
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Classes and Objects

Copyright©2024 by Tim Teitelbaum; Most recent revision, 12/03/2024

A taxonomy is a system of classification. Taxonomies are an
essential mechanism for organizing subject matter.

Hierarchical taxonomies in which concepts are organized
into tree structures are ubiquitous. In a hierarchy, the most
general concept is placed at the root of the tree, and
subordinate concepts branch out from there.

Each category is a set of individuals. A Venn diagram depicts
categories as nested regions, and individuals as dots.

Taxonomic categories in programming are called classes, and the
individuals of a class are its objects. The root category is object.

We illustrate classes and objects by implementing Pair, Fraction, and
Rational. Every rational is a fraction, and every fraction is a pair of
integers, and every pair is an object.

We then implement ArrayList[E], a parameterized class for representing
and manipulating collections of type E elements. We use the class
ArrayList[Rational] to complete code for enumerating rationals.

Because we can define HashSet[E], class similar to ArrayList[E], it is
easy to replace one with the other, and compare their speed. We do so,
and demonstrate the dramatic speedup of hash tables over lists.

Finally, in a bit of a double cross, we observe that collections weren’t ever
actually needed for enumerating rationals in the first place, and obtain a
still-faster implementation without them.

A class is a collection of variable declarations and method definitions.

An object is a dynamic instantiation of the variables (and methods) of
a class whose declarations (and definitions) are not declared and
initialized at the top-level of the class.

Such variables are known as object fields or instance variables (and
such methods are known as instance methods). Objects and
references to them are depicted as shown.

Classes are types. If C is a class, a variable v of type C is obtained by
executing the declaration:

v: C = expression

That is, variable v (with type C) is initialized with the value of the
expression.

Such a variable can hold a reference to an object of type C.

C

field1
field2
...

method1
method2
...

C

field1
field2
...

method1
method2
...

v

An object o of type C is created by executing the expression

C(…)

If object o has a field f, the field is accessed as o.f.

If object o has a method m, the method is invoked by o.m(…).

If a class is the shape of a cookie (with its fields and methods), and objects
are the cookies themselves, then C(…) is a cookie-cutter that stamps out
new cookies (with instances of C’s instance fields and methods).

In contrast, class variables are unique, and are not instantiated for each
object. Rather, there is only one version of each class variable, and all
objects of the class share access to it.

C

field1
field2
...

method1
method2
...

v

Class definition: Pair

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

Variable declaration (with initialization):

v: Pair = Pair(2,3)

Pair

_key
_value

Pair
get_key
get_value

2

3

v

Class definition: Pair

Execution of the variable declaration (with initialization) in four steps:

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

1. Create the variable v.

Variable declaration (with initialization):

v: Pair = Pair(2,3)

v

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

Execution of the variable declaration (with initialization) in four steps:

1. Create the variable v.

2. Create an object of type Pair.

Pair

Pair
get_key
get_value

Class definition: Pair

Variable declaration (with initialization):

v: Pair = Pair(2,3)

v

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

Pair

_key
_value

Pair
get_key
get_value

2

3

Execution of the variable declaration (with initialization) in four steps:

1. Create the variable v.

2. Create an object of type Pair.

3. Invoke the constructor __init__ on
the object, which can establish fields
and their values.Class definition: Pair

Variable declaration (with initialization):

v: Pair = Pair(2,3)

v Pair

_key
_value

Pair
get_key
get_value

2

3

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

1. Create the variable v.

2. Create an object of type Pair.

3. Invoke the constructor __init__ on
the object, which can establish fields
and their values.

4. Assign a reference to the object in v.

Execution of the variable declaration (with initialization) in four steps:

Class definition: Pair

Variable declaration (with initialization):

v: Pair = Pair(2,3)

v

Visibility: Each field and method of a class has visibility public, private, or protected.

Pair

_key
_value

Pair
get_key
get_value

2

3

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

v

Visibility: Each field and method of a class has visibility public, private, or protected.

• public fields and methods are globally visible (the default).
Pair

_key
_value

Pair
get_key
get_value

2

3

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

A field or method name that does not begin with an underscore (“_” or “__”) is public.

v
• public fields and methods are globally visible (the default).
• private fields and methods are only visible within the class.

Pair

_key
_value

Pair
get_key
get_value

2

3

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

A field or method name that begins with double underscores
(“__”) and doesn’t end with double underscores is private.

No private fields or method are illustrated

Visibility: Each field and method of a class has visibility public, private, or protected.

v
• public fields and methods are globally visible (the default).
• private fields and methods are only visible within the class.
• protected fields and methods are only visible within the class, or

within a subclass of the class, e.g., Fraction.

Pair

_key
_value

Pair
get_key
get_value

2

3

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

Visibility: Each field and method of a class has visibility public, private, or protected.

A field or method name that begins with a single underscore (“_”) is protected
and should not be accessed outside of the class or its subclasses. Although
such access it is not denied, the underscore serves as a warning to stay away.

Modifiability: class clients should consider private and protected fields as read-only.

v Pair

_key
_value

Pair
get_key
get_value

2

3

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

Modifiability: class clients should consider private and protected fields as read-only.

v Pair

_key
_value

Pair
get_key
get_value

2

3

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

E.g., clients of Pair should obtain the values of _key and _value
using the getters get_key and get_value, and should not access
those fields directly. Such an object is said to be immutable.

Default str representation:

• Every Pair is an object, and every object has a default __str__ method.
• However, the str representation provided by that method is not particularly helpful.

Output the str representation of a Pair:

print(v) <__main__.Pair object at 0x … >

v Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

class Pair:
 ...
 # String representation.
 def __str__(self) -> str:
 return "<" + str(self._key) + "," + str(self._value) + ">"

Overriding definition of __str__ for Pair:

<2,3>

v Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

Output the str representation of a Pair:

print(v)

v

Execution of the print statement in three steps:

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

class Pair:
 ...
 # String representation.
 def __str__(self) -> str:
 return "<" + str(self._key) + "," + str(self._value) + ">"

Output the str representation of a Pair:

print(v)

Overriding definition of __str__ for Pair:

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

class Pair:
 ...
 # String representation.
 def __str__(self) -> str:
 return "<" + str(self._key) + "," + str(self._value) + ">"

1. Obtain the value of variable v.

Execution of the print statement in three steps:

Output the str representation of a Pair:

print(v)

Overriding definition of __str__ for Pair:

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

class Pair:
 ...
 # String representation.
 def __str__(self) -> str:
 return "<" + str(self._key) + "," + str(self._value) + ">"

1. Obtain the value of variable v.

2. Compute the str representation of that
value by invoking its __str__ method.

Execution of the print statement in three steps:

Output the str representation of a Pair:

print(v)

Overriding definition of __str__ for Pair:

1. Obtain the value of variable v.

2. Compute the str representation of that
value by invoking its __str__ method.

3. Output that value.

class Pair:
 ...
 # String representation.
 def __str__(self) -> str:
 return "<" + str(self._key) + "," + str(self._value) + ">"

<2,3>

Execution of the print statement in three steps:

Output the str representation of a Pair:

print(v)

Overriding definition of __str__ for Pair:

1. Obtain the value of variable v.

2. Compute the str representation of that
value by invoking its __str__ method.

3. Output that value.

class Pair:
 ...
 # String representation.
 def __str__(self) -> str:
 return "<" + str(self._key) + "," + str(self._value) + ">"

<2,3>

Execution of the print statement in three steps:

Output the str representation of a Pair:

print(v)

Overriding definition of __str__ for Pair:

We have defined an overriding method __str__ to provide a distinctive
str representation for a Pair. Similarly, fixed-point int values (like key
and value) need their str representations (as decimal numerals) in
order that they may be concatenated with str values (like "<", ",",
and ">"). Function str(…) provides that representation.

1. Obtain the value of variable v.

2. Compute the str representation of that
value by invoking its __str__ method.

3. Output that value.

class Pair:
 ...
 # String representation.
 def __str__(self) -> str:
 return "<" + str(self._key) + "," + str(self._value) + ">"

<2,3>

Execution of the print statement in three steps:

Output the str representation of a Pair:

print(v)

Overriding definition of __str__ for Pair:

You may wonder how in the output of the statement:
print("The decimal numeral for the int 2 is: ", 2)

2 comes to be the decimal numeral for 2 without our needing to write:
print("The decimal numeral for the int 2 is: ", str(2))

but we won’t go there.

The default definition of operator == for objects is identity.

• “Identity” means “exactly the same object”.

Demonstrate the difference between identity and equality.

z1: Pair = Pair(2,3)
z2: Pair = Pair(2,3)
z3: Pair = z2
print(z1==z2)
print(z2==z3)

False
True

z1 Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

• “Identity” means “exactly the same object”.

Demonstrate the difference between identity and equality.

z1: Pair = Pair(2,3)
z2: Pair = Pair(2,3)
z3: Pair = z2
print(z1==z2)
print(z2==z3)

The default definition of operator == for objects is identity.

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

• “Identity” means “exactly the same object”.

Demonstrate the difference between identity and equality.

z1: Pair = Pair(2,3)
z2: Pair = Pair(2,3)
z3: Pair = z2
print(z1==z2)
print(z2==z3)

The default definition of operator == for objects is identity.

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

• “Identity” means “exactly the same object”.

Demonstrate the difference between identity and equality.

z1: Pair = Pair(2,3)
z2: Pair = Pair(2,3)
z3: Pair = z2
print(z1==z2)
print(z2==z3)

The default definition of operator == for objects is identity.

Demonstrate the difference between identity and equality.

z1: Pair = Pair(2,3)
z2: Pair = Pair(2,3)
z3: Pair = z2
print(z1==z2)
print(z2==z3)

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

• “Identity” means “exactly the same object”.

The default definition of operator == for objects is identity.

False

Demonstrate the difference between identity and equality.

z1: Pair = Pair(2,3)
z2: Pair = Pair(2,3)
z3: Pair = z2
print(z1==z2)
print(z2==z3)

False
True

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

• “Identity” means “exactly the same object”.

The default definition of operator == for objects is identity.

Demonstrate the difference between identity and equality.

z1: Pair = Pair(2,3)
z2: Pair = Pair(2,3)
z3: Pair = z2
print(z1==z2)
print(z2==z3)

False
True

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

The default definition of __eq__ for object values is identity.

• “Identity” means “exactly the same object”.
• Every object has an __eq__ method that is used to test

“equality” of two objects.
• The default definition of method __eq__ for any object is identity,

i.e., this is where the default behavior of == came from.

with the default definition
 of __eq__, i.e., identity

Demonstrate the difference between identity and equality.

z1: Pair = Pair(2,3)
z2: Pair = Pair(2,3)
z3: Pair = z2
print(z1==z2)
print(z2==z3)

True
True

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

• “Identity” means “exactly the same object”.
• Every object has an __eq__ method that is used to test

“equality” of two objects.
• The default definition of method __eq__ for any object is identity,

i.e., this is where the default behavior of == came from.
• The definition of __eq__ can be overridden, e.g., to treat non-

identical pairs with equal components as equal.

The default definition of __eq__ can be overridden.

with the overriding definition
of __eq__ shown on the next slide

class Pair:
 ...
 # Equality.
 def __eq__(self, other) -> bool:
 if other is None: return False
 if other is self: return True
 if not isinstance(other, Pair): return False;
 return (self._key == other._key) and (self._value == other._value)

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

Overriding definition of __eq__ of Pair.

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

class Pair:
 ...
 # Equality.
 def __eq__(self, other) -> bool:
 if other is None: return False
 if other is self: return True
 if not isinstance(other, Pair): return False;
 return (self._key == other._key) and (self._value == other._value)

Overriding definition of __eq__ of Pair.

Operator “is” tests identity.

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

An object is never equal to no object.

class Pair:
 ...
 # Equality.
 def __eq__(self, other) -> bool:
 if other is None: return False
 if other is self: return True
 if not isinstance(other, Pair): return False;
 return (self._key == other._key) and (self._value == other._value)

Overriding definition of __eq__ of Pair.

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

An object is always equal to itself, e.g. z2 and z3.

class Pair:
 ...
 # Equality.
 def __eq__(self, other) -> bool:
 if other is None: return False
 if other is self: return True
 if not isinstance(other, Pair): return False;
 return (self._key == other._key) and (self._value == other._value)

Overriding definition of __eq__ of Pair.

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

class Pair:
 ...
 # Equality.
 def __eq__(self, other) -> bool:
 if other is None: return False
 if other is self: return True
 if not isinstance(other, Pair): return False;
 return (self._key == other._key) and (self._value == other._value)

Overriding definition of __eq__ of Pair.

A Pair can only equal another Pair.

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

class Pair:
 ...
 # Equality.
 def __eq__(self, other) -> bool:
 if other is None: return False
 if other is self: return True
 if not isinstance(other, Pair): return False;
 return (self._key == other._key) and (self._value == other._value)

Overriding definition of __eq__ of Pair.

A Pair can only equal another Pair, and then only
when their components are equal, e.g. z1 and z2.

z1

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z2

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

2

3

z3

N.B. The left and right operands of == may be of different types, each with their own definition of __eq__. In this case,
you may legitimately ask which __eq__ is used? If only one operand type has an overriding definition of __eq__ , that
operand’s definition is used, otherwise preference is given to the left operand’s definition

class Pair:
 ...
 # Equality.
 def __eq__(self, other) -> bool:
 if other is None: return False
 if other is self: return True
 if not isinstance(other, Pair): return False;
 return (self._key == other._key) and (self._value == other._value)

Overriding definition of __eq__ of Pair.

Subclass definition: Fraction

class Fraction(Pair):
 # Constructor.
 def __init__(self, numerator: int, denominator: int) -> Fraction:
 super(numerator, denominator); # Apply the Pair constructor.
 assert denominator != 0, "0 denominator"

 # Access.
 def get_numerator(self) -> int: return self._key
 def get_denominator(self) -> int: return self._value

Fraction

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator

2

3

Fraction is a subclass of Pair, and as such acquires the
fields and methods from Pair.

Subclass definition: Fraction

class Fraction(Pair):
 # Constructor.
 def __init__(self, numerator: int, denominator: int) -> Fraction:
 super(numerator, denominator); # Apply the Pair constructor.
 assert denominator != 0, "0 denominator"

 # Access.
 def get_numerator(self) -> int: return self._key
 def get_denominator(self) -> int: return self._value

Fraction

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator

2

3

Fraction is a subclass of Pair, and as such acquires the
fields and methods from Pair, while adding more of its own.

Subclass definition: Fraction

class Fraction(Pair):
 # Constructor.
 def __init__(self, numerator: int, denominator: int) -> Fraction:
 super(numerator, denominator); # Apply the Pair constructor.
 assert denominator != 0, "0 denominator"

 # Access.
 def get_numerator(self) -> int: return self._key
 def get_denominator(self) -> int: return self._value

Fraction

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator

2

3

The Fraction constructor uses the Pair constructor to set fields _key and _value.

Subclass definition: Fraction

class Fraction(Pair):
 # Constructor.
 def __init__(self, numerator: int, denominator: int) -> Fraction:
 super(numerator, denominator); # Apply the Pair constructor.
 assert denominator != 0, "0 denominator"

 # Access.
 def get_numerator(self) -> int: return self._key
 def get_denominator(self) -> int: return self._value

Fraction

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator

2

3

It then assures that the denominator is not zero.

Subclass definition: Fraction

class Fraction(Pair):
 # Constructor.
 def __init__(self, numerator: int, denominator: int) -> None:
 super(numerator, denominator); # Apply the Pair constructor.
 assert denominator != 0, "0 denominator"

 # Access.
 def get_numerator(self) -> int: return self._key
 def get_denominator(self) -> int: return self._value

Fraction

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator

2

3

The getters have direct access to the fields _key and _value because
they are protected in Pair, a superclass of Fraction.

class Fraction(Pair):
 # Constructor.
 def __init__(self, numerator: int, denominator: int) -> None:
 super(numerator, denominator); # Apply the Pair constructor.
 assert denominator != 0, "0 denominator"

 # Access.
 def get_numerator(self) -> int: return self._key
 def get_denominator(self) -> int: return self._value

 # String representation.
 def __str__(self) -> str: return str(self._key) + "/" + str(self._value)

Fraction

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator

2

3

Overriding definition of __str__ for Fraction:

Different string representations for Pair and Fraction

print(Pair(2,3), Fraction(2,3)) <2,3> 2/3

Fraction

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator

2

3

Overriding definition of toString method for fractions:The definition of __eq__ for Fraction:

Two fractions are equal iff they have equal numerators and equal
denominators. This is (almost) the test that is used to test the equality of
two Pairs, so we might consider omitting an overriding definition of
__eq__ for Fraction, and rely on the definition in Pair.

However, pairs and fractions are two fundamentally different sorts of
things, and it seems inappropriate to let a Fraction be considered equal
to a Pair just because they happen to have the same two equal fields.

The effect of Fraction relying on the definition of __eq__ in Pair

z1: Pair = Pair(2,3)
z2: Fraction = Fraction(2,3)
print(z1, z2)
print(z1==z2)

<2,3> 2/3
True

Fraction

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator

2

3

The overriding definition of __eq__ for Fraction:

The effect of Fraction getting its own definition of __eq__

z1: Pair = Pair(2,3)
z2: Fraction = Fraction(2,3)
print(z1, z2)
print(z1==z2)

<2,3> 2/3
False

class Fraction(Pair):
 ...
 # Equality.
 def __eq__(self, other) -> bool:
 if other is None: return False
 if other is self: return True
 if not isinstance(other, Fraction): return False;
 return (self._key == other._key) and (self._value == other._value)

Accordingly, we choose to give Fraction its own definition of __eq__, and
so treat fractions as fundamentally different from pairs.

class Rational(Fraction):

Subclass definition: Rational

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

class Rational(Fraction):

Subclass definition: Rational

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

Rational is a subclass of Fraction, and as such acquires
fields and methods of a Fraction.

class Rational(Fraction):
 # Constructor.
 def __init__(numerator: int, denominator: int):
 super().__init__(numerator, denominator) # Apply the Fraction constructor.

Subclass definition: Rational

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

The Rational constructor uses the Fraction constructor to set fields _key and _value,
and to check that the denominator is not zero.

class Rational(Fraction):
 # Constructor.
 def __init__(numerator: int, denominator: int):
 super().__init__(numerator, denominator) # Apply the Fraction constructor.
 g: int = gcd(numerator, denominator)
 self._key = numerator // g
 self._value = denominator // g

Subclass definition: Rational

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

The Rational constructor uses the Fraction constructor to set fields _key and _value,
and to check that the denominator is not zero. Then it updates the representation to
reduced form, i.e., no common factors.

class Rational(Fraction):
 # Constructor.
 def __init__(numerator: int, denominator: int):
 super().__init__(numerator, denominator) # Apply the Fraction constructor.
 g: int = gcd(numerator, denominator)
 self._key = numerator // g
 self._value = denominator // g

Subclass definition: Rational

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

☞ Boundary conditions. Dead last, but don’t forget them.

class Rational(Fraction):
 # Constructor.
 def __init__(numerator: int, denominator: int):
 super().__init__(numerator, denominator) # Apply the Fraction constructor.
 g: int = gcd(numerator, denominator)
 self._key = numerator // g
 self._value = denominator // g

Subclass definition: Rational

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

Function gcd will fail for
negative arguments!

☞ Boundary conditions. Dead last, but don’t forget them.

class Rational(Fraction):
 # Constructor.
 def __init__(numerator: int, denominator: int):
 super().__init__(numerator, denominator) # Apply the Fraction constructor.
 g: int = gcd(numerator, denominator)
 self._key = numerator // g
 self._value = denominator // g

Subclass definition: Rational

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

☞ Boundary conditions. Dead last, but don’t forget them.

Function gcd will fail for
non-positive arguments!

class Rational(Fraction):
 # Constructor.
 def __init__(numerator: int, denominator: int):
 super().__init__(numerator, denominator) # Apply the Fraction constructor.
 g: int = gcd(numerator, denominator)
 self._key = numerator // g
 self._value = denominator // g

Subclass definition: Rational

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

☞ Boundary conditions. Dead last, but don’t forget them.

Reduced form is good, i.e., no common factors, but canonical form is better.

class Rational(Fraction):
 # Constructor.
 def __init__(numerator: int, denominator: int):
 super().__init__(numerator, denominator) # Apply the Fraction constructor.
 g: int = gcd(numerator, denominator)
 self._key = numerator // g
 self._value = denominator // g

Subclass definition: Rational

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

Reduced form is good, i.e., no common factors, but canonical form is better.
Equal rationals should have the same representations:
• Zero should have a denominator of 1.
• Negatives should have a negative numerator and a positive denominator.
• Positives should have positive numerator and denominator.

☞ Boundary conditions. Dead last, but don’t forget them.

class Rational(Fraction):
 # Constructor.
 def __init__(numerator: int, denominator: int):
 super().__init__(numerator, denominator) # Apply the Fraction constructor.
 if numerator == 0: self._value = 1

Subclass definition: Rational

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

☞ Boundary conditions. Dead last, but don’t forget them.

Reduced form is good, i.e., no common factors, but canonical form is better.
Equal rationals should have the same representations:
• Zero should have a denominator of 1.

•

class Rational(Fraction):
 # Constructor.
 def __init__(numerator: int, denominator: int):
 super().__init__(numerator, denominator) # Apply the Fraction constructor.
 if numerator == 0: self._value = 1
 else:
 g: int = gcd(abs(numerator), abs(denominator))
 if ((numerator < 0) and (denominator > 0)) or (
 (numerator > 0) and (denominator < 0)): sign = -1
 else:
 sign = +1
 self._key = sign * abs(numerator) // g
 self._value = abs(denominator) // g

Subclass definition: Rational

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

☞ Boundary conditions. Dead last, but don’t forget them.

class Rational(Fraction):
 ...
 # String representation.
 def __str__(self) -> str:
 if self._value == 1: return str(self._key) # self as an integer
 else: return super().__str__() # self as a Fraction

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

Overriding definition of __str__ for Rational:

Rationals are fractions in canonical form, and are equal iff they have
equal numerators and equal denominators. We choose to consider
a fraction that is serendipitously in canonical form as equal to a
rational with the same numerator and denominator. We choose to
consider a fraction that is not in canonical form as unequal to the
rational which is that fraction in canonical form.

z1 Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

z2 Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

1

Overriding definition of __eq__ for Rational is not needed.

The effect of letting Rational rely on the definition of __eq__ in Fraction

Rational z1 = Rational(4,6)
Rational z2 = Rational(6,3)
print(z1, z2)
print(z1 == z2)

2/3 2
false

z1

Overriding definition of toString method for fractions:

Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

z3 Fraction

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator

2

3

Overriding definition of __eq__ for Rational is not needed.

Rationals are fractions in canonical form, and are equal iff they have
equal numerators and equal denominators. We choose to consider
a fraction that is serendipitously in canonical form as equal to a
rational with the same numerator and denominator. We choose to
consider a fraction that is not in canonical form as unequal to the
rational which is that fraction in canonical form.

The effect of letting Rational rely on the definition of __eq__ in Fraction

Rational z1 = Rational(4,6)
Fraction z3 = Fraction(2,3)
print(z1, z3)
print(z1 == z3)

2/3 2/3
true

Rationals are fractions in canonical form, and are equal iff they have
equal numerators and equal denominators. We choose to consider
a fraction that is serendipitously in canonical form as equal to a
rational with the same numerator and denominator. We choose to
consider a fraction that is not in canonical form as unequal to the
rational which is that fraction in canonical form.

z1 Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

z4 Fraction

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator

4

6

Overriding definition of __eq__ for Rational is not needed.

The effect of letting Rational rely on the definition of __eq__ in Fraction

Rational z1 = Rational(4,6)
Fraction z4 = Fraction(4,6)
print(z1, z4)
print(z1 == z4)

2/3 4/6
false

z2 Rational

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

1

z5 Fraction

_key
_value

__str__
__eq__
Pair
get_key
get_value
Fraction
get_numerator
get_denominator

2

1

Overriding definition of __eq__ for Rational is not needed.

Rationals are fractions in canonical form, and are equal iff they have
equal numerators and equal denominators. We choose to consider
a fraction that is serendipitously in canonical form as equal to a
rational with the same numerator and denominator. We choose to
consider a fraction that is not in canonical form as unequal to the
rational which is that fraction in canonical form.

The effect of letting Rational rely on the definition of __eq__ in Fraction

Rational z2 = Rational(6,3)
Fraction z5 = Fraction(2,1)
print(z2, z5)
print(z2 == z5)

2 2/1
true

The display of rationals with denominators
of 1 as integers has no effect on equality.

print(Rational(2,3)) 2/3

print(Rational(4,6)) 2/3

print(Rational(-4,6)) -2/3

print(Rational(4,-6)) -2/3

print(Rational(-4,-6)) 2/3

print(Rational(6,3)) 2

print(Rational(0,1)) 0

print(Rational(0,10)) 0

print(Rational(0,-10)) 0

print(Rational(2,3) == Rational(4,6)) True

Test code Output

Unit Test: Cover every public aspect of the class’s interface (black-box testing), and if you
know the implementation internals, every corner case you can foresee (white-box testing).

Can you think of other examples to test?

Subtype polymorphism: A variable of class C can
be assigned a reference to any object of class C′,
where C′ is either C itself, or C′ is a subclass of C,
i.e., lower in the class hierarchy.

o

o: object

Pair

_key
_value

Pair
__str__
__eq__
get_key
get_value

Subtype polymorphism:

o
4

6

o: object
o = Pair(4,6)

Fraction

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator

Pair

_key
_value

Pair
__str__
__eq__
get_key
get_value

Subtype polymorphism:

o

4

6

4

6

o: object
o = Pair(4,6)
o = Fraction(4,6)

Rational

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

Pair

_key
_value

Pair
__str__
__eq__
get_key
get_value

Subtype polymorphism:

o

4

6

4

6

2

3

Fraction

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator

o: object
o = Pair(4,6)
o = Fraction(4,6)
o = Rational(4,6)

Rational

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

Rational

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

Fraction

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator

Pair

_key
_value

Pair
__str__
__eq__
get_key
get_value

o: object
o = Pair(4,6)
o = Fraction(4,6)
o = Rational(4,6)
o = Rational(6,3)

Subtype polymorphism:

o

4

6

4

6

2

3

2

1

Dynamic method dispatch: The
definition used for any given method
invocation depends of the type of the
value, not the type of the variable that
contains that value.

o ?

o: object

o Pair

_key
_value

Pair
__str__
__eq__
get_key
get_value

4

6

<4,6>
o: object
o = Pair(4,6); print(o)

Dynamic method dispatch: The
definition used for any given method
invocation depends of the type of the
value, not the type of the variable that
contains that value.

Dynamic method dispatch: The
definition used for any given method
invocation depends of the type of the
value, not the type of the variable that
contains that value.

o

4

6

Fraction

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator

4

6

<4,6>
4/6

o: object
o = Pair(4,6); print(o)
o = Fraction(4,6); print(o)

Pair

_key
_value

Pair
__str__
__eq__
get_key
get_value

Dynamic method dispatch: The
definition used for any given method
invocation depends of the type of the
value, not the type of the variable that
contains that value.

Pair

_key
_value

Pair
__str__
__eq__
get_key
get_value

o

4

6

Fraction

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator

4

6

Rational

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

<4,6>
4/6
2/3

o: object
o = Pair(4,6); print(o)
o = Fraction(4,6); print(o)
o = Rational(4,6); print(o)

Dynamic method dispatch: The
definition used for any given method
invocation depends of the type of the
value, not the type of the variable that
contains that value.

Rational

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

Fraction

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator

Pair

_key
_value

Pair
__str__
__eq__
get_key
get_value

o: object
o = Pair(4,6); print(o)
o = Fraction(4,6); print(o)
o = Rational(4,6); print(o)
o = Rational(6,3); print(o)

<4,6>
4/6
2/3
2

o

4

6

4

6

Rational

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

2

1

Rational

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

Rational

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

Fraction

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator

Subtype polymorphism caveat:

If variable v has type C, a field
access v.f, or a method invocation
v.m(…), requires that field f or
method m necessarily exist in any
object of type C.

o: object = Pair(4,6); print(o.get_key()) # Statically type incorrect.
p: Pair = Pair(4,6); print(p.get_key()) # Statically type correct.
p = Pair(2,3); print(p.get_numerator()) # Statically type incorrect.
f: Fraction = Fraction(4,6); print(f.get_numerator()) # Statically type correct.
q: Rational = Rational(6,3); print(q.get_numerator()) # Statically type correct.

o

Pair

_key
_value

Pair
__str__
__eq__
get_key
get_value

4

6

4

6

2

3

2

1

This rule holds if we wish to enforce static type checking, i.e., detect type errors prior to execution.

Rational

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

Fraction

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator

Inheritance: The class hierarchy is
also called the inheritance hierarchy.

Objects of class C are said to inherit
all fields f of superclasses of C above
it in the hierarchy.

They also inherit the most specific
(overriding) version of method m
defined either in class C, or in one of
C’s superclasses, i.e., the first
definition of m found in a traversal
from C up to Object in the
hierarchy.

o

Pair

_key
_value

Pair
__str__
__eq__
get_key
get_value

4

6

4

6

2

3

Rational

_key
_value

Pair
__str__
__eq__
get_key
get_value
Fraction
get_numerator
get_denominator
Rational

2

3

Motivation: Recall that in Chapter 6 we showed how to maintain a dynamically changing collection
of integers in a data structure consisting of an array A and an integer size:

We implemented each of the operations add, remove, membership, multiplicity, and enumeration
with small code patterns. A ready facility with such patterns is important, but we remarked that
writing such code directly in your program also has drawbacks:

• The collection has no single name, and thus it is not easily manipulated as one thing.

• The collection’s implementation details are not hidden, and thus your program can both break
the data structure’s representation invariant and come to excessively depend on its details.

We address those limitations now by defining class ArrayList:

• References to instances of ArrayList can be manipulated as one thing, i.e., as objects.

• The details of an ArrayList are hidden using the class’s visibility mechanism, which allows easy
replacement of one collection implementation with another.

The implementation of Python’s list[] type (under the hood) is essentially the same as ArrayList.

Motivation: Recall that in Chapter 6 we showed how to maintain a dynamically changing collection
of integers in a data structure consisting of an array A and an integer size:

We implemented each of the operations add, remove, membership, multiplicity, and enumeration
with small code patterns. A ready facility with such patterns is important, but we remarked that
writing such code directly in your program also has drawbacks:

• The collection has no single name, and thus it is not easily manipulated as one thing.

• The collection’s implementation details are not hidden, and thus your program can both break
the data structure’s representation invariant and come to excessively depend on its details.

We address those limitations now by defining class ArrayList:

• References to instances of ArrayList can be manipulated as one thing, i.e., as objects.

• The details of an ArrayList are hidden using the class’s visibility mechanism, which allows easy
replacement of one collection implementation with another.

The implementation of Python’s list[] type (under the hood) is essentially the same as ArrayList.

Technically, “hidden” is misnomer, Python only urges you to not rely on protected variables and methods.

Guide: The implementation turns the familiar code fragments of Chapter 12 into methods, and will
therefore need little additional explanation.

There is an additional benefit of turning these code fragments into the methods that was not
previously mentioned:

• The data structure (and its methods) can be instantiated multiple times, i.e., you can easily have
as many list objects as you want.

Each method has a docstring that provides the method’s specification. Although various
organizations standardize formats for such specifications, we will be less formal about their
structure. Nonetheless, we aim for precision that is intended to be adequate external
documentation for any client of the class and its interface.

Occasional additional notes are provided, but you should otherwise let the specifications and their
implementations speak for themselves.

☞ Repeatedly improve comments (and docstrings) by relentless copy editing.

class ArrayList:
 """A list of unbounded capacity containing items of type int."""
 # Representation.
 _A: list[int] # _A[0..size-1] is a collection of list items of type int.
 _size: int # _size is the current number of items in the list.
 # The current list capacity is len(_A).

Class definition:

Class definition:
The type of an ArrayList element is int (for now), and will be colored blue.

Integers unrelated to the type of ArrayList items will not be colored blue.
This color coding will help you to distinguish between the type of list items, and
the type of integer indices. It will also be relevant later, when we generalize the
class ArrayList to be a list of items of any type.

class ArrayList:
 """A list of unbounded capacity (initially m) containing items of type int."""
 # Representation.
 _A: list[int] # _A[0..size-1] is a collection of list items of type int.
 _size: int # _size is the current number of items in the list.
 # The current list capacity is len(_A).

Class definition:

Data representation is protected, i.e., hidden to clients, albeit visible to subclasses, if any.

class ArrayList:
 """A list of unbounded capacity containing items of type int."""
 # Representation.
 _A: list[int] # _A[0..size-1] is a collection of list items of type int.
 _size: int # _size is the current number of items in the list.
 # The current list capacity is len(_A).

Class definition:

class ArrayList:
 """A list of unbounded capacity containing items of type int.""“
 # Representation.
 _A: list[int] # _A[0..size-1] is a collection of list items of type int.
 _size: int # _size is the current number of items in the list.
 # The current list capacity is len(_A).

 # Constructor.
 def __init__(self, m: int = 20) -> None:
 """
 Construct an empty list for int items, with an initial capacity m>=0,
 or 20 if no m is given.
 Raise ValueError if m<0.
 """
 if m < 0: raise ValueError("Capacity must be non-negative int")
 self._A = [0 for _ in range(m)]
 self._size = 0

Class definition:

Default value for parameter allows it to be omitted in an invocation of the constructor.

class ArrayList:
 """A list of unbounded capacity containing items of type int.""“
 # Representation.
 _A: list[int] # _A[0..size-1] is a collection of list items of type int.
 _size: int # _size is the current number of items in the list.
 # The current list capacity is len(_A).

 # Constructor.
 def __init__(self, m: int = 20) -> None:
 """
 Construct an empty list for int items, with an initial capacity m>=0,
 or 20 if no m is given.
 Raise ValueError if m<0.
 """
 if m < 0: raise ValueError("Capacity must be non-negative int")
 self._A = [0 for _ in range(m)]
 self._size = 0

Class definition:

The initial values in the array are zeros, which we also color blue.

class ArrayList:
 """A list of unbounded capacity containing items of type int.""“
 # Representation.
 _A: list[int] # _A[0..size-1] is a collection of list items of type int.
 _size: int # _size is the current number of items in the list.
 # The current list capacity is len(_A).

 # Constructor.
 def __init__(self, m: int = 20) -> None:
 """
 Construct an empty list for int items, with an initial capacity m>=0,
 or 20 if no m is given.
 Raise ValueError if m<0.
 """
 if m < 0: raise ValueError("Capacity must be non-negative int")
 self._A = [0 for _ in range(m)]
 self._size = 0

Class definition:

A blank line after multi-line docstrings is recommended, but not done here to facilitate “slide management”.

class ArrayList:
 """A list of unbounded capacity containing items of type int.""“
 # Representation.
 _A: list[int] # _A[0..size-1] is a collection of list items of type int.
 _size: int # _size is the current number of items in the list.
 # The current list capacity is len(_A).

 # Constructor.
 def __init__(self, m: int = 20) -> None:
 """
 Construct an empty list for int items, with an initial capacity m>=0,
 or 20 if no m is given.
 Raise ValueError if m<0.
 """
 if m < 0: raise ValueError("Capacity must be non-negative int")
 self._A = [0 for _ in range(m)]
 self._size = 0

...

 # Size.
 def size(self) -> int:
 """Return the number of items in the list."""
 return self._size

 def is_empty(self) -> bool:
 """Return True iff the list is empty."""
 return self._size == 0

A public getter for the read-only field _size, and a public predicate to test for an empty list.

...

 # Access.
 def get(self, k: int) -> int:
 """
 Return the list item at index k.
 Raise IndexError for an out-of-bounds k.
 """
 self._check_bound_exclusive(k)
 return self._A[k]

 def set(self, k: int, v: int) -> int:
 """
 Overwrite the list item at index k with v, and return the old item that was there.
 Raise IndexError for an out-of-bounds k.
 """
 self._check_bound_exclusive(k)
 old: int = self._A[k]
 self._A[k] = v
 return old

...

 # Access.
 def get(self, k: int) -> int:
 """
 Return the list item at index k.
 Raise IndexError for an out-of-bounds k.
 """
 self._check_bound_exclusive(k)
 return self._A[k]

 def set(self, k: int, v: int) -> int:
 """
 Overwrite the list item at index k with v, and return the old item that was there.
 Raise IndexError for an out-of-bounds k.
 """
 self._check_bound_exclusive(k)
 old: int = self._A[k]
 self._A[k] = v
 return old

Raise exception if k is outside the bounds of the current list, excluding the index of the next available slot.

...

 # Insertion / Deletion.
 def add(self, v: int, k: int = -1) -> None:
 """
 If no k is provided, append v the end of the list, else right-shift items with
 indices k thru the end of the list one place, and insert v at index k.
 Increase the list capacity, if necessary.
 Raise IndexError on out-of-bound k.
 """

 if k == -1: k = self._size
 self._check_bound_inclusive(k)
 if self._size == len(self._A): self.ensure_capacity(self._size + 1)
 for j in range(self._size, k, -1): self._A[j] = self._A[j-1]
 self._A[k] = v
 self._size += 1

...

 # Insertion / Deletion.
 def add(self, v: int, k: int = -1) -> None:
 """
 If no k is provided, append v the end of the list, else right-shift items with
 indices k thru the end of the list one place, and insert v at index k.
 Increase the list capacity, if necessary.
 Raise IndexError on out-of-bound k.
 """

 if k == -1: k = self._size
 self._check_bound_inclusive(k)
 if self._size == len(self._A): self.ensure_capacity(self._size + 1)
 for j in range(self._size, k, -1): self._A[j] = self._A[j-1]
 self._A[k] = v
 self._size += 1

...

 # Insertion / Deletion.
 def add(self, v: int, k: int = -1) -> None:
 """
 If no k is provided, append v the end of the list, else right-shift items with
 indices k thru the end of the list one place, and insert v at index k.
 Increase the list capacity, if necessary.
 Raise IndexError on out-of-bound k.
 """

 if k == -1: k = self._size
 self._check_bound_inclusive(k)
 if self._size == len(self._A): self.ensure_capacity(self._size + 1)
 for j in range(self._size, k, -1): self._A[j] = self._A[j-1]
 self._A[k] = v
 self._size += 1

...

 # Insertion / Deletion.
 def add(self, v: int, k: int = -1) -> None:
 """
 If no k is provided, append v the end of the list, else right-shift items with
 indices k thru the end of the list one place, and insert v at index k.
 Increase the list capacity, if necessary.
 Raise IndexError on out-of-bound k.
 """

 if k == -1: k = self._size
 self._check_bound_inclusive(k)
 if self._size == len(self._A): self.ensure_capacity(self._size + 1)
 for j in range(self._size, k, -1): self._A[j] = self._A[j-1]
 self._A[k] = v
 self._size += 1

...

 # Insertion / Deletion.
 def add(self, v: int, k: int = -1) -> None:
 """
 If no k is provided, append v the end of the list, else right-shift items with
 indices k thru the end of the list one place, and insert v at index k.
 Increase the list capacity, if necessary.
 Raise IndexError on out-of-bound k.
 """

 if k == -1: k = self._size
 self._check_bound_inclusive(k)
 if self._size == len(self._A): self.ensure_capacity(self._size + 1)
 for j in range(self._size, k, -1): self._A[j] = self._A[j-1]
 self._A[k] = v
 self._size += 1

Raise IndexError exception if k is outside the bounds of the current list, but allow the index of the next available slot.

...

 def remove(self, k: int) -> int:
 """
 Return the list item with index k after left-shifting items with indices
 k+1 thru the end (if any) to remove the old k-th value from the list.
 Raise IndexError for an out-of-bounds k.
 """
 self._check_bound_exclusive(k)
 old: int = self._A[k]
 self._size -= 1
 for j in range(k, self._size): self._A[j] = self._A[j+1];
 return old

 def remove_by_value(self, v: int) -> bool:
 """
 Return False if v is not in the list, else remove (one copy of) v from list
 and return True.
 """
 k = self.index_of(v)
 if k == -1: return False;
 else: self.remove(k); return True

...

 # Capacity.
 def ensure_capacity(self, min_capacity: int) -> None:
 """
 Increase the list's capacity to the maximum of min_capacity or double its current
 capacity.
 N.B. Python's built-in type "list" has "array doubling" built in. We ignore that
 here for pedagogical purposes.
 """
 current_length: int = len(self._A)
 if min_capacity > current_length:
 B: list[int] = [0] * max(2 * current_length, min_capacity)
 for k in range(0, self._size): B[k] = self._A[k]
 self._A = B

...

 # Membership.
 def index_of(self, v: int) -> int:
 """Return the index of an instance of v in the list, or -1 if there are none."""
 k: int = 0
 while (k < self._size) and (v != self._A[k]): k += 1
 if k == self._size: return -1
 else: return k

 def contains(self, v: int) -> bool:
 """Return True iff the list contains (one or more copies of) v."""
 return self.index_of(v) != -1

...

 # Bounds Checking.
 def _check_bound_exclusive(self, k: int) -> None:
 """Raise IndexError if k is not the index of one of the list's items."""
 if (k < 0) or (k >= self._size): raise IndexError("≥size")

 def _check_bound_inclusive(self, k: int) -> None:
 """
 Raise IndexError if k is not the index of one of the list's items
 or the next available index for an item to be added.
 """
 if (k < 0) or (k > self._size): raise IndexError(">size")

 # end of class ArrayList.

☞ Validate output thoroughly.

Unit Test: Cover every public aspect of the class’s interface (black-box testing), and if you
know the implementation internals, every corner case you can foresee (white-box testing).

A useful utility function for the tests that follow.
def diag()-> None:
 print("size:", collection.size())
 print("is_empty:", collection.is_empty())
 print("contains 10:", collection.contains(10))
 print("contains 20:", collection.contains(20))
 print("index of 10:", collection.index_of(10))
 print("index of 20:", collection.index_of(20))
 print("-------")

collection = ArrayList()
print("new array list:")
diag()

new array list:
size: 0
is_empty: True
contains 10: False
contains 20: False
index of 10: -1
index of 20: -1

collection.add(10,0)
print("add 10 at index 0")
diag()

add 10 at index 0
size: 2
is_empty: False
contains 10: True
contains 20: True
index of 10: 0
index of 20: 1

collection.add(10)
print("add 10")
diag()

add 10
size: 1
is_empty: False
contains 10: True
contains 20: False
index of 10: 0
index of 20: -1

collection.add(15,1)
print("add 15 at index 1")
diag()

add 15 at index 1
size: 3
is_empty: False
contains 10: True
contains 20: True
index of 10: 0
index of 20: 2

collection.add(20)
print("add 20")
diag()

add 20
size: 2
is_empty: False
contains 10: True
contains 20: True
index of 10: 0
index of 20: 1

v = collection.get(1)
print("item at 1", v)
diag()

item at 1 15
size: 3
is_empty: False
contains 10: True
contains 20: True
index of 10: 0
index of 20: 2

collection.remove_by_value(10)
print("remove by value 10")
diag()

remove by value 10
size: 1
is_empty: False
contains 10: False
contains 20: True
index of 10: -1
index of 20: 0

v = collection.set(1, 16)
print("set:", v, "at 1 to 16")
diag()

set: 15 at 1 to 16
size: 3
is_empty: False
contains 10: True
contains 20: True
index of 10: 0
index of 20: 2

Test code Output Test code (continued) Output (continued)

v = collection.get(1)
print("item at 1 is:", v)
diag()

item at 1 is: 16
size: 3
is_empty: False
contains 10: True
contains 20: True
index of 10: 0
index of 20: 2

collection.add(10)
print("add 10")
diag()

add 10
size: 1
is_empty: False
contains 10: True
contains 20: False
index of 10: 0
index of 20: -1

Test code Output

Unit Test: Seemingly mindless, but surprisingly
effective. The skill involves ferreting out every way
in which the code might fail.

(1) Exercise every line of code to make sure
it does not trigger a crash.

(2) Visually inspect the output to confirm
that it is correct.

Can you think of any cases we have missed?

v = collection.get(1)
print("item at 1 is:", v)
diag()

item at 1 is: 16
size: 3
is_empty: False
contains 10: True
contains 20: True
index of 10: 0
index of 20: 2

collection.add(10)
print("add 10")
diag()

add 10
size: 1
is_empty: False
contains 10: True
contains 20: False
index of 10: 0
index of 20: -1

Test code Output

Unit Test: Seemingly mindless, but surprisingly
effective. The skill involves ferreting out every way
in which the code might fail.

(1) Exercise every line of code to make sure
it does not trigger a crash.

(2) Visually inspect the output to confirm
that it is correct.

Can you think of any cases we have missed?

Visual inspection of output is tedious, and not something
you want to redo manually after every code change. It is
common to automate such retests by capturing the
desired output in a file to which new output can be
compared automatically after each change.

Output reduced positive fractions, i.e., positive rationals.
 # set reduced = { }
 d = 0
 while True:
 r = d;
 for c in range(0, d+1):
 # Let z be the reduced form of the fraction (r+1)/(c+1).
 g: int = gcd(r + 1, c + 1);
 # z: rational = ⟨(r+1)/g, (c+1)/g⟩

 if # z-is-not-an-element-of-reduced :
 # print(z)
 # reduced = reduced ∪ {z}
 r -= 1
 d += 1

Enumeration of rationals: Recall this incomplete code example from Chapter 6.

Output reduced positive fractions, i.e., positive rationals.
 # set reduced = { }
 d = 0
 while True:
 r = d;
 for c in range(0, d+1):
 # Let z be the reduced form of the fraction (r+1)/(c+1).
 z: Rational = Rational(r+1, c+1)

 if # z-is-not-an-element-of-reduced :
 # print(z)
 # reduced = reduced ∪ {z}
 r -= 1
 d += 1

Enumeration of rationals: We can adopt Rational as the type of the rational z.

Enumeration of rationals: We can adopt Rational as the type of rational z.

We would like to adopt ArrayList as the type of the set reduced, but cannot do so because,
as currently written, it is a collection of int items, not Rational items.

Output reduced positive fractions, i.e., positive rationals.
 # set reduced = { }
 d = 0
 while True:
 r = d;
 for c in range(0, d+1):
 # Let z be the reduced form of the fraction (r+1)/(c+1).
 z: Rational = Rational(r+1, c+1)

 if # z-is-not-an-element-of-reduced :
 # print(z)
 # reduced = reduced ∪ {z}
 r -= 1
 d += 1

Enumeration of rationals: We need an ArrayList of Rational items.

This could be done by:

• Cloning the ArrayList of int implementation, and adapting the clone to be a
collection of Rational elements (ugh!), or

• Parameterizing ArrayList to be ArrayList[E], a collection of elements of arbitrary
object type E, and then instantiating it as ArrayList[Rational], a collection of
Rational elements (far better!).

A class definition that is parametrized by a type is called a generic class.

Generic class definition:

The type of an ArrayList item is parameterized as E.

An array of null pointers cast to type E is created.

A
r
r
a
y
L
i
s
t
[
E
]

class ArrayList[E]:
 """A list of unbounded capacity containing items of type E."""
 _A: list[E] # _A[0..size-1] is a collection of items of type E.
 _size: int # _size is the current number of items in the list.
 # The current list capacity is len(_A).

 # Constructor.
 def __init__(self, m: int = 20) -> None:
 """
 Construct an empty list with capacity m>=0, or 20 if no m is provided.
 Raise ValueError for m<0.
 """
 if m < 0: raise ValueError("Capacity must be non-negative int")
 self._A = [cast(E, None) for _ in range(m)]
 self._size = 0

...

 # Access.
 def get(self, k: int) -> E:
 """
 Return the list item at index k.
 Raise IndexError for an out-of-bounds k.
 """
 self._check_bound_exclusive(k)
 return self._A[k]

 def set(self, k: int, v: E) -> E:
 """
 Overwrite the list item at index k with v, and return the old item that was there.
 Raise IndexError for an out-of-bounds k.
 """
 self._check_bound_exclusive(k)
 old: E = self._A[k]
 self._A[k] = v
 return old

 ...

We will not repeat the definitions of every method, but will let these two illustrate what is needed.
Essentially, every (blue) int is turned into a type parameter E.

...

 # Insertion / Deletion.
 ...

 def remove(self, k: int) -> E:
 """
 Return the list item with index k after left-shifting items with indices
 k+1 thru the end (if any) to remove the old k-th value from the list.
 Raise IndexError for an out-of-bounds k.
 """
 self._check_bound_exclusive(k)
 old: E = self._A[k]
 self._size -= 1
 for j in range(k, self._size): self._A[j] = self._A[j+1];
 self._A[size] = cast(E, None) # Garbage-collection assist.
 return old

 ...

A
r
r
a
y
L
i
s
t
[
E
]

A non-obvious subtlety in method remove involves an erasure step that assists in the efficient
management of storage. This is explained in the Garbage Collection discussion, later.

Enumeration of rationals: Returning to the incomplete code for enumerating rationals.

Output reduced positive fractions, i.e., positive rationals.
 # set reduced = { }
 d = 0
 while True:
 r = d
 for c in range(0, d+1):
 # Let z be the reduced form of the fraction (r+1)/(c+1)
 z: Rational = Rational(r + 1, c + 1)

 if # z-is-not-an-element-of-reduced :
 # print(z)
 # reduced = reduced ∪ {z}
 r -= 1
 d += 1

Output reduced positive fractions, i.e., positive rationals.
 reduced = ArrayList[Rational]()
 d = 0
 while True:
 r = d
 for c in range(0, d+1):
 # Let z be the reduced form of the fraction (r+1)/(c+1)
 z: Rational = Rational(r + 1, c + 1)

 if not reduced.contains(z):
 print(z)
 reduced.add(z)
 r -= 1
 d += 1

Enumeration of rationals: We declare reduced to have type ArrayList[Rational].

Output reduced positive fractions, i.e., positive rationals.
 reduced = ArrayList[Rational]()
 d = 0
 while True:
 r = d
 for c in range(0, d+1):
 # Let z be the reduced form of the fraction (r+1)/(c+1)
 z: Rational = Rational(r + 1, c + 1)

 if not reduced.contains(z):
 print(z)
 reduced.add(z)
 r -= 1
 d += 1

Enumeration of rationals: We declare reduced to have type ArrayList[Rational].

Some pedants would say that the variable reduced should be adorned with the
type annotation “: ArrayList[Rational]”, but this seems a little, well, pedantic.

1
2
1/2
3
1/3
4
3/2
2/3
1/4
5
1/5
6
5/2
4/3
3/4
2/5
1/6
7
5/3
3/5
1/7
etc.

⟵ 2/2 omitted

⟵ 4/2, 3/3, and 2/4 omitted

⟵ 6/2 omitted
⟵ 4/4 omitted
⟵ 2/6 omitted

Enumeration of rationals: and obtain the correct output.

1
2
1/2
3
1/3
4
3/2
2/3
1/4
5
1/5
6
5/2
4/3
3/4
2/5
1/6
7
5/3
3/5
1/7
etc.

⟵ 2/2 omitted

⟵ 4/2, 3/3, and 2/4 omitted

⟵ 6/2 omitted
⟵ 4/4 omitted
⟵ 2/6 omitted

Enumeration of rationals: and obtain the correct output.

Class definition: Recall the definition of class Pair.

P
a
i
r

class Pair:
 # Representation
 _key: int
 _value: int

 # Constructor.
 def __init__(self, k: int, v: int) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> int: return self._key
 def get_value(self) -> int: return self._value

Generic class definition: It, too, can be made generic so we can have pairs of any types.

P
a
i
r
[
K
,
V
]

class Pair [K, V]:
 # Representation
 _key: K
 _value: V

 # Constructor.
 def __init__(self, k: K, v: V) -> None:
 self._key = k; self._value = v

 # Access.
 def get_key(self) -> K: return self._key
 def get_value(self) -> V: return self._value

class Fraction(Pair[int][int]):
 # Constructor.
 def __init__(self, numerator: int, denominator: int) -> Fraction:
 super(numerator, denominator); # Apply the Pair constructor.
 assert denominator != 0, "0 denominator“

 # Access.
 def get_numerator(self) -> int: return self._key
 def get_denominator(self) -> int: return self._value

Generic class instantiation: Obtain the original Fraction by generic class instantiation.

P
a
i
r
[
i
n
t
,
i
n
t
]

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

Uniformity:

• In some languages, e.g., Python, all values are uniformly objects of some class, and each value is
accessed via a reference.

• The object reference () has a standard size, but the object itself doesn’t.
• In such languages, even values of basic types like int and bool are objects.

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

4

6

int

value

...

4

int

value

...

6

Simplified depiction More accurate depiction

• Other languages, e.g., Java, distinguish between primitive values and objects of a class.
• Primitive values, e.g., values of types int and boolean, fit conveniently into variables of standard

sizes, and are not accessed via a reference.
• In such languages, the depiction characterized as “simplified” is actually accurate.

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

4

6

Accurate depiction

Uniformity:

• In the interest of efficiency, but at the expense of complexity, Java offers two worlds, one in which
values of types like int and boolean are primitive, and the other in which there are object
versions of such values (of types Integer and Boolean) known as boxed integers and Booleans.

• Crossing back and forth between the two worlds is a bit complicated, but is ameliorated by
features known as auto-boxing and auto-unboxing (not further described).

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

4

6

Accurate depiction

Uniformity:

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

Integer

value

...

4

Integer

value

...

6

Accurate depiction

• An advantage of a language in which all values are objects is that generic classes can be
instantiated with any types. In contrast, in a language that distinguished between primitive values
and objects, generic classes can not be instantiated with primitive types such as int and boolean.

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

4

6

Accurate depiction

Uniformity:

Pair

_key
_value

__str__
__eq__
Pair
get_key
get_value

Integer

value

...

4

Integer

value

...

6

Accurate depiction

Polymorphism: Four kinds have been mentioned.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is converted (either implicitly of explicitly) to the required type. Type
casting is an example of such a conversion. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation. Java
has method overloading, but Python does not.

e.g., the object constructed by Rational(2,3) can be treated as a Rational, Fraction, Pair, or Object.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is converted (either implicitly of explicitly) to the required type. Type
casting is an example of such a conversion. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation. Java
has method overloading, but Python does not.

Polymorphism: Four kinds have been mentioned.

e.g., a variable declared to have type Fraction can be assigned a Fraction or Rational, but it cannot
be assigned a Pair or Object.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is converted (either implicitly of explicitly) to the required type. Type
casting is an example of such a conversion. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation. Java
has method overloading, but Python does not.

Polymorphism: Four kinds have been mentioned.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is converted (either implicitly of explicitly) to the required type. Type
casting is an example of such a conversion. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation. Java
has method overloading, but Python does not.

Polymorphism: Four kinds have been mentioned.

e.g., the code executed for __str__ depends on the type of the object, e.g., Rational.

e.g., ArrayList[E] or Pair[K, V].

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is converted (either implicitly of explicitly) to the required type. Type
casting is an example of such a conversion. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation. Java
has method overloading, but Python does not.

Polymorphism: Four kinds have been mentioned.

e.g., ArrayList[Rational] or Pair[int,int].

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is converted (either implicitly of explicitly) to the required type. Type
casting is an example of such a conversion. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation. Java
has method overloading, but Python does not.

Polymorphism: Four kinds have been mentioned.

e.g., cast(E, None) in the constructor __init__ of the generic class ArrayList[E].

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is converted (either implicitly of explicitly) to the required type. Type
casting is an example of such a conversion. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation. Java
has method overloading, but Python does not.

Polymorphism: Four kinds have been mentioned.

Technically, ArrayList[E] has only one constructor, but when the initial capacity parameter is omitted,
a default capacity is used. This simulates method overloading. Similarly, there is only one add method,
but when the index is omitted, the item is added to the end, which simulates a second version of add.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is converted (either implicitly of explicitly) to the required type. Type
casting is an example of such a conversion. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation. Java
has method overloading, but Python does not.

Polymorphism: Four kinds have been mentioned.

• Public, where names (with no leading underscore) are globally visible.

• Private, where names (with leading double underscores) are not visible outside of the class
or its subclasses.

• Protected, where names (with a leading single underscore) are visible within subclasses,
but should not be otherwise accessed outside the class even though this rule is not
enforced.

We have not illustrated private names because their double-underscore prefixes render such
code less readable. Nonetheless, for strict enforcement of information hiding, private names
should, in fact, use double underscore prefixes.

Visibility: Three kinds have been mentioned.

Vital as different types proliferate. Recommendation:

• Use type annotations generously.

• Use mypy to check type correctness before execution.

Static Type Checking:

Garbage Collection. An object dies when it can no longer be accessed in the program.

• Objects consume space in computer memory.
• Space consumed by objects that can no longer be accessed can be reclaimed automatically by a

mechanism (that runs behind the scene) called garbage collection.
• Normally, you don’t have to think about such matters. However, you should be aware that retaining a

gratuitous reference to an object can cause it to be needlessly retained.
• By itself, one such object is no big concern. But if it is at the beginning of a chain of references from

one object to another, then that one gratuitous reference can be the cause of an unbounded number
of needlessly-retained other objects, which is of concern.

• This is why we make sure that an ArrayList[E] retains no gratuitous references to objects in the
unused suffix of the array.

• We explain how this works next. It is a bit subtle, but is instructive.

Garbage Collection. Recall the definition of remove in ArrayList[E].

0 k n

A unused

s
iz

e

0 k n

A unused

s
iz

e

(before)

(after)

The left shift of (blue) values overwrites the (green) k-th value that is being removed from the collection. It was a
reference to some object of arbitrary size and complexity, and if this had been the only reference to that object, it could
now be garbage collected. But the value being removed at A[k] is not the issue, as that reference is being overwritten.

def remove(self, k: int) -> E:
 """... """

 self._check_bound_exclusive(k)
 old: E = self._A[k]
 self._size -= 1
 for j in range(k, self._size): self._A[j] = self._A[j+1];
 self._A[size] = cast(E, None) # Garbage-collection assist.
 return old

0 k n

A unused

s
iz

e

0 k n

A unused

s
iz

e

(before)

(after)

def remove(self, k: int) -> E:
 """... """

 self._check_bound_exclusive(k)
 old: E = self._A[k]
 self._size -= 1
 for j in range(k, self._size): self._A[j] = self._A[j+1];
 self._A[size] = cast(E, None) # Garbage-collection assist.
 return old

Garbage Collection. Recall the definition of remove in ArrayList[E].

The issue is the last (blue) value in the collection, which was originally in A[size-1], and that has now been left-shifted
one place. A copy of that value remains in A[size], the first element of the unused array suffix. It is that violet copy
that we must nullify. Note that the object referred to by the violet reference can not yet be collected because a
reference to it remains in A[size-1]. However, if and when that reference is removed or is overwritten, the object in
question will then be collectable by virtue of our having nullified the problematic copy in A[size].

Alternative implementation of (some of) the interface of ArrayList[E]

A class that hides all of its implementation details, and only exposes its public methods is known as an
abstract data type. The names, return types, and parameter types are known as the class’s interface.

Writing code with abstract data types permits the (relatively easy) replacement of one implementation
with an another, a decided advantage.

We illustrate this by defining HashSet[E], an alternative to ArrayList[E]. Because we use Python’s
built-in set data type to do so, the resulting implementation is rather trivial. But more importantly, we
can embrace the alternative by making just a one-line change in the application! A timing study shows
the substantial benefit of hash tables over lists.

(We note that because the set data type does not support indexed collections of elements, only part of
the ArrayList[E] interface is implemented. More precisely, the entire interface is implemented, but
the unavailable operations, if invoked, result in run-time exceptions.)

from typing import NoReturn
class HashSet[E]:
 """Generic HashSet containing items of type E."""
 # Representation.
 _A: set[E] # _A is the set of items.

 # Constructor.
 def __init__(self, m: int = 20) -> None:
 """A set of unbounded capacity containing items of type E."""
 if m < 0: raise ValueError("Capacity must be non-negative int")
 self._A = set[E]()

 # Size.
 def size(self) -> int:
 """Return the number of items in the set."""
 return len(self._A)

 def is_empty(self) -> bool:
 """Return True iff the set is empty."""
 return len(self._A) == 0
 ...

Hash Set implementation of (some of) the same interface as ArrayList[E]
H
a
s
h
S
e
t
[
E
]

...

 # Access.
 def get(self, k: int) -> NoReturn:
 """Unsupported."""
 assert False, "get not supported“

 def set(self, k: int, v: E) -> NoReturn:
 """Unsupported."""
 assert False, "set not supported"

 # Insertion / Deletion.
 def add(self, v: E, k: int = -1) -> None:
 """
 If no k is provided, insert v into the set, else raise an assertion
 exception "add at index not supported".
 """
 if k != -1:
 raise assertion exception, "add at index not supported"
 self._A.add(v)

H
a
s
h
S
e
t
[
E
]

...

 def remove(self, k: int) -> NoReturn:
 """Unsupported."""
 assert False, "remove (by index) not supported“

 def remove_by_value(self, v: E) -> bool:
 """Return False if v is not in set, else remove v from set and return True."""
 try:
 self._A.remove(v)
 return True
 except ValueError:
 return False

 # Capacity.
 def ensure_capacity(self, min_capacity int) -> None:
 """A superfluous operation purporting to increase the set’s capacity."""
 pass

H
a
s
h
S
e
t
[
E
]

...

 # Membership.
 def index_of(self, v: E) -> NoReturn:
 """Unsupported."""
 assert False, "index_of not supported"

 def contains(self, v: E) -> bool:
 """Return True iff the set contains v."""
 return v in self._A

H
a
s
h
S
e
t
[
E
]

H
a
s
h
S
e
t
[
E
]

Hash Functions: The implementation of HashSet[E] requires that its E’s have a hash
function, but Rational (as we have defined it) does not have one. The following simple
hash function just sums the hashes provided by the int numerator and denominator fields:

class Rational:
 ...
 # Hash Function
 def __hash__(self):
 return hash(self._key) + hash(self._value)
 ...

It would be more general-purpose if Rational were to inherit a hash function from
Pair[K,V], which we could define when K and V themselves have hash functions.
Unfortunately, this combines with complexities of generic-class type parameters, and gets
us over our heads in fine points, which we will finesse.

Enumeration of rationals: Recall our code for enumerating rationals using ArrayList[E].

Output reduced positive fractions, i.e., positive rationals.
 reduced = ArrayList[Rational]()
 d = 0
 while True:
 r = d
 for c in range(0, d+1):
 # Let z be the reduced form of the fraction (r+1)/(c+1)
 z: Rational = Rational(r + 1, c + 1)

 # On first occurrence of z, print it and add to reduced.
 if not reduced.contains(z):
 print(z)
 reduced.add(z)

 # Move diagonally up and (by virtue of c’s increment) to the right.
 r -= 1
 d += 1

Output reduced positive fractions, i.e., positive rationals.
 reduced = HashSet[Rational]()
 d = 0
 while True:
 r = d
 for c in range(0, d+1):
 # Let z be the reduced form of the fraction (r+1)/(c+1)
 z: Rational = Rational(r + 1, c + 1)

 # On first occurrence of z, print it and add to reduced.
 if not reduced.contains(z):
 print(z)
 reduced.add(z)

 # Move diagonally up and (by virtue of c’s increment) to the right.
 r -= 1
 d += 1

Enumeration of rationals: To use HashSet[E] instead, we only need to change one word.

Output reduced positive fractions, i.e., positive rationals.
 reduced = HashSet[Rational]()
 d = 0
 while True:
 r = d
 for c in range(0, d+1):
 # Let z be the reduced form of the fraction (r+1)/(c+1)
 z: Rational = Rational(r + 1, c + 1)

 # On first occurrence of z, print it and add to reduced.
 if not reduced.contains(z):
 print(z)
 reduced.add(z)

 # Move diagonally up and (by virtue of c’s increment) to the right.
 r -= 1
 d += 1

Enumeration of rationals: To use HashSet[E] instead, we only need to change one line.

The application code invoking contains and add is unchanged,
but the methods that are dynamically dispatched change
radically, i.e., from the ArrrayList[E] implementations to the
HashSet[E] implementations.

Timing Study: Contrast performance of ArrayList and HashSet.

Comment out the print statement so that printing does not mask timing
differences. Then, emit elapsed time every 10,000 insertions into reduced.

Output reduced positive fractions, i.e., positive rationals.
 reduced = ArrayList[Rational](20)
 startTime = time.time();
 count = 0; # number of rationals so far.
 d = 0
 while count < 100000:
 r = d
 for c in range(0, d+1):
 # Let z be the reduced form of the fraction (r+1)/(c+1)
 z: Rational = Rational(r + 1, c + 1)

 # On first occurrence of z, print it and add to reduced.
 if not reduced.contains(z):
 # print(z)
 reduced.add(z)
 count += 1
 if (count % 10000) == 0: print(time.time() - startTime);

 # Move diagonally up and (by virtue of c’s increment) to the right.
 r -= 1
 d += 1

The running time of ArrayList is quadratic, whereas the
running time of HashSet is linear and negligible.

Timing Study: Contrast performance of ArrayList and HashSet.

Timing Study: But why are we bothering to maintain the collection of already-output
rationals in the first place? We thought this was needed to make sure we would only
emit each rational once.

But why not just output the fractions that are in reduced form as they arise? We
didn’t actually need the collection in the first place. It was all just a pedagogical ruse!

The test for n/d being in reduced form is “gcd(n,d)==1”.

☞ Analyze first.

Output reduced positive fractions, i.e., positive rationals.
 startTime = time.time();
 count = 0; # number of rationals so far.
 d = 0
 while count < 100000:
 r = d
 for c in range(0, d+1):
 # Make rational from (r+1)/(c+1) and count it if it’s in reduced form.
 if gcd(r + 1, c + 1) == 1:
 z: Rational = Rational(r + 1, c + 1)
 # print(z)
 count += 1
 if (count % 10000) == 0: print(time.time() - startTime);

 # Move diagonally up and (by virtue of c’s increment) to the right.
 r -= 1
 d += 1

Enumeration of rationals: Contrast performance of ArrayList, HashSet, and gcd=1.

We make the Rational just to keep the timings comparable.

#rationals ArrayList HashSet gcd
10,000 12 0.11 0.02
20,000 47 0.32 0.05
30,000 109 0.63 0.09
40,000 196 0.92 0.12
50,000 310 1.24 0.15
60,000 448 1.69 0.19
70,000 612 2.07 0.22
80,000 802 2.49 0.25
90,000 1020 2.93 0.29

100,000 1263 3.46 0.33

Enumeration of rationals: Contrast performance of ArrayList, HashSet, and gcd=1.

The running time of ArrayList is quadratic, whereas the running time of HashSet is linear and negligible.
But in comparison, checking whether the fraction is in reduced form is practically instantaneous.

Enumerating a Collection: A small loose end.

Recall (from Chapter 12) that one of the operations of a collection is to enumerate its elements. This is
easy when we have direct access to the collection’s implementation, e.g.,

Enumerate items of a collection implemented as a list ⟨A[0:size-1], size, n⟩.
for k in range(0, size): # Do whatever for A[k].

Enumerate items of a collection implemented as a histogram H[0..maxValue].
for k in range(0, size):
 for j in range(0, H[k]):
 # Do whatever for k.

But how can you enumerate the items of a collection when its implementation is hidden within a class?
What is needed is indirect access to the collection’s implementation.

Specifically, we want to write client code that is independent of the collection’s implementation, e.g.

and have it work regardless of how the collection is implemented, e.g., as either of the following:

collection = _____
...
collection.add(2)
collection.add(3)
collection.add(5)
collection.add(7)
...
for k in collection: print(k)

collection = ArrayList[int]() or collection = HashSet[int]()

Enumerating a Collection: A small loose end.

What is needed is the notion of an iterator, an object that can be “pumped” to obtain successive
elements of the collection until, when exhausted, it raises an exception. In Python, the method of a
class that is invoked to yield a new iterator is __iter__(), and the method of an iterator that
provides successive elements is __next__(). An object can serve as its own iterator.

ArrayList[E]

def __iter__(self):
 self._index = 0
 return self
def __next__(self):
 if self._index < self._size:
 value = self._A[self._index]
 self._index += 1
 return value
 else:
 raise StopIteration

HashSet[E]

def __iter__(self):
 self._iterator = iter(self._A)
 return self
def __next__(self):
 return next(self._iterator)

Enumerating a Collection: A small loose end.

What is needed is the notion of an iterator, an object that can be “pumped” to obtain successive
elements of the collection until, when exhausted, it raises an exception. In Python, the method of a
class that is invoked to yield a new iterator is __iter__(), and the method of an iterator that
provides successive elements is __next__(). An object can serve as its own iterator.

ArrayList[E]

def __iter__(self):
 self._index = 0
 return self
def __next__(self):
 if self._index < self._size:
 value = self._A[self._index]
 self._index += 1
 return value
 else:
 raise StopIteration

HashSet[E]

def __iter__(self):
 self._iterator = iter(self._A)
 return self
def __next__(self):
 return next(self._iterator)

Enumerating a Collection: A small loose end.

A new iterator for an ArrayList sets the instance variable _index to 0.

What is needed is the notion of an iterator, an object that can be “pumped” to obtain successive
elements of the collection until, when exhausted, it raises an exception. In Python, the method of a
class that is invoked to yield a new iterator is __iter__(), and the method of an iterator that
provides successive elements is __next__(). An object can serve as its own iterator.

ArrayList[E]

def __iter__(self):
 self._index = 0
 return self
def __next__(self):
 if self._index < self._size:
 value = self._A[self._index]
 self._index += 1
 return value
 else:
 raise StopIteration

HashSet[E]

def __iter__(self):
 self._iterator = iter(self._A)
 return self
def __next__(self):
 return next(self._iterator)

Enumerating a Collection: A small loose end.

Successive elements of the ArrayList are obtained by subscripting _A and then incrementing
_index until reaching _size, at which point the StopItertion exception is raised.

What is needed is the notion of an iterator, an object that can be “pumped” to obtain successive
elements of the collection until, when exhausted, it raises an exception. In Python, the method of a
class that is invoked to yield a new iterator is __iter__(), and the method of an iterator that
provides successive elements is __next__(). An object can serve as its own iterator.

ArrayList[E]

def __iter__(self):
 self._index = 0
 return self
def __next__(self):
 if self._index < self._size:
 value = self._A[self._index]
 self._index += 1
 return value
 else:
 raise StopIteration

HashSet[E]

def __iter__(self):
 self._iterator = iter(self._A)
 return self
def __next__(self):
 return next(self._iterator)

Enumerating a Collection: A small loose end.

A new iterator for a HashSet just gets a new iterator from the underlying set implementation.

What is needed is the notion of an iterator, an object that can be “pumped” to obtain successive
elements of the collection until, when exhausted, it raises an exception. In Python, the method of a
class that is invoked to yield a new iterator is __iter__(), and the method of an iterator that
provides successive elements is __next__(). An object can serve as its own iterator.

ArrayList[E]

def __iter__(self):
 self._index = 0
 return self
def __next__(self):
 if self._index < self._size:
 value = self._A[self._index]
 self._index += 1
 return value
 else:
 raise StopIteration

HashSet[E]

def __iter__(self):
 self._iterator = iter(self._A)
 return self
def __next__(self):
 return next(self._iterator)

Enumerating a Collection: A small loose end.

Successive elements of the HashSet are obtained by invoking the next operation
of the underlying set implementation until it raises the StopItertion exception.

Summary:

We have presented the flavor of Object-Oriented Programming (OOP), and some of its
technical details.

We reinforced many of the lessons of earlier chapters:

• Combining careful specification of statements, declarations, and methods with careful
implementations.

• The practice of incremental testing.

• The benefit of analysis.

Object-Oriented Programming addresses for code many issues that scholars have considered in
Philosophy:

• The nature of taxonomy.

• Abstraction and instantiation.

• Ontology and epistemology.

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3

	Essential Notions
	Slide 4
	Slide 5

	Pair
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

	Fraction
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

	Rational
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

	Testing
	Slide 64

	Subtype Polymorphism and Dynamic Method Dispatch
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

	ArrayList
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

	Testing
	Slide 99
	Slide 100
	Slide 101
	Slide 102

	Generic Classes
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

	Testing
	Slide 113
	Slide 114

	Generic Classes
	Slide 115
	Slide 116
	Slide 117

	Uniformity
	Slide 118
	Slide 119
	Slide 120
	Slide 121

	Polymorphism
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129

	Visibility
	Slide 130

	Static Type Checking
	Slide 131

	Garbage Collection
	Slide 132
	Slide 133
	Slide 134

	Alternative Implementtions
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

	HashSet
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148

	Iterators
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155

	Summary
	Slide 156

