_solve 1 3 0 2
_solve 1 3 1 2
_solve 1 5 0 3
_solve 1 5 1 3
_solve 1 5 2 3
_solve 3 5 1 4
_solve 3 7 0 5
_solve 1 7 3 6
_solve 1 7 0 6
_solve 1 7 1 6
_solve 1 9 0 7
_solve 1 9 1 7
_solve 1 9 2 7
_solve 3 9 1 8
_solve 3 9 2 8
_solve 3 9 3 8
_solve 3 9 0 8
_solve 1 9 3 9
Enter _retract
Traceback…

Bug D: Interleave iterative debugging steps with deduction.

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

• Mistake: We coded _deltaR incorrectly, writing 0 instead of 1 for the down row offset in:

• Observed effect: The program runs without producing any output, and without stopping.

31 # Unit vectors in direction

32 # d = 0, 1, 2, 3

33 # up, right, down, left

34 _deltaR: list[int] = [-1, 0, 0, 0]

35 _deltaC: list[int] = [0, 1, 0, -1]

Likewise, access to M[r+2*deltaR[d]][c+2*deltaC[d]] in
is_facing_unvisited, will also just access M[r][c].

The first time the rat faces down is in cell 3. The algorithm in _solve asks
(on line 31) whether the rat is facing a wall by invoking is_facing_wall:

The bug causes M[r][c] (which contains 3) to be inspected rather than
M[r+1][c] (which contains NO_WALL). Serendipitously, we return the
correct value (False) indicating no wall despite the bug.

• Forward trace: When the rat faces down (d=2), both deltaR[d] and deltaC[d]

will (incorrectly) be 0. Thus, access to M[r+deltaR[d]][c+deltaC[d]], e.g., in
is_facing_wall, will really access the very cell we are in, i.e., M[r][c].

49 def is_facing_wall() -> bool:

50 return MRP._M[MRP._r + MRP._deltaR[MRP._d]

51][MRP._c + MRP._deltaC[MRP._d]] == MRP._WALL

1 2 3

Accordingly, the rat is will step forward into the cell below, but only
provided is_facing_unvisited indicates that the cell is not on the
current path:

However, rather than inspecting the value of the cell below (M[r+2][c]),
the bug causes is_facing_unvisited to inspect M[r][c], which contains
3, not UNVISITED. Accordingly, the rat (incorrectly) believes it would be
entering a cell already on the path, and invokes _retract to back out of
the apparent cul-de-sac at 3.

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

59 def is_facing_unvisited() -> bool:

60 return MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]

61][MRP._c + 2 * MRP._deltaC[MRP._d]] == MRP._UNVISITED

Method _retract first invokes record_neighbor_and_direction to obtain
and save the neighborNumber of the cell in direction d, and the direction to
it:

But d=2 (down), the very direction for which deltaR[d] is incorrectly
initialized to 0. So “the cell in direction d” is (incorrectly computed to be) the
very cell the rat is currently in. Accordingly, neighborNumber is set
(incorrectly) to 3.

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

39
 40
 41
 42
 43
 44
 45
 46

Unwind abortive exploration.
def _retract() -> None:
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

Next, _retract invokes is_at_neighbor to see whether the unwinding is
finished. But we are at cell 3, so the loop terminates immediately.

Next, _retract invokes restore_direction, which sets _d to 2, which it
already was.

Next, _retract invokes turn_counter_clockwise, which sets _d to 1, i.e.,
once again facing a wall to the right.

This completes execution of _retract, and control returns to _solve.

But we have been in this state before: In cell 3 facing right. So method
_solve calls turn_clockwise, which again turns the rat to face down,
and the process repeats.

We are caught in an unending loop.

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

• Debugging: All we know at the beginning is that we are stuck in an infinite
loop.

The first thing we must do is to interrupt execution using whatever
command our programming environment offers for this. The good news is
that we can stop execution; the bad news is that we typically have no idea
where in the program we stopped it.

As with Bugs C and D, we instrument the code to provide diagnostic
information. This time, as with the other bugs, we choose to instrument
the code with calls to MRP.print_state at the beginning of each iteration
of the _solve loop, and also on entry to _retract.

We quickly terminate execution (before too much output accumulates),
and inspect the trace.

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

The pattern in the output is clear: We are forever repeating the three
color-coded lines shown, which we interpret as follows:

• We can see that the rat is in the cell that would be numbered 3,
facing right (d=1).

• We can see that the rat turns clockwise so that it faces down (d=2).
• The rat must have seen no wall because it was prepared to step

forward, but it apparently believed that were it to do so, it would
renter a cell already on the path, so it called _retract.

• The net effect of invoking _retract is to return the rat to facing right
(d=1).

This is mysterious, but at least we now know the extent of the infinite
loop.

_solve: 1 1 0 1
_solve: 1 1 1 1
_solve: 1 3 0 2
_solve: 1 3 1 2
_solve: 1 5 0 3
_solve: 1 5 1 3
_solve: 1 5 2 3
_retract: 1 5 2 3
_solve: 1 5 1 3
_solve: 1 5 2 3
_retract: 1 5 2 3
_solve: 1 5 1 3
_solve: 1 5 2 3
_retract: 1 5 2 3
Etc.

_solve: 1 5 1 3
_solve: 1 5 2 3
_retract: 1 5 2 3

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

The call to is_facing_unvisited failed, so the natural thing to do is to
stare it its code and see if we can spot the problem:

Seeing nothing wrong, we decide to get additional diagnostic information
about the value of M being inspected:

59 def is_facing_unvisited() -> bool:

60 return MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]

61][MRP._c + 2 * MRP._deltaC[MRP._d]] == MRP._UNVISITED

59 def is_facing_unvisited() -> bool:
 rr = MRP._r + MRP._deltaR[MRP._d]
 cc = MRP._c + 2 * MRP._deltaC[MRP._d]
 mm = MRP._M[rr][cc]
 print("M[" + str(rr) + "][" + str(cc) + "]=" + str(mm))

60 return MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]

61][MRP._c + 2 * MRP._deltaC[MRP._d]] == MRP._UNVISITED

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

The diagnostic output from is_facing_unvisited is clearly problematic
because it should be checking element _M[3][5], not element _M[1][5].

When d=2, the only way

rr = MRP._r + MRP._deltaR[MRP._d]

could be producing the wrong value is for either r or deltaR[2] to be
wrong. But there appears to be nothing wrong with r, so the problem
must be with deltaR[2]. Inspecting deltaR[2], we see the 0 where a 1 was
needed:

Fixing the error, we rerun the program, and obtain the correct output.

31 # Unit vectors in direction

32 # d = 0, 1, 2, 3

33 # up, right, down, left

34 _deltaR: list[int] = [-1, 0, 0, 0]

35 _deltaC: list[int] = [0, 1, 0, -1]

...
_solve: 1 5 0 3
_solve: 1 5 1 3
_solve: 1 5 2 3
_M[1][5] is 3
_retract: 1 5 2 3
_solve: 1 5 1 3
_solve: 1 5 2 3
_M[1][5] is 3
_retract: 1 5 2 3
_solve: 1 5 1 3
_solve: 1 5 2 3
_M[1][5] is 3
_Etc.

Bug F: Use of binary search to find a bug.

• Mistake: The mistake is contrived, but models a common occurrence: A
rare event in obscure code causes damage that is often benign, but on
occasion has disastrous effect. We concoct the example by inserting a
nonsensical statement into face_previous, which has the effect of
inserting the red wall shown on move 9:

• Observed effect: The incorrect output is printed: “Unreachable”.

• Forward trace: The sample maze happens to have a cul-de-sac at move 9,
so the spurious red wall is introduced, eliminating the only solution.

1 2 3

4 5

6 7

9 8

67 def face_previous() -> None:

68 MRP._d = 0

69 while MRP.is_facing_wall() or (MRP._M[MRP._r][MRP._c] - 1 !=

70 MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]

71][MRP._c + 2 * MRP._deltaC[MRP._d]]

72): MRP._d += 1
 if MRP.move == 9: MRP._M[MRP._r - 2][MRP._c - 3] = MRP._WALL;

Bug F: Use of binary search to find a bug.

• Debugging: The observed effect is exactly the same as in Bug A and Bug B,
so we proceed in the same manner.

In Bug A, the diagnostic trace immediately revealed that the rat was struck
in the upper-left cell. In Bug B, the diagnostic trace revealed that the rat
reached the lower-right cell, but didn’t stop.

In this bug, the output shows that the rat gets nowhere near the cheese.
Unfortunately, the step where the rat is blocked by the offending wall is
buried deep in the trace, and we are not likely to spot it.

Furthermore, the offense of inserting a fictitious wall was committed at an
obscure earlier moment.

Making matters still worse, the encounter with the fictitious wall was
perfectly ordinary, e.g., it didn’t cause the program to crash, and execution
continued for a long time thereafter.

These are the bugs that try men’s souls.

Bug F: Use of binary search to find a bug.

Devising an effective strategy is left as an exercise for the reader. We give
one hint.

Suppose that by hard work, and some luck, you have spotted the fictitious
wall. How might you discover how it got there?

Answer: Use binary search along the timeline from the start of execution
to moment when the wall’s presence mattered. Repeatedly divide that
interval (roughly) in half, checking on each probe for the presence or
absence of the (spurious) wall, and choosing which half-interval of
execution time to focus on next, accordingly.

You will eventually converge on the moment when the wall was
introduced. Lo and behold, it is a nonsensical line of code in
face_previous.

Who could have guessed?

Using a Debugger

Debuggers make debugging much
easier, albeit the techniques are
basically the same with or
without one: Selective
reconstruction of relevant
portions of forward execution
traces that identify the mistake.

The main benefit of a debugger is
that its controls and observation
mechanisms obviate much of the
manual instrumentation we have
been illustrating.

PyCharm is a commercial
Integrated Development
Environment (IDE) that is freely
available in a community version.
We illustrate a small sample of
typical debugger features using a
PyCharm project for our maze
running program.

Breakpoints

A breakpoint is a location in code
identified as a stopping point of
interest.

Setting appropriate breakpoints
allows execution to proceed full
speed ahead, but guarantees that
the user will regain control in the
debugger whenever execution
reaches one of the designated
points of interest.

Here, we have set a breakpoint
on the first line of method main,
at a call to RunMaze._input.

Breakpoints

A breakpoint is a region of code
identified as a stopping point of
interest.

Setting appropriate breakpoints
allows execution to proceed full
speed ahead, but guarantees that
the user will regain control in the
debugger whenever execution
reaches one of the designated
points of interest.

Here, we have set a breakpoint
on the first line of method main,
at a call to RunMaze._input.

We fire up program execution by
clicking the bug icon shown in the
yellow circle.

Breakpoints

A breakpoint is a region of code
identified as a stopping point of
interest.

Setting appropriate breakpoints
allows execution to proceed full
speed ahead, but guarantees that
the user will regain control in the
debugger whenever execution
reaches one of the designated
points of interest.

Here, we have set a breakpoint
on the first line of method main,
at a call to RunMaze._input.

We fire up program execution by
clicking the bug icon shown in the
yellow circle, and regain control
in the debugger on reaching the
breakpoint.

Control Panel

The debugger’s control panel has
a region for the display of the
current call stack

Control Panel

The debugger’s control panel has
a region for the display of the
current call stack, program
variables

Control Panel

The debugger’s control panel has
a region for the display of the
current call stack, program
variables, and buttons for manual
control of the pace of subsequent
execution steps.

Control Panel

The debugger’s control panel has
a region for the display of the
current call stack, program
variables, and buttons for manual
control of the pace of subsequent
execution steps.

The controls of immediate
interest are:

• Step Over
• Step Into
• Resume Program

Control Panel

The debugger’s control panel has
a region for the display of the
current call stack, program
variables, and buttons for manual
control of the pace of subsequent
execution steps.

The controls of immediate
interest are:

• Step Over
• Step Into
• Resume Program

meaning:

• Step Over. Execute the
current line all in one step;
then return to the debugger.

• Step Into. Advance execution
to the first line of code within
the designated statement.

• Resume Program. Proceed at
top speed.

Single-step Execution

We have no current interest in
the details of _input, so we click
Step Over

Single-step Execution

We have no current interest in
the details of _input, so we click
Step Over, which brings us to the
second statement in main, the
call to _solve.

Single-step Execution

We have no current interest in
the details of _input, so we click
Step Over, which brings us to the
second statement in main, the
call to _solve.

Next, we wish to inspect
execution within _solve in fine-
grained detail, so we click Step
Into.

Single-step Execution

We have no current interest in
the details of _input, so we click
Step Over, which brings us to the
second statement in main, the
call to _solve.

Next, we wish to inspect
execution within _solve in fine-
grained detail, so we click Step
Into, which brings us to that
method’s first statement.

Single-step Execution

We have no current interest in
the details of _input, so we click
Step Over, which brings us to the
second statement in main, the
call to _solve.

Next, we wish to inspect
execution within _solve in fine-
grained detail, so we click Step
Into, which brings us to that
method’s first statement.

Suppose, now, that we are
working on Bug A, and are trying
to understand why the rat fails to
find a path to the cheese.

Recall that the mistake in Bug A
was an error in method
is_facing_wall.

Single-step Execution

We have no current interest in
the details of _input, so we click
Step Over, which brings us to the
second statement in main, the
call to _solve.

Next, we wish to inspect
execution within _solve in fine-
grained detail, so we click Step
Into, which brings us to that
method’s first statement.

Suppose, now, that we are
working on Bug A, and are trying
to understand why the rat fails to
find a path to the cheese.

Recall that the mistake in Bug A
was an error in method
is_facing_wall.

We repeatedly click Step Over,
and watch the loop iterate,
eventually three times.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

• Second, from facing right to
facing down.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

• Second, from facing right to
facing down.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

• Second, from facing right to
facing down.

• Third, from facing down to
facing left.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

• Second, from facing right to
facing down.

• Third, from facing down to
facing left.

One more click and the loop
terminates, the call to _solve
terminates, and we are done
trying to find a path to the
cheese.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

• Second, from facing right to
facing down.

• Third, from facing down to
facing left.

A few more clicks and the loop
terminates, the call to _solve
terminates, and we are done
trying to find a path to the
cheese. The program prints
“Unreachable”, and stops.

Bug B

Recall that Bug B caused the rat
to blow right by the cheese in the
lower right cell, and eventually
return to the upper-left cell,
whereupon as in Bug A it prints
“Unreachable” and stops.

Fine-grained single-step
execution in this case gets
tedious. We can accelerate it by
setting a breakpoint at method
is_at_cheese, and then
execution just stop there.

Bug B

Recall that Bug B caused the rat
to blow right by the cheese in the
lower right cell, and eventually
return to the upper-left cell,
whereupon as in Bug A it prints
“Unreachable” and stops.

Fine-grained single-step
execution in this case gets
tedious. We can accelerate it by
setting a breakpoint at method
is_at_cheese, and then
execution just stop there.

For each step, we just click
Resume Program.

Bug B

We would like to easily see MRP’s state variables when
we reach the breakpoint, each time. We can undock the
control panel, elongate it, and unfold its display of
“Protected Attributes”. Each click of Resume Program
updates the display to show the current values of the
variables. We can see that ⟨r,c⟩ = ⟨3,7⟩ at this juncture,
so were are not in the
lower-right corner yet.

And so it goes.

A program’s code makes assumptions at various places without explicitly checking that
they hold.

The earliest manifestation of a bug is internal: An assumption is violated. However,
such a violation is not immediately observable externally.

In some cases, the violation of an assumption is benign, e.g., a representation
invariant gets broken, but program execution from that point on does not rely on the
truth of the full invariant. In other cases, the program eventually throws a runtime
exception, or gets caught in an infinite loop, or produces bad output.

Defensive programming aims to make the violation of assumptions manifest as early
as possible during program execution. It can do so by the aggressive use of assertions.

Assert statements were first introduced in Chapter 3 when we had scant use for them.
In Chapter 15, we introduced the idea of self-checking code, and used an assert to
signal failure of the program to meet its specification. We now advocate self-checking
on a fine-grained basis (rather than just at the end of execution) in the hope of nipping
bugs in the bud.

Defensive Programming: Stay in Control.

We illustrate aggressive use of asserts in our program for Running a Maze. We implement Boolean
method is_valid to validate the data representation invariants once per iteration of _solve:

Defensive Programming: Stay in Control.

27
 28
 29
 30

 31
 32
 33
 34
 35

@classmethod
def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists."""
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 assert MRP.is_valid(), "Invalid MRP representation."
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 elif not(MRP.is_facing_unvisited()): _retract()
 else:
 MRP.step_forward()
 MRP.turn_counter_clockwise()

@classmethod
def is_valid(cls) -> bool:
 """Return False on evidence that a representation invariant is violated."""
 return MRP._is_valid_path(MRP._r, MRP._c) and MRP._is_valid_rat()

Method is_valid_path is the routine introduced in Chapter 15 to validate the solution path,
and method is_valid_rat is defined now to validate the rat’s representation invariant:

Defensive Programming: Stay in Control.

@classmethod
def _is_valid_rat(cls) -> bool:
 """Return False iff rat’s representation invariant is violated."""
 if (MRP._r < 0) or (MRP._r > MRP._hi) or (
 (MRP._c < 0) or (MRP._c > MRP._hi)): return False
 elif (MRP._d < 0) or (MRP._d > 3): return False
 elif MRP._M[MRP._r][MRP._c] != MRP._move: return False
 else: return True

Rat. The rat is located in cell M[r][c] facing direction d, where
d=⟨0,1,2,3⟩ represents the orientation ⟨up,right,down,left⟩,
respectively.
 _r, _c, _d: int

In addition to the validity check once per iteration in _solve, we can scatter calls to is_valid()

generously throughout the program, e.g., at the end of each method that modifies state. Were
we to have done so in the flawed routine of Bug C:

the mistake would have immediately “self-reported”:

Traceback (most recent call last):
 File "...\run_maze.py", line 85, in <module>
 RunMaze.main()
 File "...\run_maze.py", line 13, in main
 RunMaze._solve()
 File "...\run_maze.py", line 32, in _solve
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 File "...\mrp.py", line 41, in turn_clockwise
 assert MRP.is_valid(), "Invalid MRP representation."
AssertionError: Invalid MRP representation.

Defensive Programming: Stay in Control.

39
 40

def turn_clockwise() -> None:
 MRP._d = (MRP._d + 1)
 assert MRP.is_valid(), "Invalid MRP representation."

In general, each place in code at which an assumption is made is a candidate
for defensive self-checking. Those places include the following:

• For an input statement, the code assumes that the input data will comply
with its specified format.

• For a statement-level specification of the form:

the code assumes that the precondition is True before the first statement
of the implementation, and the postcondition is True after the last
statement of the implementation.

Defensive Programming: Stay in Control.

Given precondition, establish postcondition.
Implementation

• For a declaration of the form:

or a declaration of the form:

the representation invariant is assumed to hold throughout the scope of
the variables, except prior to initialization, and until completion of the
code that seeks to reestablish the invariant after an update.

Defensive Programming: Stay in Control.

Declaration-of-one-variable # Representation invariant

#.Representation invariant.
Declarations-of-related-variables

• For a loop of the form:

or of the form:

the loop invariant is assumed to be True before and after each execution
of the block.

Defensive Programming: Stay in Control.

#.Loop invariant.
while condition: block

#.Loop invariant.
for variable in range(first, last+1): block

• For a method definition of the form:

the definition assumes that the preconditions of input parameters are
True on entry to the body of the method, and the postconditions of
output parameters (as well as of its return value, if any) are True just
before returning from the method.

Defensive Programming: Stay in Control.

Given precondition on input parameters, establish postcondition
on output parameters, and return value, if any.
Method definition

• For a method invocation of the form:

the code assumes that each input argument value satisfies the
precondition of the corresponding input parameter, and that each output
argument (as well as the return value, if any) satisfies the postcondition of
the corresponding output parameter (or result).

The biggest drawback of aggressive validity checking is degraded
performance, but during program development your time is valuable.
Once you have found all the bugs, you can disable assert statements using
the appropriate compiler option, at which point they cost you nothing.

Defensive Programming: Stay in Control.

name(argument-list)

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3

	Example Bugs
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

	Debuggers
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

	Defensive Programming
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

