
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Debugging

Copyright©2023 by Tim Teitelbaum; Most recent revision, 11/18/2024

To err is human, and despite best efforts, problems inevitably arise.
Errors in code are called bugs, and finding them is debugging.

☞ Validate program output thoroughly.

☞ Avoid debugging like the plague.

Bugs can be overt, i.e., their presence is manifest, or bugs can be
latent, i.e., not manifest, and lying in wait to bite.

The purpose of testing is to make as many bugs apparent as possible.

Bugs are revealed when code is run on particular test data. A program
that runs to correctly on some particular test data is not necessarily
bug free.

Bugs may manifest as:

• Wrong output
• Infinite loops
• Execution crashes
• Abysmal performance

We present six bugs in real code, and describe how one can track
them down.

We then demonstrate a debugger, a tool that assists in debugging.

Finally, we describe defensive programming, a prophylactic technique
for revealing bugs in a helpful manner.

☞ Validate program output thoroughly.

In Bugs A through F, we deliberately introduce bugs into the code for Running
a Maze from Chapter 15, or Appendix V.

For each bug, we run the program on the input maze shown.

Each bug is presented in four sections:

• Mistake
• Observed effect
• Forward trace
• Debugging

A mistake made in the code results in an observed effect, which is explained
with the aid of a forward trace of execution. We then present how debugging
could start from the observed effect, and discover the offending mistake.

The essence of the approach is to selectively instrument code so that it emits
increasingly useful, partial forward traces that eventually allow you to
pinpoint the bug.

Example Bugs:

• Mistake: We coded isFacingWall incorrectly, incorrectly, writing “>=” instead of “==”:

• Observed effect: Execution completes normally after emitting the incorrect output
“Unreachable”.

• Forward trace: Recall that Wall is -1 and NoWall is 0. Because the bug in
isFacingWall causes it to always return true, the rat fails to find a way out of the
upper-left cell. After three consecutive clockwise turns, it faces left (d=3), at which
point AboutToRepeat returns true, and Solve completes

Routine RunMaze.Output then calls isAtCheese, which returns false, so it prints
“Unreachable”.

Bug A: Code instrumentation.

45 public static boolean isFacingWall()

46 { return M[r+deltaR[d]][c+deltaC[d]] >= Wall; }

• Debugging. The output is wrong. Perhaps MRP.Input failed to establish a
correct maze in M. To check, we insert a call to PrintMaze immediately
after the maze is read in:

We run the program again, and see that input worked fine.

Solve emits no output, so we need to instrument it to get a forward trace
of its actions. We write MRP.PrintState, which emits the parameter string
s followed by the r, c, d, and move components of MRP state:

Bug A: Code instrumentation.

3 /* Input maze, or reject input as malformed. */

4 private static void Input() {

5 MRP.Input();

MRP.PrintMaze();

6 } /* Input */

public static void PrintState(String s) {

System.out.println(s + ": " + r + " " + c + " " + d + " " + move);

}

A convenient place to invoke PrintState is at the beginning of each iteration
of the loop in Solve, which will provide a top-level trace of the algorithm:

8
 9
 10

 11
 12
 13
 14
 15
 16

 17

/* Compute a direct path through the maze, if one exists. */
private static void Solve() {
 while (!MRP.isAtCheese() && !MRP.isAboutToRepeat()) {
 MRP.PrintState("Solve");
 if (MRP.isFacingWall()) MRP.TurnClockwise();
 else if (!MRP.isFacingUnvisited()) Retract();
 else {
 MRP.StepForward();
 MRP.TurnCounterClockwise();
 }
 }
 } /* Solve */

Bug A: Code instrumentation.

We run the program again, and luck out because the output is very short.

It is clear from this trace that line 11 of Solve is repeatedly invoking
TurnClockwise, and that the rat never moves from the upper-left cell.
This can only happen if isFacingWall is true in every direction.

We have confirmed from the output of PrintMaze that there is no wall to
the right of the upper-left cell, so the problem must be in isFacingWall.

Inspection of its code reveals the bug.

This is about as easy as debugging gets: From the observed effect, i.e., the
incorrect output, and from our first attempt at instrumentation, we
converged on the bug in short order.

Solve: 1 1 0 1
Solve: 1 1 1 1
Solve: 1 1 2 1
Unreachable

Bug A: Code instrumentation.

Bug B: Instrumentation can produce vast amounts of output.

• Mistake: We coded isAtCheese incorrectly, writing “hi+1” rather than “hi”.

• Observed effect: Execution completes normally after emitting the same
incorrect output as Bug A: “Unreachable”.

• Forward trace: The rat exhaustively explores the maze, not stopping at the
cheese in the lower-right cell because the bug in isAtCheese causes it to
always return false.

When the rat returns to the upper left, and faces left (d=3), the exploration
completes, and the output routine prints “Unreachable”.

51 public static boolean isAtCheese()

52 { return (r==hi+1)&&(c==hi+1); }

Bug B: Instrumentation can produce vast amounts of output.

• Debugging: The observed effect is exactly the same as in Bug A, so we
proceed in the same manner. However, this time the diagnostic output
reveals an exhaustive maze exploration that blows right by the cheese at
⟨r,c⟩ = ⟨9,9⟩.

This is enough information to focus our attention on method isAtCheese.
Inspection reveals why it returned false when the rat entered the lower-
right cell.

The example illustrates that instrumentation can easily produce vast
amounts of diagnostic output. However, we need not study it in detail
because the salient information is apparent from the sole fact that the rat
reached the cheese at ⟨r,c⟩ = ⟨9,9⟩, and didn’t stop.

Bug B was not much more difficult to diagnose than Bug A.

Solve: 1 1 0 1
Solve: 1 1 1 1
Solve: 1 3 0 2
Solve: 1 3 1 2
Solve: 1 5 0 3
...
Solve: 7 5 2 8
Solve: 9 5 1 9
Solve: 9 7 0 10
Solve: 9 7 1 10
Solve: 9 9 0 11
Solve: 9 9 1 11
Solve: 9 9 2 11
Solve: 9 9 3 11
Solve: 9 7 2 10
...
Solve: 3 1 3 2
Solve: 3 1 0 2
Unreachable

• Mistake: We coded TurnClockwise incorrectly, forgetting to compute the
result of incrementing d mod 4:

34 public static void TurnClockwise()

35 { d = (d+1) ; }

Bug C: Error diagnostics contain vital information.

• Observed effect: Execution stops with a “subscript out-of-bounds”
exception. The following diagnostic message is printed:

java.lang.ArrayIndexOutOfBoundsException: Index 4 out of bounds for length 4
 at MRP.isFacingWall(MRP.java:46)
 at RunMaze.Solve(RunMaze.java:11)
 at RunMaze.main(RunMaze.java:41)

The message states that there has been an attempt to index an array with a
subscript that is 4, which is out of range, and that the exception was
triggered in method isFacingWall, at line 46 of class MRP. The remaining
lines are the call stack at the time of the error, and list method invocations
that have not yet returned, i.e., line 41 in the RunMaze module invoked
main, which on line 11 invoked Solve, which on line 46 invoked
isFacingWall.

• Forward trace: Because the (incorrect) expression (d+1) in TurnClockwise
correctly increments d when it is less than 3, the bug has no effect until we
reach cell 6. There, initially facing left, we expect to turn clockwise (to face
up), and turn clockwise again (to face right). After each turn, Solve would

normally call isFacingWall to see if another turn is needed, but the first
such invocation attempts to subscript arrays deltaR and deltaC with an
out-of-bounds subscript of 4, and the program stops.

Bug C: Error diagnostics contain vital information.

1 2 3 6

4 5

• Debugging: The example illustrates three all-important facts:

1. When a crash occurs, you may know little about how far execution progressed
before stopping.

2. The location where a bug triggers a crash (e.g., isFacingWall) may be arbitrarily
distant from the location that contains the flaw (e.g., TurnClockwise).

3. Error diagnostics can contain vital information.

We know from the diagnostic text that something has gone wrong in:

so the offending index is necessarily attempting to subscript into one of the three
arrays deltaR, deltaC, or M. We know from the crash diagnostic that the implicated
array has length 4, which would seem to rule out M[][] unless something is wildly
wrong for this 5-by-5 example maze. Thus, the array must be either deltaR or deltaC,
for which the subscript in either case is d.

Bug C: Error diagnostics contain vital information.

45 public static boolean isFacingWall()

46 { return M[r+deltaR[d]][c+deltaC[d]]==Wall; }

To learn how far execution progressed before the crash, an easy approach
is to place a call to PrintState in method Solve, after line 30, i.e., the
same as we did for Bugs A and B.

While a vast amount of text may fly by us on the screen, we are only
interested in the last few lines before the crash, so the amount of output is
of no great concern.

We can readily interpret the last two lines of output as:

• We are in cell 6, and d was 3.

• We remained in cell 6, and d became 4, which is an out-of-bounds
subscript for either deltaR or deltaC.

The code that increments d, and that would have been called by Solve
immediately before it called isFacingWall, is TurnClockwise.

Knowing that TurnClockwise incorrectly set d to 4, we cannot help but
see the bug by staring at the code.

Bug C: Error diagnostics contain vital information.

Solve 1 1 0 1
Solve 1 1 1 1
Solve 1 3 0 2
Solve 1 3 1 2
Solve 1 5 0 3
Solve 1 5 1 3
Solve 1 5 2 3
Solve 3 5 1 4
Solve 3 7 0 5
Solve 1 7 3 6
Solve 1 7 4 6

⟨crash⟩

• Mistake: We coded isFacingUnvisited incorrectly, failing to scale the row offset by 2:

48 public static boolean isFacingUnvisited()

49 { return M[r+ deltaR[d]][c+2*deltaC[d]]==Unvisited; }

Bug D: Interleave iterative debugging steps with deduction.

• Observed effect: Execution stops with a “subscript out-of-bounds”
exception. The following diagnostic message is printed:

java.lang.ArrayIndexOutOfBoundsException: Index 4 out of bounds for length 4
 at MRP.isFacingWall(MRP.java:46)
 at MRP.FacePrevious(MRP.java:79)
 at RunMaze.Retract(RunMaze.java:23)
 at RunMaze.Solve(RunMaze.java:12)
 at RunMaze.main(RunMaze.java:41)

The message states that an array of length 4 is being indexed with a
subscript of 4. The offending line of code is the same code as for Bug C:

However, the call stack is different this time, and indicates that the error
occurred in the course of retracting the path from a cul-de-sac.

45 public static boolean isFacingWall()

46 { return M[r+deltaR[d]][c+deltaC[d]]==Wall; }

Bug D: Interleave iterative debugging steps with deduction.

• Forward trace: As the rat proceeds in the forward direction, the algorithm
in Solve steps forward into any cell that is not blocked by a wall, provided
that that cell is not on the current path, which it determines by invoking
the (flawed) method isFacingUnvisited. Despite the bug, these checks
will work correctly when d=1 or d=3 because, in these cases, the (correct)
row increment is 0, and therefore the missing scaling factor is irrelevant.
However, when d=0 or d=2, isFacingUnvisited will always return true.
Why? Because it will (erroneously) inspect the very same element of M
that isFacingWall just inspected. Since there was no wall,
isFacingUnvisited will compare NoWall (which is 0) with Unvisited
(which is 0), and return true.

Thus, the rat makes it all the way to the end of the cul-de-sac at cell 8, at
which point it (correctly) discovers walls in the right, down, and left
directions, but no wall in the up direction. This is the precise moment
when correct execution of isFacingUnvisited to detect the cul-de-sac is
critical.

1 2 3 6 7

4 5 8

Bug D: Interleave iterative debugging steps with deduction.

Because d=0, the element of M that isFacingUnvisited inspects is the
one that encodes that there is no wall between cells 8 and 7, not the
element that contains the 7. Accordingly, the rat blithely steps forward
into the upper-right cell, overwriting 7 with 9, and then turns
counterclockwise, facing left (d=3).

The program has begun to go haywire.

You may think that the rat will proceed forward, overwriting the existing
path, but this is not what happens.

Recall that isFacingUnvisited works correctly when d=1 or d=3.
Accordingly, the rat now (correctly) detects cell 6 as already visited, which
stops its forward momentum.

Retract is then invoked to back out of a (supposed) cul-de-sac at 9.

1 2 3 6 9

4 5 8

Bug D: Interleave iterative debugging steps with deduction.

In preparation for backing out, Retract invokes FacePrevious,

which (correctly) identifies cell 8 as the predecessor of cell 9, and orients
the rat facing down.

Retract then invokes StepBackward, which sets the upper-right cell to
Unvisited, i.e., 0, and moves the rat back into cell 8.

77 public static void FacePrevious() {

78 d = 0;

79 while (isFacingWall() ||

M[r+2*deltaR[d]][c+2*deltaC[d]]!=M[r][c]-1) d++;

80 }

1 2 3 6 0

4 5 8

Bug D: Interleave iterative debugging steps with deduction.

We are in the unwinding loop of Retract, so once again, it invokes
FacePrevious, this time to search for the predecessor of the cell now
numbered 8, but none of its neighbors is numbered 7.

This is a situation that is supposed to never arise. The search runs through
all four legal values of d, and then invokes isFacingWall with (an illegal
value of) d=4. This triggers the “subscript out-of-bounds” exception, with
the call stack, as shown.

An important general-purpose takeaway from this forward trace is that
once a bug upsets a carefully-crafted program design, it is possible for “all
hell to break loose”, at which point anything may happen.

Bug D: Interleave iterative debugging steps with deduction.

• Debugging: We now have to find the bug by reasoning backwards without
the benefit of having seen the forward trace in advance.

As with Bug C, the crash occurs in isFacingWall, but this time in a different
context: Retract called facePrevious, which called isFacingWall.

As with Bugs A, B, and C, we arrange to call printState("Solve") from the
loop of method Solve, and we obtain the output shown at right. What can
we infer from it?

• We are in cell ⟨r,c⟩ = ⟨1,9⟩, and believe that we have made 9 moves.
• We have been in this cell before, when move was 7. We have no

business being there again, but have no idea how this happened.

• We can see that our recent trajectory has been ⟨1,9⟩⇒⟨3,9⟩⇒⟨1,9⟩.

• We can see in the Traceback that we are in the midst of a retraction,
but don’t know when it started.

We place the call System.out.println("Enter Retract") in Retract, and
rerun.

Bug D: Interleave iterative debugging steps with deduction.
Solve 1 1 0 1
Solve 1 1 1 1
Solve 1 3 0 2
Solve 1 3 1 2
Solve 1 5 0 3
Solve 1 5 1 3
Solve 1 5 2 3
Solve 3 5 1 4
Solve 3 7 0 5
Solve 1 7 3 6
Solve 1 7 0 6
Solve 1 7 1 6
Solve 1 9 0 7
Solve 1 9 1 7
Solve 1 9 2 7
Solve 3 9 1 8
Solve 3 9 2 8
Solve 3 9 3 8
Solve 3 9 0 8
Solve 1 9 3 9
Traceback…

But this output is anomalous, as the retraction should have started earlier,
when we were in ⟨r,c⟩ = ⟨3,9⟩ facing up (d=0) at the 7, which we must not
overwrite. Somehow, the test isFacingUnvisited must have failed then,
i.e., concluded that we were facing an unvisited cell at ⟨1,9⟩ despite its
containing 7. How could this be?

Inspection of isFacingUnvisited, and the obvious dissimilarity between
the codes for the row and column coordinates, reveals the bug.

Interestingly, the bug was identified without our having to understand the
horrors of the detailed forward trace.

Bug D: Interleave iterative debugging steps with deduction.
Solve 1 1 0 1
Solve 1 1 1 1
Solve 1 3 0 2
Solve 1 3 1 2
Solve 1 5 0 3
Solve 1 5 1 3
Solve 1 5 2 3
Solve 3 5 1 4
Solve 3 7 0 5
Solve 1 7 3 6
Solve 1 7 0 6
Solve 1 7 1 6
Solve 1 9 0 7
Solve 1 9 1 7
Solve 1 9 2 7
Solve 3 9 1 8
Solve 3 9 2 8
Solve 3 9 3 8
Solve 3 9 0 8
Solve 1 9 3 9
Enter Retract
Traceback…

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

• Mistake: We coded deltaR incorrectly, writing 0 instead of 1 for the down row offset in

• Observed effect: The program runs without producing any output, and without stopping.

29 // Unit vectors in direction d = 0, 1, 2, 3

30 // up, right, down, left

31 private static final int deltaR[] = { -1, 0, 0, 0 };

32 private static final int deltaC[] = { 0, 1, 0, -1 };

• Forward trace: When the rat faces down (d=2), both deltaR[d] and deltaC[d]
will (incorrectly) be 0. Thus, access to M[r+deltaR[d]][c+deltaC[d]], e.g., in
isFacingWall, will really access M[r][c].

45 public static boolean isFacingWall()

46 { return M[r+deltaR[d]][c+deltaC[d]]==Wall; }

1 2 3

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

Likewise, access to M[r+2*deltaR[d]][c+2*deltaC[d]] in
isFacingUnvisited, will also just access M[r][c].

The first time the rat faces down is in cell 3. The algorithm in Solve asks
(on line 11) whether the rat is facing a wall by invoking isFacingWall:

The bug causes M[r][c] (which contains 3) to be inspected rather than
M[r+1][c] (which contains NO_WALL). Serendipitously, we return the
correct value (False) indicating no wall despite the bug.

Accordingly, the rat is will step forward into the cell below, but only
provided isFacingUnvisited indicates that the cell is not on the current
path:

However, rather than inspecting the value of the cell below (M[r+2][c]),
the bug causes isFacingUnvisited to inspect M[r][c], which contains 3,
not UNVISITED. Accordingly, the rat (incorrectly) believes it would be
entering a cell already on the path, and invokes Retract to back out of the
apparent cul-de-sac at 3.

48
 49

public static boolean isFacingUnvisited()
 { return M[r+2*deltaR[d]][c+2*deltaC[d]]==Unvisited; }

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

Retract first invokes RecordNeighborAndDirection to obtain and save the
neighborNumber of the cell in direction d, and the direction to it:

But d=2 (down), the very direction for which deltaR[d] is incorrectly initialized
to 0. So “the cell in direction d” is (incorrectly computed to be) the very cell the
rat is currently in. Accordingly, neighborNumber is set (incorrectly) to 3.

19
 20
 21
 22
 23
 24
 25
 26
 27
 28

/* Unwind abortive exploration. */
private static void Retract() {
 MRP.RecordNeighborAndDirection();
 while (!MRP.isAtNeighbor()) {
 MRP.FacePrevious();
 MRP.StepBackward();
 }
 MRP.RestoreDirection();
 MRP.TurnCounterClockwise();
 } /* Retract */

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

Next, Retract invokes isAtNeighbor to see whether the unwinding is
finished. But we are at cell 3, so the loop terminates immediately.

Next, Retract invokes RestoreDirection, which sets d to 2, which it
already was.

Next, Retract invokes turnCounterClockwise, which sets d to 1, i.e.,
once again facing a wall to the right.

This completes execution of Retract, and control returns to Solve.

But we have been in this state before: In cell 3 facing right. So method
Solve calls TurnClockwise, which again turns the rat to face down, and
the process repeats.

We are caught in an unending loop.

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

• Debugging: All we know at the beginning is that we are stuck in an infinite
loop.

The first thing we must do is to interrupt execution using whatever
command our programming environment offers for this. The good news is
that we can stop execution; the bad news is that we typically have no idea
where in the program we stopped it.

As with Bugs C and D, we instrument the code to provide diagnostic
information. This time, as with the other bugs, we choose to instrument
(with calls to MRP.PrintState) at the beginning of each iteration of the
Solve loop, and also on entry to Retract.

We quickly terminate execution (before too much output accumulates),
and inspect the trace.

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

The pattern in the output is clear: We are forever repeating the three lines
shown, which we interpret as follows:

• We can see that the rat is in the cell that would be numbered 3,
facing right (d=1).

• We can see that the rat turns clockwise so that it faces down (d=2).
• The rat must have seen no wall because it was prepared to step

forward, but apparently it believed that would renter a cell already
on the path, so it called Retract.

• The net effect of invoking Retract is to return the rat to facing right
(d=1).

This is mysterious, but at least we now know the extent of the infinite
loop.

Solve: 1 1 0 1
Solve: 1 1 1 1
Solve: 1 3 0 2
Solve: 1 3 1 2
Solve: 1 5 0 3
Solve: 1 5 1 3
Solve: 1 5 2 3
Retract: 1 5 2 3
Solve: 1 5 1 3
Solve: 1 5 2 3
Retract: 1 5 2 3
Solve: 1 5 1 3
Solve: 1 5 2 3
Retract: 1 5 2 3
Etc.

Solve: 1 5 1 3
Solve: 1 5 2 3
Retract: 1 5 2 3

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

The call to isFacingUnvisited failed, so the natural thing to do is to stare
it its code and see if we can spot the problem:

Seeing nothing wrong, we decide to get additional diagnostic information
about the value of M being inspected:

48 public static boolean isFacingUnvisited()

49 { return M[r+2*deltaR[d]][c+2*deltaC[d]]==Unvisited; }

48 public static boolean isFacingUnvisited() {
 int rr = r+deltaR[d]
 int cc = c + 2*deltaC[d]
 int mm = M[rr][cc]
 System.out.println("M["+rr+"]["+cc+"]="+mm);

49 return M[r+2*deltaR[d]][c+2*deltaC[d]]==Unvisited;
 }

Bug E: Recurring pattern in diagnostics reveals cause of infinite loop.

The diagnostic output from isFacingUnvisited is clearly problematic
because it should be checking element M[3][5], not element M[1][5].

When d=2, the only way

rr = r + deltaR[d]

could be producing the wrong value is for either r or deltaR[2] to be
wrong. But there appears to be nothing wrong with r, so the problem
must be with deltaR[2]. Inspecting deltaR[2], we see the 0 where a 1 was
needed:

Fixing the error, we rerun the program, and obtain the correct output.

29 // Unit vectors in direction d = 0, 1, 2, 3

30 // up, right, down, left

31 private static final int deltaR[] = { -1, 0, 0, 0 };

...
Solve: 1 5 0 3
Solve: 1 5 1 3
Solve: 1 5 2 3
M[1][5] is 3
Retract: 1 5 2 3
Solve: 1 5 1 3
Solve: 1 5 2 3
M[1][5] is 3
Retract: 1 5 2 3
Solve: 1 5 1 3
Solve: 1 5 2 3
M[1][5] is 3
_Etc.

Bug F: Use of binary search to find a bug.

• Mistake: Mistake: The mistake is contrived, but models a common
occurrence: A rare event in obscure code causes damage that is often
benign, but on occasion has disastrous effect. We concoct the example by
inserting a nonsensical statement into FacePrevious, which has the effect
of inserting the red wall shown on move 9:

• Observed effect: The incorrect output is printed: “Unreachable”.

• Forward trace: The sample maze happens to have a cul-de-sac at move 9,
so the spurious red wall is introduced, eliminating the only solution.

77 public static void FacePrevious() {

78 d = 0;

79 while (isFacingWall() ||

M[r+2*deltaR[d]][c+2*deltaC[d]]!=M[r][c]) d++;

if (move==9) M[r-2][c-3] = Wall;

80 }

1 2 3

4 5

6 7

9 8

Bug F: Use of binary search to find a bug.

• Debugging: The observed effect is exactly the same as in Bug A and Bug B,
so we proceed in the same manner.

In Bug A, the diagnostic trace immediately revealed that the rat was struck
in the upper-left cell. In Bug B, it revealed that the rat reached the lower-
right cell, but didn’t stop.

In this bug, the output shows that the rat gets nowhere near the cheese.
Unfortunately, the step where the rat is blocked by the offending wall is
buried deep in the trace, and we are not likely to spot it.

Furthermore, the offense of inserting a fictitious wall was committed at an
obscure earlier moment.

Making matters still worse, the encounter with the fictitious wall was
perfectly ordinary, e.g., it didn’t cause the program to crash, and execution
continued for a long time thereafter.

These are the bugs that try men’s souls.

Bug F: Use of binary search to find a bug.

Devising an effective strategy is left as an exercise for the reader. We give
one hint.

Suppose that by hard work, and some luck, you have spotted the fictitious
wall. How might you discover how it got there?

Answer: Use binary search along the timeline from the start of execution
to moment when the wall’s presence mattered. Repeatedly divide that
interval (roughly) in half, checking on each probe for the presence or
absence of the (spurious) wall, and choosing which half-interval of
execution time to focus on next, accordingly.

You will eventually converge on the moment when the wall was
introduced. Lo and behold, it is a nonsensical line of code in
FacePrevious.

Who could have guessed?

Using a Debugger

Debuggers make debugging much
easier, albeit the techniques are
basically the same with or
without one: Selective
reconstruction of relevant
portions of forward execution
traces that identify the mistake.

The main benefit of a debugger is
that its controls and observation
mechanisms obviate much of the
manual instrumentation we have
been illustrating.

BlueJ is a free Integrated
Development Environment (IDE)
for Java. We illustrate a small
sample of typical debugger
features using a BlueJ project for
our maze running program.

Breakpoints

A breakpoint is a location in code
identified as a stopping point of
interest.

Setting appropriate breakpoints
allows execution to proceed full
speed ahead, but guarantees that
the user will regain control in the
debugger whenever execution
reaches one of the designated
points of interest.

Here, we have set a breakpoint
on the first line of method main,
at a call to Input. We did this by
clicking in the margin, where the
stop sign appeared.

Breakpoints

A breakpoint is a region of code
identified as a stopping point of
interest.

Setting appropriate breakpoints
allows execution to proceed full
speed ahead, but guarantees that
the user will regain control in the
debugger whenever execution
reaches one of the designated
points of interest.

Here, we have set a breakpoint
on the first line of method main,
at a call to Input. We did this by
clicking in the margin, where the
stop sign appeared.

We fire up program execution by
right-clicking on RunMaze in the
project diagram, and selecting
void main() from the popup
menu that appears.

Breakpoints

A breakpoint is a region of code
identified as a stopping point of
interest.

Setting appropriate breakpoints
allows execution to proceed full
speed ahead, but guarantees
that the user will regain control
in the debugger whenever
execution reaches one of the
designated points of interest.

Here, we have set a breakpoint
on the first line of method main,
at a call to Input. We did this by
clicking in the margin, where the
stop sign appeared.

We fire up program execution by
right-clicking on RunMaze in the
project diagram, and selecting
void main() from the popup
menu that appears.

On reaching the breakpoint, we
regain control in the debugger.

Control Panel

The debugger’s control panel has
a region for the display of the
current call stack

Control Panel

The debugger’s control panel has
a region for the display of the
current call stack, program
variables

Control Panel

The debugger’s control panel has
a region for the display of the
current call stack, program
variables, and buttons for manual
control of the pace of subsequent
execution steps.

Control Panel

The debugger’s control panel has
a region for the display of the
current call stack, program
variables, and buttons for manual
control of the pace of subsequent
execution steps.

The controls of immediate
interest are:

• Step (Over}
• Step Into
• Continue

Control Panel

The debugger’s control panel has
a region for the display of the
current call stack, program
variables, and buttons for manual
control of the pace of subsequent
execution steps.

The controls of immediate
interest are:

• Step (Over)
• Step Into
• Continue

meaning:

• Step (Over). Execute the
current line all in one step;
then return to the debugger.

• Step Into. Advance execution
to the first line of code within
the designated statement.

• Continue. Proceed at top
speed.

Single-step Execution

We have no current interest in
the details of Input, so we click
Step (Over)

Single-step Execution

We have no current interest in
the details of Input, so we click
Step (Over), which brings us to
the second statement in main,
the call to Solve.

Single-step Execution

We have no current interest in
the details of Input, so we click
Step (Over), which brings us to
the second statement in main,
the call to Solve.

Next, we wish to inspect
execution within Solve in fine-
grained detail, so we click Step
Into.

Single-step Execution

We have no current interest in
the details of Input, so we click
Step (Over), which brings us to
the second statement in main,
the call to Solve.

Next, we wish to inspect
execution within Solve in fine-
grained detail, so we click Step
Into, which brings us to that
method’s first statement.

Single-step Execution

We have no current interest in
the details of Input, so we click
Step (Over), which brings us to
the second statement in main,
the call to Solve.

Next, we wish to inspect
execution within Solve in fine-
grained detail, so we click Step
Into, which brings us to that
method’s first statement.

Suppose, now, that we are
working on Bug A, and are trying
to understand why the rat fails to
find a path to the cheese.

Recall that the mistake in Bug A
was an error in method
isFacingWall.

Single-step Execution

We have no current interest in
the details of Input, so we click
Step (Over), which brings us to
the second statement in main,
the call to Solve.

Next, we wish to inspect
execution within Solve in fine-
grained detail, so we click Step
Into, which brings us to that
method’s first statement.

Suppose, now, that we are
working on Bug A, and are trying
to understand why the rat fails to
find a path to the cheese.

Recall that the mistake in Bug A
was an error in method
isFacingWall.

We repeatedly click Step (Over),
and watch the loop iterate,
eventually three times.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

• Second, from facing right to
facing down.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

• Second, from facing right to
facing down.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

• Second, from facing right to
facing down.

• Third, from facing down to
facing left.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

• Second, from facing right to
facing down.

• Third, from facing down to
facing left.

A few more clicks and the loop
terminates, the call to Solve
terminates, and we are done
trying to find a path to the
cheese.

Bug A

Each time that we are not at the
cheese, and are not about to
repeat the traversal all over
again, we ask whether we are
facing a wall, and seeing none,
make a clockwise turn:

• First, from facing up to facing
right.

• Second, from facing right to
facing down.

• Third, from facing down to
facing left.

A few more clicks and the loop
terminates, the call to Solve
terminates, and we are done
trying to find a path to the
cheese. The program prints
“Unreachable”, and stops.

Bug B

Recall that Bug B caused the rat
to blow right by the cheese in the
lower right cell, and eventually
return to the upper-left cell,
whereupon as in Bug A it prints
“Unreachable” and stops.

Fine-grained single-step
execution in this case gets
tedious. We can accelerate it by
setting a breakpoint at method
isAtCheese, and then execution
just stop there.

Bug B

Recall that Bug B caused the rat
to blow right by the cheese in the
lower right cell, and eventually
return to the upper-left cell,
whereupon as in Bug A it prints
“Unreachable” and stops.

Fine-grained single-step
execution in this case gets
tedious. We can accelerate it by
setting a breakpoint at method
isAtCheese, and then execution
just stop there.

For each step, we just click
Continue, and execution resumes
until hitting the breakpoint again.

Bug B

The static variables of class MRP are
displayed in the debugger’s control
panel each time we stop at the
breakpoint in isAtCheese. For
example, we can see that the rat
has only advanced to ⟨r,c⟩ = ⟨3,7⟩,
so we have a ways to go.

Each click of Continue resumes
execution.

And so it goes.

A program’s code makes assumptions at various places without explicitly checking that
they hold.

The earliest manifestation of a bug is internal: An assumption is violated. However,
such a violation is not immediately observable externally.

In some cases, the violation of an assumption is benign, e.g., a representation
invariant gets broken, but program execution from that point on does not rely on the
truth of the full invariant. In other cases, the program eventually throws a runtime
exception, or gets caught in an infinite loop, or produces bad output.

Defensive programming aims to make the violation of assumptions manifest as early
as possible during program execution. It can do so by the aggressive use of assertions.

Assert statements were first introduced in Chapter 3 when we had scant use for them.
In Chapter 15, we introduced the idea of self-checking code, and used an assert to
signal failure of the program to meet its specification. We now advocate self-checking
on a fine-grained basis (rather than just at the end of execution) in the hope of nipping
bugs in the bud.

Defensive Programming: Stay in Control.

We illustrate aggressive use of asserts in our program for Running a Maze by implementing Boolean
method isValid to check the data representation invariants once per iteration of Solve:

Defensive Programming: Stay in Control.

8
 9
 10

 11
 12
 13
 14
 15
 16

 17

/* Compute a direct path through the maze, if one exists. */
private static void Solve() {
 while (!MRP.isAtCheese() && !MRP.isAboutToRepeat()) {
 assert MRP.isValid(): "Invalid MRP representation.";

 if (MRP.isFacingWall()) MRP.TurnClockwise();
 else if (!MRP.isFacingUnvisited()) Retract();
 else {
 MRP.StepForward();
 MRP.TurnCounterClockwise();
 }
 }
 } /* Solve */

Method isValid can be defined in MRP as:

Defensive Programming: Stay in Control.

/* Return false on evidence that a representation invariant is violated. */
public static boolean isValid() {
 return isValidPath(r, c) && isValidRat();
 } /* isValid */

where method isValidPath is the routine introduced into MRP in Chapter in 15 to validate the solution
path, and method isValidRat is defined now in MRP to validate the rat’s representation invariant:

16
 17
 18
 19

/* Rat. The rat is located in cell M[r][c] facing direction d, where a
 d of ⟨0,1,2,3⟩ represents the orientation ⟨up,right,down,left⟩,
 respectively. */
 private static int r, c, d;

by:

Defensive Programming: Stay in Control.

133
134
135
135
137
138
139

Return false iff rat’s representation invariant is violated.
static boolean isValidRat() {
 if ((r<0) || (r>hi) || (c<0) || (c>hi)) return false;
 else if ((d<0) || (d>3)) return false;
 else if (M[r][c]!=move) return false;
 else return true;
 } /* isValidRat */

In addition to the validity check once per iteration in Solve, we can scatter calls to isValid()

generously throughout the program, e.g., at the end of each method that modifies state. Were
we to have done so in the flawed routine of Bug C:

the mistake would have immediately “self-reported”:

java.lang.AssertionError: Invalid MRP representation.
 at MRP.TurnClockwise(MRP.java:35)
 at RunMaze.Solve(RunMaze.java:11)
 at RunMaze.main(RunMaze.java:41)

Defensive Programming: Stay in Control.

34 public static void TurnClockwise()

35 { d = (d+1) ; assert isValid(): "Invalid MRP representation."; }

In general, each place in code at which an assumption is made is a candidate
for defensive self-checking. Those places include the following:

• For an input statement, the code assumes that the input data will comply
with its specified format.

• For a statement-level specification of the form:

the code assumes that the precondition is true before the first statement
of the implementation, and the postcondition is true after the last
statement of the implementation.

Defensive Programming: Stay in Control.

/* Given precondition, establish postcondition. */
 Implementation

• For a declaration of the form:

or a declaration of the form:

the representation invariant is assumed to hold throughout the scope of
the variables, except prior to initialization, and until completion of the
code that seeks to reestablish the invariant after an update.

Defensive Programming: Stay in Control.

Declaration-of-one-variable // Representation invariant

/* Representation invariant. */
 Declarations-of-related-variables

• For a loop of the form:

or of the form:

the loop invariant is assumed to be true before and after each execution
of the statement.

Defensive Programming: Stay in Control.

/* Loop invariant. */
 while (condition) statement

/* Loop invariant. */
 for (init; condition; update) statement

• For a method definition of the form:

the definition assumes that the preconditions of input parameters are true
on entry to the body of the method, and the postconditions of output
parameters (as well as of its return value, if any) are true just before
returning from the method.

Defensive Programming: Stay in Control.

/* Given precondition on input parameters, establish postcondition
 on output parameters, and return value, if any. */
Method definition

• For a method invocation of the form:

the code assumes that each input argument value satisfies the
precondition of the corresponding input parameter, and that each output
argument (as well as the return value, if any) satisfies the postcondition of
the corresponding output parameter (or result).

The biggest drawback of aggressive validity checking is degraded
performance, but during program development your time is valuable.
Once you have found all the bugs, you can disable assert statements using
the appropriate compiler option, at which point they cost you nothing.

Defensive Programming: Stay in Control.

name(argument-list)

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3

	Example Bugs
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

	Debuggers
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

	Defensive Programming
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

