
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Classes and Objects

Copyright©2024 by Tim Teitelbaum; Most recent revision, 11/18/2024

A taxonomy is a system of classification. Taxonomies are an
essential mechanism for organizing subject matter.

Hierarchical taxonomies in which concepts are organized
into tree structures are ubiquitous. In a hierarchy, the most
general concept is placed at the root of the tree, and
subordinate concepts branch out from there.

Each category is a set of individuals. A Venn diagram depicts
categories as nested regions, and individuals as dots.

Taxonomic categories in programming are called classes, and the individuals
of a class are its objects. The root category is Object.

We illustrate classes and objects by implementing Pair, Fraction, and
Rational. Every rational is a fraction, and every fraction is a pair of integers,
and every pair is an Object.

We then implement ArrayList<E>, a parameterized class for representing
and manipulating collections of type E elements. We use the class
ArrayList<Rational> to complete code for enumerating rationals.

Because ArrayList<E> is similar to the library class HashSet<E>, it is easy
to replace one with the other, and compare their speed. We do so, and
demonstrate the dramatic speedup of hash tables over lists.

Finally, in a bit of a double cross, we observe that collections weren’t
actually needed for enumerating rationals in the first place, and obtain a
still-faster implementation without them.

A class is a collection of variable declarations and method definitions.

An object is a dynamic instantiation of the variables (and methods) of
a class whose declarations (and definitions) are not prefixed by the
modifier static.

Such variables are known as object fields or instance variables (and
such methods are known as instance methods). Objects and
references to them are depicted as shown.

Classes are types. If C is a class, a variable v of type C is obtained by
executing the declaration:

C v = expression;

That is, variable v (with type C) is initialized with the value of the
expression.

Such a variable can hold a reference to an object of type C.

C

field1
field2
...

method1
method2
...

C

field1
field2
...

method1
method2
...

v

An object o of type C is created by executing the expression

new C(…)

If object o has a field f, the field is accessed as o.f.

If object o has a method m, the method is invoked by o.m(…).

If a class is a shape of cookie (with its fields and methods), and objects are
the cookies themselves, then new C(…) is a cookie-cutter that stamps out
new cookies (with instances of C’s instance fields and methods.

In contrast, a static variable (or a static method) is unique, and is not
instantiated for each object. All objects of a class share access to such
variables (and methods).

C

field1
field2
...

method1
method2
...

v

Class definition: Pair

class Pair {
 /* Representation. */
 protected int key;
 protected int value;

 /* Constructor. */
 public Pair(int k, int v) { key = k; value = v; }

 /* Access. */
 public int getKey() { return key; }
 public int getValue() { return value; }
 } /* Pair */

Variable declaration (with initialization):

Pair v = new Pair(2,3);

Pair

key
value

Pair
getKey
getValue

2

3

v
Variable declaration (with initialization):

Pair v = new Pair(2,3);

Class definition:

class Pair {
 /* Representation. */
 protected int key;
 protected int value;

 /* Constructor. */
 public Pair(int k, int v) { key = k; value = v; }

 /* Access. */
 public int getKey() { return key; }
 public int getValue() { return value; }
 } /* Pair */

Execution of the variable declaration (with initialization) in four steps:

1. Create the variable v.

v
Variable declaration (with initialization):

Pair v = new Pair(2,3);

Pair

key
value

Pair
getKey
getValue

0

0

Class definition:

class Pair {
 /* Representation. */
 protected int key;
 protected int value;

 /* Constructor. */
 public Pair(int k, int v) { key = k; value = v; }

 /* Access. */
 public int getKey() { return key; }
 public int getValue() { return value; }
 } /* Pair */

Execution of the variable declaration (with initialization) in four steps:

1. Create the variable v.

2. Create an object of type Pair.

v

Class definition:

Variable declaration (with initialization):

Pair v = new Pair(2,3);

Pair

key
value

Pair
getKey
getValue

2

3

class Pair {
 /* Representation. */
 protected int key;
 protected int value;

 /* Constructor. */
 public Pair(int k, int v) { key = k; value = v; }

 /* Access. */
 public int getKey() { return key; }
 public int getValue() { return value; }
 } /* Pair */

Execution of the variable declaration (with initialization) in four steps:

1. Create the variable v.

2. Create an object of type Pair.

3. Invoke the constructor Pair on the
object, which re-initialize fields.

v
Variable declaration (with initialization):

Pair v = new Pair(2,3);

Pair

key
value

Pair
getKey
getValue

0

0

Class definition:

class Pair {
 /* Representation. */
 protected int key;
 protected int value;

 /* Constructor. */
 public Pair(int k, int v) { key = k; value = v; }

 /* Access. */
 public int getKey() { return key; }
 public int getValue() { return value; }
 } /* Pair */

Execution of the variable declaration (with initialization) in four steps:

1. Create the variable v.

2. Create an object of type Pair.

3. Invoke the constructor Pair on the
object, which re-initialize fields.

4. Assign a reference to the object in v.

v

Visibility: Each field and method of a class has visibility public, private, or protected.

• public fields and methods are globally visible (the default).
• private fields and methods are only visible within the class.
• protected fields and methods are only visible within the class, or within a

subclass of the class, e.g., Fraction.

Pair

key
value

Pair
getKey
getValue

2

3

class Pair {
 /* Representation. */
 protected int key;
 protected int value;

 /* Constructor. */
 public Pair(int k, int v) { key = k; value = v; }

 /* Access. */
 public int getKey() { return key; }
 public int getValue() { return value; }
 } /* Pair */

v

Modifiability: A private or protected field with a public getter is read-only outside its scope.

class Pair {
 /* Representation. */
 protected int key;
 protected int value;

 /* Constructor. */
 public Pair(int k, int v) { key = k; value = v; }

 /* Access. */
 public int getKey() { return key; }
 public int getValue() { return value; }
 } /* Pair */

• E.g., clients of Pair can obtain the components of a Pair
using the getter, but cannot change those fields. Such an
object is said to be immutable.

Pair

key
value

Pair
getKey
getValue

2

3

Default String representation:

• Every Pair is an Object, and every Object has a default toString method.
• However, the String representation provided by that method is not particularly

helpful.

Output the String representation of an object:

System.out.println(v); Pair@20293791

class Pair {
 ...
 /* String representation. */
 public String toString() { return "<" + key + "," + value + ">"; }
 } /* Pair */

Output the String representation of an object:

System.out.println(v); <2,3>

Overriding definition of toString for Pair:

v

class Pair {
 ...
 /* String representation. */
 public String toString() { return "<" + key + "," + value + ">"; }
 } /* Pair */

Output the String representation of an object:

System.out.println(v);

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

Overriding definition of toString for Pair:

Execution of the print statement in three steps:

class Pair {
 ...
 /* String representation. */
 public String toString() { return "<" + key + "," + value + ">"; }
 } /* Pair */

Output the String representation of an object:

System.out.println(v);

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

Execution of the print statement in three steps:

1. Obtain the value of variable v.

Overriding definition of toString for Pair:

class Pair {
 ...
 /* String representation. */
 public String toString() { return "<" + key + "," + value + ">"; }
 } /* Pair */

Output the String representation of an object:

System.out.println(v);

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

Execution of the print statement in three steps:

1. Obtain the value of variable v.

2. Compute the String representation of
that value by invoking its toString
method.

Overriding definition of toString for Pair:

class Pair {
 ...
 /* String representation. */
 public String toString() { return "<" + key + "," + value + ">"; }
 } /* Pair */

Output the String representation of an object:

System.out.println(v); <2,3>

Execution of the print statement in three steps:

1. Obtain the value of variable v.

2. Compute the String representation of
that value by invoking its toString
method.

3. Output that value.Overriding definition of toString for Pair:

class Pair {
 ...
 /* String representation. */
 public String toString() { return "<" + key + "," + value + ">"; }
 } /* Pair */

Output the String representation of an object:

System.out.println(v); <2,3>

Execution of the print statement in three steps:

1. Obtain the value of variable v.

2. Compute the String representation of
that value by invoking its toString
method.

3. Output that value.Overriding definition of toString for Pair:

A subtlety noted in passing:
What exactly is going on when int values (like key and value) are concatenated
with String values (like "<", ",", and ">")? We will finesses this question.
Note, however, that it also involves obtaining a String representation (this
time, a decimal numeral) from another type of value (a 32-bit fixed-point int).

The definition of operator == for objects is identity.

• “Identity” means “exactly the same object”.

Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z2==z3);

false
true

Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z2==z3);

z1 Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

• “Identity” means “exactly the same object”.

The definition of operator == for objects is identity.

Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z2==z3);

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

• “Identity” means “exactly the same object”.

The definition of operator == for objects is identity.

Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z2==z3);

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z3

• “Identity” means “exactly the same object”.

The definition of operator == for objects is identity.

Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z1==z3);

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z3

• “Identity” means “exactly the same object”.

The definition of operator == for objects is identity.

false

Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z2==z3);

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z3

• “Identity” means “exactly the same object”.

The definition of operator == for objects is identity.

false
true

Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1.equals(z2));
System.out.println(z2.equals(z3));

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z3

The default definition of equals for Object values is also identity.

• “Identity” means “exactly the same object”.
• Every Object has an equals method that can be applied to

another Object to test “equality”, which is user-definable.
• The default definition of method equals in Object is identity,

i.e., the same as ==.

false
true

with the default definition
 of equals, i.e., identity

Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1.equals(z2));
System.out.println(z2.equals(z3));

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z3

• “Identity” means “exactly the same object”.
• Every Object has an equals method that can be applied to

another Object to test “equality”, which is user-definable.
• The default definition of method equals in Object is identity,

i.e., the same as ==.
• Unlike the == operator, equals can be overridden, e.g., to treat

non-identical pairs with equal components as equal.

The default definition of equals can be overridden.

true
true

with the overriding definition
of equals shown on the next slide

class Pair {
 ...
 /* Equality. */
 @Override
 public boolean equals(Object q) {
 if (q==null) return false;
 if (q==this) return true;
 if (!(q instanceof Pair)) return false;
 Pair qPair = (Pair)q;
 return (key == qPair.key) && (value == qPair.value);
 } /* equals */
 } /* Pair */

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z3

Overriding definition of equals for pairs.

Asks the compiler to warn if the next method definition is not overriding.

class Pair {
 ...
 /* Equality. */
 @Override
 public boolean equals(Object q) {
 if (q==null) return false;
 if (q==this) return true;
 if (!(q instanceof Pair)) return false;
 Pair qPair = (Pair)q;
 return (key == qPair.key) && (value == qPair.value);
 } /* equals */
 } /* Pair */

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z3

Overriding definition of equals for pairs.

An Object is never equal to no Object.

class Pair {
 ...
 /* Equality. */
 @Override
 public boolean equals(Object q) {
 if (q==null) return false;
 if (q==this) return true;
 if (!(q instanceof Pair)) return false;
 Pair qPair = (Pair)q;
 return (key == qPair.key) && (value == qPair.value);
 } /* equals */
 } /* Pair */

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z3

Overriding definition of equals for pairs.

An Object is always equal to itself, e.g. z2 and z3.

class Pair {
 ...
 /* Equality. */
 @Override
 public boolean equals(Object q) {
 if (q==null) return false;
 if (q==this) return true;
 if (!(q instanceof Pair)) return false;
 Pair qPair = (Pair)q;
 return (key == qPair.key) && (value == qPair.value);
 } /* equals */
 } /* Pair */

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z3

Overriding definition of equals for pairs.

A Pair can only equal another Pair.

class Pair {
 ...
 /* Equality. */
 @Override
 public boolean equals(Object q) {
 if (q==null) return false;
 if (q==this) return true;
 if (!(q instanceof Pair)) return false;
 Pair qPair = (Pair)q;
 return (key == qPair.key) && (value == qPair.value);
 } /* equals */
 } /* Pair */

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z3

Overriding definition of equals for pairs.

A Pair can only equal another Pair, and then only when their
components are equal, e.g. z1 and z2.

Subclass definition: Fraction

class Fraction extends Pair {
 /* Constructor. */
 public Fraction(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Pair constructor.
 assert denominator!=0: "0 denominator";
 }

 /* Access. */
 public int getNumerator() { return key; }
 public int getDenominator() { return value; }
 } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

Fraction is a subclass of Pair, and as such acquires the
fields and methods from Pair.

Subclass definition: Fraction

class Fraction extends Pair {
 /* Constructor. */
 public Fraction(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Pair constructor.
 assert denominator!=0: "0 denominator";
 }

 /* Access. */
 public int getNumerator() { return key; }
 public int getDenominator() { return value; }
 } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

Fraction is a subclass of Pair, and as such acquires the
fields and methods from Pair, while adding more of its own.

Subclass definition: Fraction

class Fraction extends Pair {
 /* Constructor. */
 public Fraction(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Pair constructor.
 assert denominator!=0: "0 denominator";
 }

 /* Access. */
 public int getNumerator() { return key; }
 public int getDenominator() { return value; }

 } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

The Fraction constructor uses the Pair constructor to set fields key and value.

Subclass definition: Fraction

class Fraction extends Pair {
 /* Constructor. */
 public Fraction(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Pair constructor.
 assert denominator!=0: "0 denominator";
 }

 /* Access. */
 public int getNumerator() { return key; }
 public int getDenominator() { return value; }
 } /* Fraction */s

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

It then assures that the denominator is not zero.

Subclass definition: Fraction

class Fraction extends Pair {
 /* Constructor. */
 public Fraction(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Pair constructor.
 assert denominator!=0: "0 denominator";
 }

 /* Access. */
 public int getNumerator() { return key; }
 public int getDenominator() { return value; }
 } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

Getters have direct access to the fields key and value because they
are declared protected in Pair, a superclass of Fraction.

class Fraction extends Pair {
 /* Constructor. */
 public Fraction(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Pair constructor.
 assert denominator!=0: "0 denominator";
 }

 /* Access. */
 public int getNumerator() { return key; }
 public int getDenominator() { return value; }

 /* String representation. */
 public String toString() { return key + "/" + value; }
 } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

Overriding definition of toString for Fraction:

Different string representations for Pair and Fraction

System.out.println(Pair(2,3) + " " + Fraction(2,3)); <2,3> 2/3

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

Overriding definition of toString method for fractions:Overriding definition of equals for Fraction:

Two fractions are equal iff they have equal numerators and equal
denominators. This is (almost) the test that is used to test the
equality of two Pairs, so we might consider omitting an overriding
definition of equals for Fraction, and rely on the definition in Pair.

However, pairs and fractions are two fundamentally different sorts of
things, and it seems inappropriate to let a Fraction be considered
equal to a Pair just because they happen to have the same two equal
fields. A Fraction uses a Pair for its representation more as a
convenience than because fractions are a special sort of pair.

Were Fraction to rely on the definition of equals in Pair

Pair z1 = Pair(2,3);
Fraction z2 = Fraction(2,3);
System.out.println(z1 + " " + z2);
System.out.println(z1==z2);

<2,3> 2/3
true

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

Overriding definition of equals for Fraction:

class Fraction {
 ...
 /* Equality. */
 @Override
 public boolean equals(Object q) {
 if (q==null) return false;
 if (q==this) return true;
 if (!(q instanceof Fraction)) return false;
 Fraction qFraction = (Fraction)q;
 return (key == qFraction.key) && (value == qFraction.value);
 } /* equals */
 } /* Fraction */

Accordingly, we choose to give Fraction its own definition of equals,
and so treat fractions as fundamentally different from pairs.

The effect of Fraction getting its own definition of equals

Pair z1 = Pair(2,3);
Fraction z2 = Fraction(2,3);
System.out.println(z1 + " " + z2);
System.out.println(z1==z2);

<2,3> 2/3
false

class Rational extends Fraction {

 } /* Rational */

Subclass definition: Rational

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

Rational is a subclass of Fraction, and as such acquires
fields and methods of a Fraction.

class Rational extends Fraction {
 /* Constructor. */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.

 }
 } /* Rational */

Subclass definition: Rational

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

The Rational constructor uses the Fraction constructor to set fields key and value,
and to check that the denominator is not zero.

class Rational extends Fraction {
 /* Constructor. */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.
 int g = gcd(numerator, denominator);
 key = numerator/g;
 value = denominator/g;
 }
 } /* Rational */

Subclass definition: Rational

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

The Rational constructor uses the Fraction constructor to set fields key and value,
and to check that the denominator is not zero. Then it updates the representation to
reduced form, i.e., no common factors.

class Rational extends Fraction {
 /* Constructor. */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.
 int g = gcd(numerator, denominator);
 key = numerator/g;
 value = denominator/g;
 }
 } /* Rational */

Subclass definition: Rational

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

☞ Boundary conditions. Dead last, but don’t forget them.

class Rational extends Fraction {
 /* Constructor. */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.
 int g = gcd(numerator, denominator);
 key = numerator/g;
 value = denominator/g;
 }
} /* Rational */

Subclass definition: Rational

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

☞ Boundary conditions. Dead last, but don’t forget them.

Function gcd will fail for
negative arguments!

class Rational extends Fraction {
 /* Constructor. */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.
 int g = gcd(numerator, denominator);
 key = numerator/g;
 value = denominator/g;
 }
 } /* Rational */

Subclass definition: Rational

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

☞ Boundary conditions. Dead last, but don’t forget them.

Function gcd will fail for
non-positive arguments!

class Rational extends Fraction {
 /* Constructor. */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.
 int g = gcd(numerator, denominator);
 key = numerator/g;
 value = denominator/g;
 }
 } /* Rational */

Subclass definition: Rational

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

☞ Boundary conditions. Dead last, but don’t forget them.

Reduced form is good, i.e., no common factors, but canonical form is better.
Equal rationals should have the same representations:

class Rational extends Fraction {
 /* Constructor. */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.
 int g = gcd(numerator, denominator);
 key = numerator/g;
 value = denominator/g;
 }
 } /* Rational */

Subclass definition: Rational

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

☞ Boundary conditions. Dead last, but don’t forget them.

Reduced form is good, i.e., no common factors, but canonical form is better.
Equal rationals should have the same representations:
• Zero should have a denominator of 1.
• Negatives should have a negative numerator and a positive denominator.
• Positives should have positive numerator and denominator.

class Rational extends Fraction {
 /* Constructor. */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.
 if (numerator==0) value = 1;

 }
 } /* Rational */

Subclass definition: Rational

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

☞ Boundary conditions. Dead last, but don’t forget them.

Reduced form is good, i.e., no common factors, but canonical form is better.
Equal rationals should have the same representations:
• Zero should have a denominator of 1.

class Rational extends Fraction {
 /* Constructor. */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.
 if (numerator==0) value = 1;
 else {
 int g = gcd(abs(numerator), abs(denominator));
 if ((numerator<0) && (denominator>0)) || (
 (numerator>0) && (denominator<0)) sign = -1;
 else sign = +1;
 key = sign*abs(numerator)/g;
 value = abs(denominator)/g;
 }
 }
 } /* Rational */

Subclass definition: Rational

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

class Rational extends Fraction {
 ... */
 } /* Rational */

 /* String representation. */
 public String toString() {
 if (value==1) return key + ""; // this as an integer
 else return super.toString(); // this as a Fraction
 } /* toString

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

Overriding definition of toString for Rational:

The effect of letting Rational rely on the definition of equals in Fraction

Rational z1 = Rational(4,6);
Rational z2 = Rational(6,3);
System.out.println(z1 + " " + z2);
System.out.println(z1==z2);

Rationals are fractions in canonical form, and are equal iff they have
equal numerators and equal denominators. We choose to consider
a fraction that is serendipitously in canonical form as equal to a
rational with the same numerator and denominator. We choose to
consider a fraction that is not in canonical form as unequal to the
rational which is that fraction in canonical form.

2/3 2
false

z1 Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

z2 Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

1

Overriding definition of equals for Rational is not needed:

z1

Overriding definition of toString method for fractions:

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

The effect of letting Rational rely on the definition of equals in Fraction

Rational z1 = Rational(4,6);
Fraction z3 = Fraction(2,3);
System.out.println(z1 + " " + z3);
System.out.println(z1==z3);

z3 Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

2/3 2/3
true

Rationals are fractions in canonical form, and are equal iff they have
equal numerators and equal denominators. We choose to consider
a fraction that is serendipitously in canonical form as equal to a
rational with the same numerator and denominator. We choose to
consider a fraction that is not in canonical form as unequal to the
rational which is that fraction in canonical form.

Overriding definition of equals for Rational is not needed:

Rationals are fractions in canonical form, and are equal iff they have
equal numerators and equal denominators. We choose to consider
a fraction that is serendipitously in canonical form as equal to a
rational with the same numerator and denominator. We choose to
consider a fraction that is not in canonical form as unequal to the
rational which is that fraction in canonical form.

The effect of letting Rational rely on the definition of equals in Fraction

Rational z1 = Rational(4,6);
Fraction z4 = Fraction(4,6);
System.out.println(z1 + " " + z4);
System.out.println(z1==z4);

z1 Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

z4 Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

4

6

2/3 4/6
false

Overriding definition of equals for Rational is not needed:

z2

The effect of letting Rational rely on the definition of equals in Fraction

Rational z2 = Rational(6,3);
Fraction z5 = Fraction(2,1);
System.out.println(z2 + " " + z5);
System.out.println(z2==z5);

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

1

z5 Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

1

2 2/1
true

Rationals are fractions in canonical form, and are equal iff they have
equal numerators and equal denominators. We choose to consider
a fraction that is serendipitously in canonical form as equal to a
rational with the same numerator and denominator. We choose to
consider a fraction that is not in canonical form as unequal to the
rational which is that fraction in canonical form.

Overriding definition of equals for Rational is not needed:

The display of rationals with denominators
of 1 as integers has no effect on equality.

System.out.println(Rational(2,3)); 2/3

System.out.println(Rational(4,6)); 2/3

System.out.println(Rational(-4,6)); -2/3

System.out.println(Rational(4,-6)); -2/3

System.out.println(Rational(-4,-6)); 2/3

System.out.println(Rational(6,3)); 2

System.out.println(Rational(0,1)); 0

System.out.println(Rational(0,10)); 0

System.out.println(Rational(0,-10)); 0

System.out.println(Rational(2,3)==Rational(4,6)); true

Test code Output

Unit Test: Cover every public aspect of the class’s interface (black-box testing), and if you
know the implementation internals, every corner case you can foresee (white-box testing).

Can you think of other examples to test?

o

Object o;

Subtype polymorphism: A variable of class C can
be assigned a reference to any object of class C′,
where C′ is either C itself, or C′ is a subclass of C,
i.e., lower in the class hierarchy.

o Pair

key
value

toString
equals
Pair
getKey
getValue

4

6

Object o;
o = new Pair(4,6);

Subtype polymorphism:

o Fraction

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator

4

6

Pair

key
value

Pair
toString
equals
getKey
getValue

4

6

Object o;
o = new Pair(4,6);
o = new Fraction(4,6);

Subtype polymorphism:

o Rational

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

Pair

key
value

Pair
toString
equals
getKey
getValue

4

6

Fraction

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator

4

6

Object o;
o = new Pair(4,6);
o = new Fraction(4,6);
o = new Rational(4,6);

Subtype polymorphism:

o

Pair

key
value

Pair
toString
equals
getKey
getValue

4

6

Fraction

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator

4

6

Rational

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

Rational

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

1

Subtype polymorphism:

Object o;
o = new Pair(4,6);
o = new Fraction(4,6);
o = new Rational(4,6);
o = new Rational(6,3);

Dynamic method dispatch: The definition
used for any given method invocation
depends of the type of the value, not the
type of the variable that contains that value.

o

Object o;

?

o Pair

key
value

Pair
toString
equals
getKey
getValue

4

6

Dynamic method dispatch:

Object o;
o = new Pair(4,6); System.out.println(o); <4,6>

o Fraction

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator

4

6

Pair

key
value

Pair
toString
equals
getKey
getValue

4

6

Dynamic method dispatch:

Object o;
o = new Pair(4,6); System.out.println(o);
o = new Fraction(4,6); System.out.println(o);

<4,6>
4/6

o Rational

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

Pair

key
value

Pair
toString
equals
getKey
getValue

4

6

Fraction

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator

4

6Dynamic method dispatch:

Object o;
o = new Pair(4,6); System.out.println(o);
o = new Fraction(4,6); System.out.println(o);
o = new Rational(4,6); System.out.println(o);

<4,6>
4/6
2/3

o

Pair

key
value

Pair
toString
equals
getKey
getValue

4

6

Fraction

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator

4

6

Rational

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

Rational

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

1

Object o;
o = new Pair(4,6); System.out.println(o);
o = new Fraction(4,6); System.out.println(o);
o = new Rational(4,6); System.out.println(o);
o = new Rational(6,3); System.out.println(o);

Dynamic method dispatch:

<4,6>
4/6
2/3
2

Subtype polymorphism caveat:

If variable v has type C, a field access
v.f, or a method invocation v.m(…),
requires that field f or method m
necessarily exist in any object of type C.

o

Pair

key
value

Pair
toString
equals
getKey
getValue

4

6

Fraction

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator

4

6

Rational

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

Rational

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

1

Object o = new Pair(4,6); System.out.println(o.getKey()); // Illegal.
Pair p = new Pair(4,6); System.out.println(p.getKey()); // Legal.
 p = new Pair(2,3); System.out.println(p.getNumerator()); // Illegal.
Fraction r = new Fraction(4,6); System.out.println(r.getNumerator()); // Legal.
Rational q = new Rational(6,3); System.out.println(q.getNumerator()); // Legal.

Inheritance: The class hierarchy is
also called the inheritance hierarchy.

Objects of class C are said to inherit
all fields f of superclasses of C above
it in the hierarchy.

They also inherit the most specific
(overriding) version of method m
defined either in class C, or in one of
C’s superclasses, i.e., the first
definition of m found in a traversal
from C up to Object in the
hierarchy.

o

Pair

key
value

Pair
toString
equals
getKey
getValue

4

6

Fraction

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator

4

6

Rational

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

Rational

key
value

Pair
toString
equals
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

1

Motivation: Recall that in Chapter 6 we showed how to maintain a dynamically changing collection
of integers in a data structure consisting of an array A and an integer size:

We implemented each of the operations add, remove, membership, multiplicity, and enumeration
with small code patterns. A ready facility with such patterns is important, but we remarked that
writing such code directly in your program also has drawbacks:

• The collection has no single name, and thus it is not easily manipulated as one thing.

• The collection’s implementation details are not hidden, and thus your program can both break
the data structure’s representation invariant and come to excessively depend on its details.

We address those limitations now by defining class ArrayList:

• References to instances of ArrayList can be manipulated as one thing, i.e., as objects.

• The details of an ArrayList are hidden using the class’s visibility mechanism, which allows easy
replacement of one collection implementation with another.

Guide: The implementation turns the familiar code fragments of Chapter 12 into methods, and will
therefore need little additional explanation.

There is an additional benefit of turning these code fragments into the methods that was not
previously mentioned:

• The data structure (and its methods) can be instantiated multiple times, i.e., you can easily have
as many list objects as you want.

Each method has a header comment that provides the method’s specification. Although various
organizations standardize formats for such specifications, we will be less formal about their
structure. Nonetheless, we aim for precision that is intended to be adequate external
documentation for any client of the class and its interface.

Occasional additional notes are provided, but you should otherwise let the specifications and their
implementations speak for themselves.

☞ Repeatedly improve comments by relentless copy editing.

/* A list of unbounded capacity containing items of type int. */
class ArrayList {
 /* Representation. */
 private int[] A; // A[0..size-1] is a collection of list items of type int.
 private int size; // size is the current number of items in the list.
 // The current list capacity is A.length.

Class definition:

Class definition:
The type of an ArrayList element is int (for now), and will be colored blue.

Integers unrelated to the type of ArrayList elements will not be colored blue.

s/* A list of unbounded capacity containing items of type int. */
class ArrayList {
 /* Representation. */
 private int[] A; // A[0..size-1] is a collection of list items of type int.
 private int size; // size is the current number of items in the list.
 // The current list capacity is A.length.

Class definition:

Data representation is private, i.e., hidden to clients.

/* A list of unbounded capacity containing items of type int. */
class ArrayList {
 /* Representation. */
 private int[] A; // A[0..size-1] is a collection of list items of type int.
 private int size; // size is the current number of items in the list.
 // The current list capacity is A.length.

/* A list of unbounded capacity containing items of type int. */
class ArrayList {
 /* Representation. */
 private int[] A; // A[0..size-1] is a collection of list items of type int.
 private int size; // size is the current number of items in the list.
 // The current list capacity is A.length.

 /* Constructors. */
. /* Construct an empty list for int items, with an initial capacity m>=0.
 Throw a ValueError exception if m<0. */
 public ArrayList(int m) {
 if (m<0) throw new IllegalArgumentException();
 A = new int[m];
 }

 /* Construct an empty list for int items, with an initial capacity of 20. */
 public ArrayList() { this(20); }

Class definition:

Two overloaded constructors: One for a specific initial capacity, the other for a default capacity.

...

 /* Size. */

 /* Return the number of items in the list. */
 public int size() { return size; }

 /* Return true iff the list is empty. */
 public boolean isEmpty() { return size==0; }

A public getter for the read-only field size, and a public predicate to test for an empty list.

...

 /* Access. */

 /* Return the list item at index k.
 Throw IndexOutOfBoundsException for an out-of-bounds k. */
 public int get(int k) {
 checkBoundExclusive(k);
 return A[k];
 }

 /* Overwrite the list item at index k with v, and return the old item
 that was there.
 Throw IndexOutOfBoundsException for an out-of-bounds k. */
 public int set(int k, int v) {
 checkBoundExclusive(k);
 int old = A[k];
 A[k] = v;
 return old;
 }

...

 /* Access. */

 /* Return the list item at index k.
 Throw IndexOutOfBoundsException for an out-of-bounds k. */
 public int get(int k) {
 checkBoundExclusive(k);
 return A[k];
 }

 /* Overwrite the list item at index k with v, and return the old item
 that was there.
 Throw IndexOutOfBoundsException for an out-of-bounds k. */
 public int set(int k, int v) {
 checkBoundExclusive(k);
 int old = A[k];
 A[k] = v;
 return old;
 }

Raise exception if k is outside the bounds of the current list, excluding the index of the next available slot.

...

 /* Insertion / Deletion. */

 /* Right-shift items with indices k thru the end of the list (if any) one place,
 and insert v at index k. Increase the list capacity, if necessary.
 Throw IndexOutOfBoundsException on out-of-bounds k. */
 public void add(int k, int v) {
 checkBoundInclusive(k);
 if (size==A.length) ensureCapacity(size+1);
 for (int j=size; j>k; j--) A[j] = A[j-1];
 A[k] = v;
 size++;
 }

 /* Append v at the end of the list. Increase the list capacity, if necessary. */
 public void add(int v) { add(size, v); }

...

 /* Insertion / Deletion. */

 /* Right-shift items with indices k thru the end of the list (if any) one place,
 and insert v at index k. Increase the list capacity, if necessary.
 Throw IndexOutOfBoundsException on out-of-bounds k. */
 public void add(int k, int v) {
 checkBoundInclusive(k);
 if (size==A.length) ensureCapacity(size+1);
 for (int j=size; j>k; j--) A[j] = A[j-1];
 A[k] = v;
 size++;
 }

 /* Append v at the end of the list. Increase the list capacity, if necessary. */
 public void add(int v) { add(size, v); }

...

 /* Insertion / Deletion. */

 /* Right-shift items with indices k thru the end of the list (if any) one place,
 and insert v at index k. Increase the list capacity, if necessary.
 Throw IndexOutOfBoundsException on out-of-bounds k. */
 public void add(int k, int v) {
 checkBoundInclusive(k);
 if (size==A.length) ensureCapacity(size+1);
 for (int j=size; j>k; j--) A[j] = A[j-1];
 A[k] = v;
 size++;
 }

 /* Append v at the end of the list. Increase the list capacity, if necessary. */
 public void add(int v) { add(size, v); }

...

 /* Insertion / Deletion. */

 /* Right-shift items with indices k thru the end of the list (if any) one place,
 and insert v at index k. Increase the list capacity, if necessary.
 Throw IndexOutOfBoundsException on out-of-bounds k. */
 public void add(int k, int v) {
 checkBoundInclusive(k);
 if (size==A.length) ensureCapacity(size+1);
 for (int j=size; j>k; j--) A[j] = A[j-1];
 A[k] = v;
 size++;
 }

 /* Append v at the end of the list. Increase the list capacity, if necessary. */
 public void add(int v) { add(size, v); }

...

 /* Insertion / Deletion. */

 /* Right-shift items with indices k thru the end of the list (if any) one place,
 and insert v at index k. Increase the list capacity, if necessary.
 Throw IndexOutOfBoundsException on out-of-bounds k. */
 public void add(int k, int v) {
 checkBoundInclusive(k);
 if (size==A.length) ensureCapacity(size+1);
 for (int j=size; j>k; j--) A[j] = A[j-1];
 A[k] = v;
 size++;
 }

 /* Append v at the end of the list. Increase the list capacity, if necessary. */
 public void add(int v) { add(size, v); }

Raise IndexError exception if k is outside the bounds of the current list, but allow the index of the next available slot.

...

 /* Insertion / Deletion. */
 ...
 /* Return the list item with index k after left-shifting items with indices
 k+1 thru the end (if any) to remove the old k-th value from the list.
 Throw IndexOutOfBoundsException on out-of-bounds k. */
 public int remove(int k) {
 checkBoundExclusive(k);
 int old = A[k];
 size--;
 for (int j=k; j<size; j++) A[j] = A[j+1];
 return old;
 }

 /* Return false if v is not in the list, else remove (one copy of) v from list
 and return true. */
 public boolean removeByValue(int v) {
 int k = indexOf(v);
 if (k == -1) return false; else { remove(k); return true; }
 }

...

 /* Capacity. */

 /* Increase the list's capacity to the maximum of min_capacity or double its
 current capacity. */
 public void ensureCapacity(int minCapacity) {
 int currentLength = A.length;
 if (minCapacity > currentLength) {
 int[] B = new int[Math.max(2*currentLength, minCapacity)];
 for (int k=0; k<size; k++) B[k] = A[k];
 A = B;
 }
 }

...

 /* Membership. */

 /* Return the index of an instance of v in the list, or -1 if there are none. */
 public int indexOf(int v) {
 int k = 0; while ((k<size) && (v!=A[k])) k++;
 if (k==n) return -1; else return k;
 }

 /* Return true iff the list contains (one or more copies of) v. */
 public boolean contains(int v) {
 return indexOf(v)!=-1;
 }

...

 /* Bounds Checking. */

 /* Throw IndexOutOfBoundsException if k is not the index of one of the list’s
 items. */
 private void checkBoundExclusive(int k) {
 if (k<0 || k>=size) throw new IndexOutOfBoundsException("≥size");
 }

 /* Throw IndexOutOfBoundsException if k is not the index of one of the list's items,
 or the next available index for an item to be added. */
 private void checkBoundInclusive(int k) {
 if (k<0 || k>size) throw new IndexOutOfBoundsException(">size");
 }

 } /* ArrayList */

☞ Validate output thoroughly.

Unit Test: Cover every public aspect of the class’s interface (black-box testing), and if you
know the implementation internals, every corner case you can foresee (white-box testing).

/* Two useful shorthand functions for the tests that follow. */
private void print(String s) { System.out.println(s); }
private void diag() {
 print("size:" + " " + collection.size());
 print("isEmpty:" + " " + collection.isEmpty());
 print("contains 10:" + " " + collection.contains(10));
 print("contains 20:" + " " + collection.contains(20));
 print("index of 10:" + " " + collection.indexOf(10));
 print("index of 20:" + " " + collection.indexOf(20));
 print("-------")
 }

ArrayList collection;
collection = new ArrayList();
print("new array list:");
diag();

new array list:
size: 0
isEmpty: true
contains 10: false
contains 20: false
index of 10: -1
index of 20: -1

collection.add(0,10);
print("add 10 at index 0");
diag();

add 10 at index 0
size: 2
isEmpty: false
contains 10: true
contains 20: true
index of 10: 0
index of 20: 1

collection.add(10);
print("add 10");
diag();

add 10
size: 1
isEmpty: false
contains 10: true
contains 20: false
index of 10: 0
index of 20: -1

collection.add(1,15);
print("add 15 at index 1");
diag();

add 15 at index 1
size: 3
isEmpty: false
contains 10: true
contains 20: true
index of 10: 0
index of 20: 2

collection.add(20);
print("add 20");
diag();

add 20
size: 2
isEmpty: false
contains 10: true
contains 20: true
index of 10: 0
index of 20: 1

v = collection.get(1);
print("item at 1" + " " + v);
diag();

item at 1 15
size: 3
isEmpty: false
contains 10: true
contains 20: true
index of 10: 0
index of 20: 2

collection.removeByValue(10);
print("remove by value 10");
diag();

remove by value 10
size: 1
isEmpty: false
contains 10: false
contains 20: true
index of 10: -1
index of 20: 0

v = collection.set(1, 16);
print("set:" + " " + v + " " +
 "at 1 to 16");
diag();

set: 15 at 1 to 16
size: 3
isEmpty: false
contains 10: true
contains 20: true
index of 10: 0
index of 20: 2

Test code Output Test code (continued) Output (continued)

v = collection.get(1);
print("item at 1 is:" + " " + v);
diag();

item at 1 is: 16
size: 3
isEmpty: false
contains 10: true
contains 20: true
index of 10: 0
index of 20: 2

collection.add(10);
print("add 10");
diag();

add 10
size: 1
isEmpty: false
contains 10: true
contains 20: false
index of 10: 0
index of 20: -1

Test code Output

Unit Test: Seemingly mindless, but surprisingly
effective. The skill involves ferreting out every way
in which the code might fail.

(1) Exercise every line of code to make sure
it does not trigger a crash.

(2) Visually inspect the output to confirm
that it is correct.

Can you think of any cases we have missed?

Test code

Unit Test: Seemingly mindless, but surprisingly
effective. The skill involves ferreting out every way
in which the code might fail.

(1) Exercise every line of code to make sure
it does not trigger a crash.

(2) Visually inspect the output to confirm
that it is correct.

Can you think of any cases we have missed?

Visual inspection of output is tedious, and not something
you want to redo manually after every code change. It is
common to automate such retests by capturing the
desired output in a file to which new output can be
compared automatically after each change.

Output

v = collection.get(1);
print("item at 1 is:" + " " + v);
diag();

item at 1 is: 16
size: 3
isEmpty: false
contains 10: true
contains 20: true
index of 10: 0
index of 20: 2

collection.add(10);
print("add 10");
diag();

add 10
size: 1
isEmpty: false
contains 10: true
contains 20: false
index of 10: 0
index of 20: -1

/* Output reduced positive fractions, i.e., positive rationals. */
 /* set reduced = { }; */
 int d = 0;
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 int g = gcd(r+1, c+1);
 /* rational z = ⟨(r+1)/g, (c+1)/g⟩; */
 if (/* z is not an element of reduced */) {
 System.out.println(/* z */);
 /* reduced = reduced ∪ {z}; */
 }
 r--;
 }
 d++;
 }

Enumeration of rationals: Recall this incomplete code example from Chapter 6.

/* Output reduced positive fractions, i.e., positive rationals. */
 /* set reduced = { }; */
 int d = 0;
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 Rational z = new Rational(r+1, c+1);
 if (/* z is not an element of reduced */) {
 System.out.println(z);
 /* reduced = reduced ∪ {z}; */
 }
 r--;
 }
 d++;
 }

Enumeration of rationals: We can adopt Rational as the type of the rational z.

/* Output reduced positive fractions, i.e., positive rationals. */
 /* set reduced = { }; */
 int d = 0;
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 Rational z = new Rational(r+1, c+1);
 if (/* z is not an element of reduced */) {
 System.out.println(z);
 /* reduced = reduced ∪ {z}; */
 }
 r--;
 }
 d++;
 }

Enumeration of rationals: We can adopt Rational as the type of rational z.

We would like to adopt ArrayList as the type of the set reduced, but cannot do so because, as
currently written, it is a collection of int items, not Rational items.

Enumeration of rationals: We need an ArrayList of Rational items.

This could be done by:

• Cloning the ArrayList of int implementation, and adapting the clone to be a
collection of Rational elements (ugh!), or

• Parameterizing ArrayList to be ArrayList<E>, a collection of elements of arbitrary
object type E, and then instantiating it as ArrayList<Rational>, a collection of
Rational elements (far better!).

A class definition that is parametrized by a type is called a generic class.

/* A list of unbounded capacity containing items of type E. */
class ArrayList <E> {
 /* Representation. */
 private E[] A; // A[0..size-1] is a collection of list items of type E.
 private int size; // size is the current number of items in the list.
 // The current list capacity is A.length.

 /* Constructors. */
 /* Construct an empty list for E items, with an initial capacity m>=0.
 Throw a IllegalArgumentException if m<0. */
 public ArrayList(int m) {
 if (m<0) throw new IllegalArgumentException();
 A = (E[]) new Object[m];
 }

 /* Construct an empty list for E items, with an initial capacity of 20. */
 public ArrayList() { this(20); }

Generic class definition:

A
r
r
a
y
L
i
s
t
<
E
>

An array of arbitrary objects is created, and is cast to the type of A.

The type of an ArrayList item is parameterized as E.

A
r
r
a
y
L
i
s
t
<
E
>

...

 /* Access. */

 /* Return the list item at index k.
 Throw IndexOutOfBoundsException for an out-of-bounds k. */
 public E get(int k) {
 checkBoundExclusive(k);
 return A[k];
 }

 /* Overwrite the list item at index k with v, and return the old item
 that was there.
 Throw IndexOutOfBoundsException for an out-of-bounds k. */
 public E set(int k, E v) {
 checkBoundExclusive(k);
 E old = A[k];
 A[k] = v;
 return old;
 }

We will not repeat the definitions of every method, but will let these two illustrate what is needed.
Essentially, every (blue) int is turned into a type parameter E.

A
r
r
a
y
L
i
s
t
<
E
>

...
 /* Insertion / Deletion. */
 ...
 /* Return the list item with index k after left-shifting items with indices
 k+1 thru the end (if any) to remove the old k-th value from the list.
 Throw IndexOutOfBoundsException on out-of-bounds k. */
 public int remove(int k) {
 checkBoundExclusive(k);
 int old = A[k];
 size--;
 for (int j=k; j<size; j++) A[j] = A[j+1];
 A[size] = null; // Garbage-collection assist.
 return old;
 }

 /* Return false if v is not in the list, else remove (one copy of) v from list
 and return true. */
 public boolean removeByValue(E v) {
 int k = indexOf(v);
 if (k != -1) { remove(k); return true; }
 else return false;
 }

A non-obvious subtlety in method remove involves an erasure step that assists in the efficient
management of storage. This is explained in the Garbage Collection discussion, later.

A
r
r
a
y
L
i
s
t
<
E
>

...
 /* Membership. */

 /* Return the index of an instance of v in the list, or -1 if there
 are none. */
 public int indexOf(Object v) {
 int k = 0; while ((k<n) && (!v.equals(A[k]))) k++;
 if (k==n) return -1; else return k;
 }
 /* Return true iff the list contains (one or more copies of) v. */
 public boolean contains(Object v) { return indexOf(v)!=-1; }

Parameters of indexOf and contains generalized to take any Object, and search changed
to use the equals operation of the argument v rather than ==.

/* Output reduced positive fractions, i.e., positive rationals. */
 /* set reduced = { }; */
 int d = 0;
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 Rational z = new Rational(r+1, c+1);
 if (/* z is not an element of reduced */) {
 System.out.println(z);
 /* reduced = reduced ∪ {z}; */
 }
 r--;
 }
 d++;
 }

Enumeration of rationals: Returning to the incomplete code for enumerating rationals.

/* Output reduced positive fractions, i.e., positive rationals. */
 ArrayList<Rational> reduced = new ArrayList<>();
 int d = 0;
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 Rational z = new Rational(r+1, c+1);
 if (!reduced.contains(z)) {
 System.out.println(z);
 reduced.add(z);
 }
 r--;
 }
 d++;
 }

Enumeration of rationals: We declare reduced to have type ArrayList<Rational>.

/* Output reduced positive fractions, i.e., positive rationals. */
 ArrayList<Rational> reduced = new ArrayList<>();
 int d = 0;
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 Rational z = new Rational(r+1, c+1);
 if (!reduced.contains(z)) {
 System.out.println(z);
 reduced.add(z);
 }
 r--;
 }
 d++;
 }

Enumeration of rationals: We declare reduced to have type ArrayList<Rational>.

Technically, the generic constructor ArrayList<E>() is being instantiated
as ArrayList<Rational>(), which Java will do for you behind the scene.

1
2
1/2
3
1/3
4
3/2
2/3
1/4
5
1/5
6
5/2
4/3
3/4
2/5
1/6
7
5/3
3/5
1/7
etc.

⟵ 2/2 omitted

⟵ 4/2, 3/3, and 2/4 omitted

⟵ 6/2 omitted
⟵ 4/4 omitted
⟵ 2/6 omitted

Enumeration of rationals: and obtain the correct output.

1
2
1/2
3
1/3
4
3/2
2/3
1/4
5
1/5
6
5/2
4/3
3/4
2/5
1/6
7
5/3
3/5
1/7
etc.

⟵ 2/2 omitted

⟵ 4/2, 3/3, and 2/4 omitted

⟵ 6/2 omitted
⟵ 4/4 omitted
⟵ 2/6 omitted

Enumeration of rationals: and obtain the correct output.

P
a
i
r
<
K
,
V
>

class Pair {
 /* Representation. */
 protected int key;
 protected int value;

 /* Constructor. */
 public Pair(int k, int v) { key = k; value = v; }

 /* Access. */
 public int getKey() { return key; }
 public int getValue() { return value; }
 } /* Pair */

Class definition: Recall the definition of class Pair.

P
a
i
r
<
K
,
V
>

class Pair<K,V> {
 /* Representation. */
 protected K key;
 protected V value;

 /* Constructor. */
 public Pair(K k, V v) { key = k; value = v; }

 /* Access. */
 public K getKey() { return key; }
 public V getValue() { return value; }
 ...
 } /* Pair<K, V> */

Generic class definition: It, too, can be made generic so we can have pairs of any types.

P
a
i
r
<
K
,
V
>

class Pair<K,V> {
 ...
 /* Equality. */
 @Override
 public boolean equals(Object q) {
 if (q==null) return false;
 if (q==this) return true;
 if (!(q instanceof Pair)) return false;
 Pair qPair = (Pair)q;
 return key.equals(qPair.key) && value.equals(qPair.value);
 } /* equals */
 } /* Pair */

Generic class definition: It, too, can be generic so we can have pairs of any object type.

Uses the equals methods of the component types (which need not be the same) rather than ==.

Pairs of any object type. The generic class Pair<K,V> can be instantiated with any object
types for K and V.

For example, each of the following is a valid declaration:

Pair<Fraction, Fraction> ff;
Pair<Fraction, Rational> fr;
Pair<Fraction, Object> fo;
Pair< Pair<Fraction, Fraction>, Pair<Rational, Rational> > ffrr;

but the following is not a valid declaration:

Pair<int, int> ii;

because int is a primitive type, not an object type.

We deal with this next.

P
a
i
r
<
K
,
V
>

Pair

key
value

toString
equals
Pair
getKey
getValue

Uniformity:

• In some languages, e.g., Python, all values are uniformly objects of some class, and each value is
accessed via a reference.

• The object reference () has a standard size, but the object itself doesn’t.
• In such languages, even values of basic types like int and bool are objects.

Pair

key
value

toString
equals
Pair
getKey
getValue

4

6

int

value

...

4

int

value

...

6

Simplified depiction More accurate depiction

• Other languages, e.g., Java, distinguish between primitive values and objects of a class.
• Primitive values, e.g., values of types int and boolean, fit conveniently into variables of standard

sizes, and are not accessed via a reference.
• In such languages, the depiction characterized as “simplified” is actually accurate.

Pair

key
value

toString
equals
Pair
getKey
getValue

4

6

Accurate depiction

Uniformity:

• In the interest of efficiency, but at the expense of complexity, Java offers two worlds, one in which
values of types like int and boolean are primitive, and the other in which there are object
versions of such values (of types Integer and Boolean) known as boxed integers and Booleans.

• Crossing back and forth between the two worlds is a bit complicated, but is ameliorated by
features known as auto-boxing and auto-unboxing.

Pair

key
value

toString
equals
Pair
getKey
getValue

4

6

Accurate depiction

Uniformity:

Pair

key
value

toString
equals
Pair
getKey
getValue

Integer

value

...

4

Integer

value

...

6

Accurate depiction

• An advantage of a language in which all values are objects is that generic classes can be
instantiated with any types. In contrast, in a language that distinguished between primitive values
and objects, generic classes can not be instantiated with primitive types such as int and boolean.

Pair

key
value

toString
equals
Pair
getKey
getValue

4

6

Accurate depiction

Uniformity:

Pair

key
value

toString
equals
Pair
getKey
getValue

Integer

value

...

4

Integer

value

...

6

Accurate depiction

Subclass definition: Recall the definition of Fraction.

class Fraction extends Pair {
 /* Constructor. */
 public Fraction(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Pair constructor.
 assert denominator!=0: "0 denominator";
 }
 /* Access. */
 public int getNumerator() { return key; }
 public int getDenominator() { return value; }
 } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

Subclass definition: Since Pair is now a generic class, Fraction
must instantiate it with component types.

class Fraction extends Pair<Integer,Integer> {
 /* Constructor. */
 public Fraction(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Pair constructor.
 assert denominator!=0: "0 denominator";
 }
 /* Access. */
 public int getNumerator() { return key; }
 public int getDenominator() { return value; }
 } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

Integer

value

Integer
...

2

Integer

value

Integer
...

3

Subclass definition: Auto-boxing and auto-unboxing occurs
between int values and Integer values.

class Fraction extends Pair<Integer,Integer> {
 /* Constructor. */
 public Fraction(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Pair constructor.
 assert denominator!=0: "0 denominator";
 }
 /* Access. */
 public int getNumerator() { return key; }
 public int getDenominator() { return value; }
 } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

Integer

value

Integer
...

2

Integer

value

Integer
...

3

Auto-boxing of int parameters numerator and denominator occurs when they are passed to the Pair constructor,
which now expects Integer arguments.

class Fraction extends Pair<Integer,Integer> {
 /* Constructor. */
 public Fraction(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Pair constructor.
 assert denominator!=0: "0 denominator";
 }
 /* Access. */
 public int getNumerator() { return key; }
 public int getDenominator() { return value; }
 } /* Fraction */

Auto-unboxing of the key and value fields (which are now type Integer) occurs when they
returned as the values of the getters, which are expected to return values of type int.

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

Integer

value

Integer
...

2

Integer

value

Integer
...

3

Subclass definition: Auto-boxing and unboxing occurs between
int values and Integer values.

class Rational extends Fraction {
 /* Constructor */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.
 int g = gcd(numerator, denominator);
 key = numerator/g;
 value = denominator/g;
 }
 ...
 } /* Rational */

Subclass definition: Similarly, recall the definition of Rational.

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

class Rational extends Fraction {
 /* Constructor */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.
 int g = gcd(numerator, denominator);
 key = numerator/g;
 value = denominator/g;
 }
 ...
 } /* Rational */

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

Integer

value

Integer
...

2

Integer

value

Integer
...

3

No auto-boxing of int parameters numerator and denominator occurs when they are passed to the Fraction
constructor because it expects two int arguments. But they are auto-boxed when it invokes the Pair constructor.

Subclass definition: Since Fraction inherits from
Pair<Integer,Integer>, so too does Rational.

class Rational extends Fraction {
 /* Constructor */
 public Rational(int numerator, int denominator) {
 super(numerator, denominator); // Apply the Fraction constructor.
 int g = gcd(numerator, denominator);
 key = numerator/g;
 value = denominator/g;
 }
 ...
 } /* Rational */

Subclass definition: Since Fraction inherits from
Pair<Integer,Integer>, so too does Rational.

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

Integer

value

Integer
...

2

Integer

value

Integer
...

3

Auto-boxing of the computed int values numerator/g and denominator/g occurs when they are assigned to the key
and value fields (which are now type Integer).

Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is implicitly converted to the required type. Other conversions are
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation.

Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is implicitly converted to the required type. Other conversions are
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation.

e.g., the object constructed by Rational(2,3) can be treated as a Rational, Fraction, Pair, or Object.

Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is implicitly converted to the required type. Other conversions are
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation.

e.g., a variable declared to have type Fraction can be assigned a Fraction or Rational, but it cannot
be assigned a Pair or Object.

Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is implicitly converted to the required type. Other conversions are
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation.

e.g., the code executed for toString depends on the type of the object, e.g., Rational.

Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is implicitly converted to the required type. Other conversions are
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation.

e.g., ArrayList<E> or Pair<K,V>.

Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is implicitly converted to the required type. Other conversions are
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation.

e.g., ArrayList<Rational> or Pair<Integer,Integer>.

Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is implicitly converted to the required type. Other conversions are
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation.

e.g., the boxing of an int in the Fraction constructor, and the unboxing of an Integer in the Rational getters.

Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is implicitly converted to the required type. Other conversions are
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation.

e.g., the cast (E[]) in the statement A = (E[]) new Object[m]; in the ArrayList<E> constructor.

Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its
superclasses. Thus, a variable declared to have a given class as its type may contain a value
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a
different type, and it is implicitly converted to the required type. Other conversions are
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate
definition is chosen based on the number and types of arguments in the invocation.

e.g., ArrayList<E> has two constructors, one with no parameter, and the other with one parameter. It
also has two add methods, one with one parameter, and the other with two parameters.

Garbage Collection. An object dies when it can no longer be accessed in the program.

• Objects consume space in computer memory.
• Space consumed by objects that can no longer be accessed can be reclaimed automatically by a

mechanism (that runs behind the scene) called garbage collection.
• Normally, you don’t have to think about such matters. However, you should be aware that retaining a

gratuitous reference to an object can cause it to be needlessly retained.
• By itself, one such object is no big concern. But if it is at the beginning of a chain of references from

one object to another, then that one gratuitous reference can be the cause of an unbounded number
of needlessly-retained other objects, which is of concern.

• This is why we make sure that an ArrayList<E> retains no gratuitous references to objects in the
unused suffix of the array.

• We explain how this works next. It is a bit subtle, but is instructive.

public E remove(int k) {
 checkBoundExclusive(k);
 E old = A[k];
 size--;
 for (int j=k; j<size; j++) A[j] = A[j+1];
 A[size] = null; // Garbage-collection assist.
 return old;
 }

0 k n

A unused

s
iz

e

0 k n

A unused

s
iz

e

(before)

(after)

Garbage Collection. Recall the definition of remove in ArrayList[E].

The left shift of (blue) values overwrites the (green) k-th value that is being removed from the collection. It was a
reference to some object of arbitrary size and complexity, and if this had been the only reference to that object, it could
now be garbage collected. But the value being removed at A[k] is not the issue, as that reference is being overwritten.

public E remove(int k) {
 checkBoundExclusive(k);
 E old = A[k];
 size--;
 for (int j=k; j<size; j++) A[j] = A[j+1];
 A[size] = null; // Garbage-collection assist.
 return old;
 }

0 k n

A unused

s
iz

e

0 k n

A unused

s
iz

e

(before)

(after)

Garbage Collection. Recall the definition of remove in ArrayList[E].

The issue is the last (blue) value in the collection, which was originally in A[size-1], and that has now been left-shifted
one place. A copy of that value remains in A[size], the first element of the unused array suffix. It is that violet copy
that we must nullify. Note that the object referred to by the violet reference can not yet be collected because a
reference to it remains in A[size-1]. However, if and when that reference is removed or is overwritten, the object in
question will then be collectable by virtue of our having nullified the problematic copy in A[size].

Libraries: Classes that you can learn and use.

Libraries are extensions of the core language. The standard library includes:

• Object, the root of the class inheritance hierarchy. All other classes are subclasses of Object, and
inherit methods from it.

• Math, a class that contains built-in mathematical functions as static methods.
• String, the class for sequences of Unicode characters. String constants, e.g., "a String", are

references to String objects that contain the given sequence of characters.
• Integer, Boolean, etc., classes for the boxed primitive values.

Abstract Data Types

A class that hides all of its implementation details, and only exposes its public methods is known as an
abstract data type. The names, return types, and parameter types are known as the class’s interface.

Writing code with abstract data types permits the (relatively easy) replacement of one implementation
with an another, a decided advantage.

We illustrate this by using HashSet[E], an alternative to ArrayList[E] that can be found in the Library

Libraries: The library java.util contains many useful classes, including these for collections:

Class ArrayList<E>, which we (partially) implemented ourselves, appears in the inheritance hierarchy
as a second cousin of HashSet<E>, a familial relationship that we would have obtained by writing:

import java.util.*;
public class ArrayList<E> extends AbstractList<E> { ... }

An abstract class provides names and parameter types of methods that its non-abstract subclasses
must implement, but not the method bodies themselves. This allows its subclasses to have completely
different implementations, but be interchangeable.

/* Output reduced positive fractions, i.e., positive rationals. */
 ArrayList<Rational> reduced = new ArrayList<>();
 int d = 0;
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 Rational z = new Rational(r+1, c+1);
 if (!reduced.contains(z)) {
 System.out.println(z);
 reduced.add(z);
 }
 r--;
 }
 d++;
 }

Enumeration of rationals: Recall our code for enumerating rationals using ArrayList<E>.

/* Output reduced positive fractions, i.e., positive rationals. */
 HashSet<Rational> reduced = new HashSet<>();
 int d = 0;
 while (true) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 Rational z = new Rational(r+1, c+1);
 if (!reduced.contains(z)) {
 System.out.println(z);
 reduced.add(z);
 }
 r--;
 }
 d++;
 }

Enumeration of rationals: To use HashSet<E> instead, we only need to change one word.

The text of the contains and add invocations is unchanged,
but the methods that are actually invoked change radically, i.e.,
from the ArrayList<E> implementations to the HashSet<E>
implementations.

class Pair<K,V> {
 ...
 /* HashFunction. */
 @Override
 public int hashCode() {
 return key.hashCode() + value.hashCode();
 } /* hashCode */
 } /* Pair */

Enumeration of rationals: and provide a hash function for Pair<K,V>.

We define a simple hash function for a pair that just sums the
hash values of its constituent fields.

/* Output reduced fractions, i.e., positive rationals; no repeats. */
public static void timing() {
 HashSet<Rational> reduced = new HashSet<>();
 long startTime = System.currentTimeMillis();
 int rCount = 0; // # of rationals so far.
 int d = 0;
 while (rCount<100000) {
 int r = d;
 for (int c=0; c<=d; c++) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 Rational z = new Rational(r+1, c+1);
 if (!reduced.contains(z)) {
 /* System.out.println(z); */
 reduced.add(z);
 rCount++;
 if (rCount%10000==0)
 System.out.println(System.currentTimeMillis()-startTime);
 }
 r--;
 }
 d++;
 }
 } /* timing */

Enumeration of rationals: Contrast performance of ArrayList and HashSet.

Comment out the output statement so that it is not timed.
Then, time every 10,000 collection insertions.

Enumeration of rationals: performance of ArrayList vs. HashSet.

Performance of ArrayList is quadratic; performance of HashSet is linear.

0

5,000

10,000

15,000

20,000

25,000

M
ill

is
ec

o
n

d
s

#insertions

Timing, ArrayList vs HashSet

ArrayList HashSet

☞ Analyze first.

Timing Study: But why are we bothering to maintain the collection of already-output
rationals in the first place? We thought this was needed to make sure we would only
emit each rational once.

But why not just output the fractions that are in reduced form as they arise? We
didn’t actually need the collection in the first place. It was all just a pedagogical ruse!

The test for n/d being in reduced form is “gcd(n,d)==1”.

/* Output reduced fractions, i.e., positive rationals; no repeats. */
public static void timing() {

 long startTime = System.currentTimeMillis();
 int rCount = 0; // # of rationals so far.
 int d = 0;
 while (rCount<100000) {
 int r = d;
 for (int c=0; c<=d; c++) {
 if (Rational.gcd(r+1,c+1)==1) {
 /* Let z be the reduced form of the fraction (r+1)/(c+1). */
 Rational z = new Rational(r+1, c+1);
 /* System.out.println(z); */
 rCount++;
 if (rCount%10000==0)
 System.out.println(System.currentTimeMillis()-startTime);
 }
 r--;
 }
 d++;
 }
 } /* timing */

Enumeration of rationals: Contrast performance of ArrayList, HashSet, and gcd=1.

Only create the Rational when the fraction is in reduced form.

0

5,000

10,000

15,000

20,000

25,000

M
ill

is
ec

o
n

d
s

#insertions

Timing, ArrayList vs HashSet

ArrayList HashSet

#insertions ArrayList HashSet gcd
10,000 72 23 2
20,000 257 50 5
30,000 574 135 8
40,000 1035 220 11
50,000 1601 308 14
60,000 3206 372 16
70,000 5602 463 18
80,000 9236 550 20
90,000 14290 644 23

100,000 19711 750 27

Enumeration of rationals: Contrast performance of ArrayList, HashSet, and gcd=1.

Performance of ArrayList is quadratic, while performance of HashSet is linear. But in
contrast, checking whether the fraction is in reduced form is practically instantaneous.

Enumerating a Collection: A small lose end.

Recall that one of the operations of a collection is to enumerate its elements. This is easy when we have
direct access to the collection’s implementation, e.g.,

/* Enumerate items of a collection implemented as a list ⟨A,size,n⟩. */
 for (int k=0; k<size; k++) /* Do whatever for A[k]. */

/* Enumerate items of a collection implemented as a histogram H[0..maxValue]. */
 for (int k=0; k<=maxValue; k++)
 for (int j=1; j<=H[k]; j++)
 /* Do whatever for k. */

But how can you enumerate the items of a collection when its implementation is hidden within a class?
Specifically, how can your code be independent of the collection’s implementation?

Enumerating a Collection: A small lose end.

Let C<E> be a generic subclass of AbstractCollection<E>. Let c be an object of an instantiation
of C<E> for some specific element type EL. Then c is a collection of EL items, where the
collection implementation is defined by C<E>.

An iterator for c is an object i that provides two methods:

• i.hasNext(), which returns a boolean that says whether the i can be pumped for yet
another element of c.

• i.next(), which returns a value of type EL. Provided i.hasNext() would return true,
invoking i.next() would return the “next” element of collection c, where the order of
enumeration is beyond your control.

N.B. Although not technically accurate, you can think of there being a generic class Iterator<E> that has
an instantiation Iterator<EL>, and i is an object of that class.

Enumerating a Collection: A small lose end.

The following code pattern can be used to pump collection c for elements until there are no more:

Iterator<EL> i = c.iterator();
while (i.hasNext()) {
 EL e = i.next();
 /* process element e. */
 }

Enumerating a Collection: A small lose end.

Suppose after having enumerated 100,000 rationals and storing them in reduced, you wanted to
read them out from reduced and process them. Then you could do so with this instance of the
code pattern above:

Iterator<Rational> i = reduced.iterator();
while (i.hasNext()) {
 Rational e = i.next();
 /* process element e. */
 }

This code would work regardless of whether reduced is implemented as an ArrayList<Rational> or a
HashSet<Rational>. The details of how items are extracted from reduced are hidden in the
implementation of the particular iterator i that is returned by reduced.iterator().

Summary:

We have presented the flavor of Object-Oriented Programming (OOP), and some of its
technical details.

We reinforced many of the lessons of earlier chapters:

• Combining careful specification of statements, declarations, and methods with careful
implementations.

• The practice of incremental testing.

• The benefit of analysis.

Object-Oriented Programming addresses for code many issues that scholars have considered in
Philosophy:

• The nature of taxonomy.

• Abstraction and instantiation.

• Ontology and epistemology.

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3

	Essential Notions
	Slide 4
	Slide 5

	Pair
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

	Fraction
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

	Rational
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

	Testing
	Slide 56

	Subtype Polymorphism and Dynamic Method Dispatch
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

	ArrayList
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

	Testing
	Slide 87
	Slide 88
	Slide 89
	Slide 90

	Parametric Polymorphism and Generic Classes
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

	Uniformity
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127

	Garbage Collection
	Slide 128
	Slide 129
	Slide 130

	Libraries
	Slide 131
	Slide 132
	Slide 133

	HashSet
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141

	Iterators
	Slide 142
	Slide 143
	Slide 144
	Slide 145

	Summary
	Slide 146

