
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Creative Representations

Copyright©2023 by Tim Teitelbaum; Most recent revision, 8/17/2023

Choice of representations. Straightforward data representations are often effective
and sufficient. However, creative representations can result in significant
improvements. We present four examples of innovative data representations:

• Tic-Tac-Toe
• Checkers
• The Eight Queens Problem
• The Ricocheting Bee-Bee Problem

☞ The touchstone of a data representation is its utility in performing the needed
operations.

Background: Tic-Tac-Toe is played on a 3-by-3 board. Two
players take turns marking cells with “X” or “O”. The objective
is obtain 3 of your marks in a row, column, or diagonal.

Problem Statement: Write a program that plays Tic-Tac-Toe.

X O

X O

/* Data Representation. */

/* Test for a win by “X”. */

X O

X O

/* Update the data representation on a move by “X” at ⟨r,c⟩. */

☞ The touchstone of a data representation is its utility in performing the needed
operations.

/* Data Representation. */
 char T[][] = new char[3][3]; // ⟨' ','X','O'⟩ for ⟨blank,“X”,“O”⟩.

/* Test for a win by “X”. */
 if (T[0][0]=='X' && T[0][1]=='X' && T[0][2]=='X' ||
 T[1][0]=='X' && T[1][1]=='X' && T[1][2]=='X' ||
 ...
 T[0][0]=='X' && T[1][1]=='X' && T[2][2]=='X' ||
 T[0][2]=='X' && T[1][1]=='X' && T[2][0]=='X') // “X” wins.

T 0 1 2

0 X O

1 X O

2

/* Update the data representation on a move by “X” at ⟨r,c⟩. */
 T[r][c] = 'X'; // Mark T with 'X' for “X”.

/* Data Representation. */
 int T[][] = new int[3][3]; // ⟨0,1,-1⟩ for ⟨blank,“X”,“O”⟩.

T 0 1 2

0 1 0 -1

1 0 1 -1

2 0 0 0

/* Test for a win by “X”. */
 if (T[0][0]+T[0][1]+T[0][1]==3 ||
 T[1][0]+T[1][1]+T[1][2]==3 ||
 ...
 T[0][0]+T[1][1]+T[2][2]==3 ||
 T[0][2]+T[1][1]+T[2][0]==3) // “X” wins.

/* Update the data representation on a move by “X” at ⟨r,c⟩. */
 T[r][c] = 1; // Mark T with 1 for “X”.

/* Data Representation. */
 int T[][] = new int[3][3]; // ⟨0,1,-1⟩ for ⟨blank,“X”,“O”⟩.

T 0 1 2

0 1 0 -1

1 0 1 -1

2 0 0 0

/* Test for a win by “X”. */
 if (T[0][0]+T[0][1]+T[0][1]==3 ||
 T[1][0]+T[1][1]+T[1][2]==3 ||
 ...
 T[0][0]+T[1][1]+T[2][2]==3 ||
 T[0][2]+T[1][1]+T[2][0]==3) // “X” wins.

/* Update the data representation on a move by “X” at ⟨r,c⟩. */
 T[r][c] = 1; // Mark T with 1 for “X”.

☞ Introduce redundant variables in a representation to simplify code, or make it more efficient.

/* Data Representation. */
 int T[][] = new int[3][3]; // ⟨0,1,-1⟩ for ⟨blank,“X”,“O”⟩.
 int movesX = 0; // Number of moves made by “X”.

T 0 1 2

0 1 0 -1

1 0 1 -1

2 0 0 0

/* Test for a win by “X”. */
 if (movesX<3) // Not a win for “X”.
 else // Win for “X” is still possible, but only in 3, 4, or 5 moves.

movesX 2

/* Update the data representation on a move by “X” at ⟨r,c⟩. */
 T[r][c] = 1; // Mark T with 1 for “X”.
 movesX++; // Increment count of “X” marks.

/* Data Representation. */
 int T[][] = new int[3][3]; // ⟨0,1,-1⟩ for ⟨blank,“X”,“O”⟩.
 int movesX = 0; // Number of moves made by “X”.
 int M[][] = { {8,1,6},{3,5,7},{4,9,2} }; // Magic Square.
 int sumX = 0; // Sum of magic values corresponding to “X”.

T 0 1 2

0 1 0 -1

1 0 1 -1

2 0 0 1

/* Test for a win by “X”. */
 if (movesX<3) // Not a win for “X”.
 else if (movesX==3 && sumX==15) // “X” wins.
 else // Win for “X” is still possible, but only in 4 or 5 moves.

movesX 3

/* Update the data representation on a move by “X” at ⟨r,c⟩. */
 T[r][c] = 1; // Mark T with 1 for “X”.
 movesX++; // Increment count of “X” marks.
 sumX = sumX+M[r][c]; // Add magic value corresponding to ⟨r,c⟩.

sumX 15

M 0 1 2

0 8 1 6

1 3 5 7

2 4 9 2

/* Data Representation. */
 int T[][] = new int[3][3]; // ⟨0,1,-1⟩ for ⟨blank,“X”,“O”⟩.
 int movesX = 0; // Number of moves made by “X”.
 int M[][] = { {8,1,6},{3,5,7},{4,9,2} }; // Magic Square.
 int sumX = 0; // Sum of magic values corresponding to “X”.

T 0 1 2

0 1 1 -1

1 0 1 -1

2 0 0 0

/* Test for a win by “X”. */
 if (movesX<3) // Not a win for “X”.
 else if (movesX==3 && sumX==15) // “X” wins.
 else // Win for “X” is still possible, but only in 4 or 5 moves.

movesX 3

/* Update the data representation on a move by “X” at ⟨r,c⟩. */
 T[r][c] = 1; // Mark T with 1 for “X”.
 movesX++; // Increment count of “X” marks.
 sumX = sumX+M[r][c]; // Add magic value corresponding to ⟨r,c⟩.

sumX 14

M 0 1 2

0 8 1 6

1 3 5 7

2 4 9 2

/* Data Representation. */
 int T[][] = new int[3][3]; // ⟨0,1,-1⟩ for ⟨blank,“X”,“O”⟩.
 int movesX = 0; // Number of moves made by “X”.
 int M[][] = { {8,1,6},{3,5,7},{4,9,2} }; // Magic Square.
 int sumX = 0; // Sum of magic values corresponding to “X”.

T 0 1 2

0 1 1 -1

1 0 1 -1

2 0 -1 0

/* Test for a win by “X”. */
 if (movesX<3) // Not a win for “X”.
 else if (movesX==3 && sumX==15) // “X” wins.
 else // Win for “X” is still possible, but only in 4 or 5 moves.

movesX 3

/* Update the data representation on a move by “X” at ⟨r,c⟩. */
 T[r][c] = 1; // Mark T with 1 for “X”.
 movesX++; // Increment count of “X” marks.
 sumX = sumX+M[r][c]; // Add magic value corresponding to ⟨r,c⟩.

sumX 14

M 0 1 2

0 8 1 6

1 3 5 7

2 4 9 2

/* Data Representation. */
 int T[][] = new int[3][3]; // ⟨0,1,-1⟩ for ⟨blank,“X”,“O”⟩.
 int movesX = 0; // Number of moves made by “X”.
 int M[][] = { {8,1,6},{3,5,7},{4,9,2} }; // Magic Square.
 int sumX = 0; // Sum of magic values corresponding to “X”.
 int TT[] = new int[10]; // TT[m] is 1 iff “X” in T[r][c]
 // and M[r][c]==m.

T 0 1 2

0 1 1 -1

1 0 1 -1

2 0 -1 1

/* Test for a win by “X”. */
 if (movesX<3) // Not a win for “X”.
 else if (movesX==3 && sumX==15) // “X” wins.
 else if (movesX==4 && 9<=sumX && sumX<=24 && TT[sumX-15]==1) // “X” wins.
 else // Win for “X” is still possible, but only in 5 moves.

M 0 1 2

0 8 1 6

1 3 5 7

2 4 9 2

movesX 4

/* Update the data representation on a move by “X” at ⟨r,c⟩. */
 T[r][c] = 1; // Mark T with 1 for “X”.
 movesX++; // Increment count of “X” marks.
 sumX = sumX+M[r][c]; // Add magic value corresponding to ⟨r,c⟩.
 TT[M[r][c]] = 1; // Set TT[m] to 1 iff square with magic
 // value m is “X”.

sumX 16

0 1 2 3 4 5 6 7 8 9

TT 0 1 1 0 0 1 0 0 1 0

/* Data Representation. */
 int T[][] = new int[3][3]; // ⟨0,1,-1⟩ for ⟨blank,“X”,“O”⟩.
 int movesX = 0; // Number of moves made by “X”.
 int M[][] = { {8,1,6},{3,5,7},{4,9,2} }; // Magic Square.
 int sumX = 0; // Sum of magic values corresponding to “X”.
 int TT[] = new int[10]; // TT[m] is 1 iff “X” in T[r][c]
 // and M[r][c]==m.

T 0 1 2

0 1 1 -1

1 0 1 -1

2 1 -1 0

/* Test for a win by “X”. */
 if (movesX<3) // Not a win for “X”.
 else if (movesX==3 && sumX==15) // “X” wins.
 else if (movesX==4 && 9<=sumX && sumX<=24 && TT[sumX-15]==1) // “X” wins.
 else // Win for “X” is still possible, but only in 5 moves.

M 0 1 2

0 8 1 6

1 3 5 7

2 4 9 2

movesX 4

/* Update the data representation on a move by “X” at ⟨r,c⟩. */
 T[r][c] = 1; // Mark T with 1 for “X”.
 movesX++; // Increment count of “X” marks.
 sumX = sumX+M[r][c]; // Add magic value corresponding to ⟨r,c⟩.
 TT[M[r][c]] = 1; // Set TT[m] to 1 iff square with magic
 // value m is “X”.

sumX 18

0 1 2 3 4 5 6 7 8 9

TT 0 1 0 0 1 1 0 0 1 0

/* Data Representation. */
 int T[][] = new int[3][3]; // ⟨0,1,-1⟩ for ⟨blank,“X”,“O”⟩.
 int movesX = 0; // Number of moves made by “X”.
 int M[][] = { {8,1,6},{3,5,7},{4,9,2} }; // Magic Square.
 int sumX = 0; // Sum of magic values corresponding to “X”.
 int TT[] = new int[10]; // TT[m] is 1 iff “X” in T[r][c]
 // and M[r][c]==m.

T 0 1 2

0 1 0 -1

1 0 -1 1

2 -1 1 1

/* Test for a win by “X”. */
 if (movesX<3) // Not a win for “X”.
 else if (movesX==3 && sumX==15) // “X” wins.
 else if (movesX==4 && 9<=sumX && sumX<=24 && TT[sumX-15]==1) // “X” wins.
 else // Win for “X” is still possible, but only in 5 moves.

M 0 1 2

0 8 1 6

1 3 5 7

2 4 9 2

movesX 4

/* Update the data representation on a move by “X” at ⟨r,c⟩. */
 T[r][c] = 1; // Mark T with 1 for “X”.
 movesX++; // Increment count of “X” marks.
 sumX = sumX+M[r][c]; // Add magic value corresponding to ⟨r,c⟩.
 TT[M[r][c]] = 1; // Set TT[m] to 1 iff square with magic
 // value m is “X”.

sumX 26

0 1 2 3 4 5 6 7 8 9

TT 0 0 1 0 0 0 0 1 1 1

Reflection: Because Tic-Tac-Toe is so simple, the efficiency of the
above code is not really needed. It is intended to stretch your
imagination, and exhibit principles that can lead to significant
code improvement.

X O

X O

Background: Checkers is played on a 8-by-8 board, starting
with the initial layout shown. The two players take turns
making diagonal moves. In addition to the initial “men” shown,
players can earn “queens”. Because all moves are diagonal, only
half the squares are used. No other rules are relevant for the
purpose of this presentation.

Problem Statement: Write a program that plays Checkers.

/* Data Representation. */

☞ The touchstone of a data representation is its utility in performing the needed
operations.

/* Data Representation. */
 /* ⟨Blank, BlackMan, BlackQueen, RedMan, RedQueen⟩
 represented by ⟨0,1,2,-1,-2⟩. */
 int Board[][] = new int[8][8];

This representation requires 64*32 bits.

☞ The touchstone of a data representation is its utility in performing the needed
operations.

/* Data Representation. */
 /* ⟨Blank, BlackMan, BlackQueen, RedMan, RedQueen⟩
 represented by ⟨0,1,2,-1,-2⟩. */
 int Board[] = new int[32];

Number the used squares 0..31 and adopt a
1-dimensional representation indexed by those numbers.
This requires only half the space, i.e., 32*32 bits.

☞ The touchstone of a data representation is its utility in performing the needed
operations.

/* Data Representation. */
 /* ⟨Blanks, BlackMen, BlackQueens, RedMen, RedQueens⟩
 represented by 5 separate Boolean arrays. */
 boolean Blanks[] = new boolean[32];
 boolean BlackMen[] = new boolean[32];
 boolean BlackQueens[] = new boolean[32];
 boolean RedMen[] = new boolean[32];
 boolean RedQueens[] = new boolean[32];

Because there are only 5 things to represent, the same
information can be stored in 5 boolean arrays. Thus, only
5*32 bits are required, i.e., 5/64 of the original.

N.B. The implementation of a programming language
does not necessarily implement boolean as 1 bit, or int as
32 bits, but in principle it could.

☞ The touchstone of a data representation is its utility in performing the needed
operations.

/* Compute targets of all black’s forward-right
 diagonal moves. */

/* Data Representation. */
 /* ⟨Blanks, BlackMen, BlackQueens, RedMen, RedQueens⟩
 represented by 5 separate Boolean arrays. */
 boolean Blanks[] = new boolean[32];
 boolean BlackMen[] = new boolean[32];
 boolean BlackQueens[] = new boolean[32];
 boolean RedMen[] = new boolean[32];
 boolean RedQueens[] = new boolean[32];

Forward-right diagonal moves go to a square numbered 4
(or 5) higher, an irregularity that prevents uniformly
shifting the 1-dimensional arrays right 4 (or 5) places to
compute reachable squares.

+4

+5

+4

+5

+4

+5

+4

☞ The touchstone of a data representation is its utility in performing the needed
operations.

/* Data Representation. */
 /* ⟨Blanks, BlackMen, BlackQueens, RedMen, RedQueens⟩
 represented by 5 separate Boolean arrays. */
 boolean Blanks[] = new boolean[36];
 boolean BlackMen[] = new boolean[36];
 boolean BlackQueens[] = new boolean[36];
 boolean RedMen[] = new boolean[36];
 boolean RedQueens[] = new boolean[36];

/* Compute targets of all black’s forward-right
 diagonal moves. */

We introduce 4 phantom squares, and renumber.
All forward-right diagonal moves are now to a square that
is uniformly numbered 5 higher.

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

T T T T F T T T T T T T T F F F F F … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F T T T T F T T T T T T T T … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F F F F F F F F F F T T T T … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F F F F F F F F F F T T T T … F

BlackMen

BlackMen
right shifted 5

Blanks

all targets of

forward-right

moves

+5

+5

+5

+5

+5

+5

+5

☞ The touchstone of a data representation is its utility in performing the needed
operations.

/* Data Representation. */
 /* ⟨Blanks, BlackMen, BlackQueens, RedMen, RedQueens⟩
 represented by 5 separate Boolean arrays. */
 boolean Blanks[] = new boolean[36];
 boolean BlackMen[] = new boolean[36];
 boolean BlackQueens[] = new boolean[36];
 boolean RedMen[] = new boolean[36];
 boolean RedQueens[] = new boolean[36];

/* Compute targets of all black’s forward-right
 diagonal moves. */

As a result, we can compute all black’s forward-right
diagonal moves in a single Right-Shift-5 operation…

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

T T T T F T T T T T T T T F F F F F … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F T T T T F T T T T T T T T … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F F F F F F F F F F T T T T … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F F F F F F F F F F T T T T … F

BlackMen

BlackMen
right shifted 5

Blanks

all targets of

forward-right

moves

+5

+5

+5

+5

+5

+5

+5

☞ The touchstone of a data representation is its utility in performing the needed
operations.

/* Data Representation. */
 /* ⟨Blanks, BlackMen, BlackQueens, RedMen, RedQueens⟩
 represented by 5 separate Boolean arrays. */
 boolean Blanks[] = new boolean[36];
 boolean BlackMen[] = new boolean[36];
 boolean BlackQueens[] = new boolean[36];
 boolean RedMen[] = new boolean[36];
 boolean RedQueens[] = new boolean[36];

/* Compute targets of all black’s forward-right
 diagonal moves. */

perform a bitwise-logical-and operation with the array of
non-blank non-phantom squares…

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

T T T T F T T T T T T T T F F F F F … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F T T T T F T T T T T T T T … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F F F F F F F F F F T T T T … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F F F F F F F F F F T T T T … F

BlackMen

BlackMen
right shifted 5

Blanks

all targets of

forward-right

moves

+5

+5

+5

+5

+5

+5

+5

☞ The touchstone of a data representation is its utility in performing the needed
operations.

/* Data Representation. */
 /* ⟨Blanks, BlackMen, BlackQueens, RedMen, RedQueens⟩
 represented by 5 separate Boolean arrays. */
 boolean Blanks[] = new boolean[36];
 boolean BlackMen[] = new boolean[36];
 boolean BlackQueens[] = new boolean[36];
 boolean RedMen[] = new boolean[36];
 boolean RedQueens[] = new boolean[36];

/* Compute targets of all black’s forward-right
 diagonal moves. */

and obtain the positions of all blank squares reachable by
BlackMen in a forward-right diagonal move.

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

T T T T F T T T T T T T T F F F F F … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F T T T T F T T T T T T T T … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F F F F F F F F F F T T T T … F

0 1 2 3 4 5 6 7 8 9 1011121314151617…35

F F F F F F F F F F F F F F T T T T … F

BlackMen

BlackMen
right shifted 5

Blanks

all targets of

forward-right

moves

+5

+5

+5

+5

+5

+5

+5

☞ The touchstone of a data representation is its utility in performing the needed
operations.

History and Serendipity: Arthur Samuels, a founder of the field of Machine Learning,
wrote a Checkers playing program in the 1950s, for which he invented the above
representation.

At that time, the fundamental word length of computers was 36 bits. An operation like
Shift-Right-5 could be performed in a single machine instruction, and so too could an
operation like bitwise-logical-and. Thus, the target of all forward-right moves by
BlackMen to a vacant square could be performed in just 2 machine instructions!

Shortly thereafter, IBM changed to 32-bit words, which eliminated the possibility of
representing phantom squares in words, and the efficiency of uniform shifts of them to
compute possible moves in parallel.

Words are now 64-bits (or more), and so the representation is viable once again.

☞ The touchstone of a data representation is its utility in performing the needed
operations.

Background: Chess is played on a 8-by-8 board. A Queen can
move or capture at any distance vertically, horizontally, or
diagonally. It is possible to place eight Queens on the board so
that no two are on the same row, column, or diagonal..

Problem Statement: Write a program that finds a layout that
solves the problem.

/* Data Representation. */
 boolean Board[][] = new boolean[8][8];

☞ Choose representations that by design do not have nonsensical configurations.

Not a solution because there are two Queens in same row.

But why choose a representation (with
2^64 possible states) that allows two-in-
the-same row to be expressed?

/* Data Representation. */
 int R[] = new int[8]; // R[c] is r if Queen in ⟨r,c⟩.

☞ Choose representations that by design do not have nonsensical configurations.

Why not choose a representation (with
8^8 states) in which two-in-the-same-
row cannot even be expressed.

Not a solution because there are two Queens in same row.

/* Data Representation. */
 int R[] = new int[8]; // R[c] is r if Queen in ⟨r,c⟩.

But why choose a representation (with
8^8 states) that allows two-in-the-same
column to be expressed?

☞ Choose representations that by design do not have nonsensical configurations.

Require R to be a permutation of 1,2,3,4,5,6,7,8.

/* Data Representation. */
 int R[] = new int[8]; // R[c] is r if Queen in ⟨r,c⟩.

The failing configuration (above) cannot be expressed as a permutation of 1,2,3,4,5,6,7,8.

But not choose a representation (with
8! states) in which two-in-the-same-
column cannot even be expressed.

☞ Choose representations that by design do not have nonsensical configurations.

/* Solve the Eight Queens problem. */
static void main() {
 /* R[c] is r if Queen in ⟨r,c⟩.*/
 int R[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
 /* Consider each permutation of R until one is found that represents a
 solution. (At least one such permutation is known to exist.) */
 while (condition) NextPermutation(R);
 /* Output solution R. */
 ...
 } /* main */

☞ The touchstone of a data representation is its utility in performing the needed
operations.

/* Solve the Eight Queens problem. */
static void main() {
 /* R[c] is r if Queen in ⟨r,c⟩.*/
 int R[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
 /* Consider each permutation of R until one is found that represents a
 solution. (At least one such permutation is known to exist.) */
 while (hasSameDiagonal(R)) NextPermutation(R);
 /* Output solution R. */
 ...
 } /* main */

☞ The touchstone of a data representation is its utility in performing the needed
operations.

/* Return true iff R has two Queens on same diagonal. */
static boolean hasSameDiagonal(int R[]) {
 /* PosDiag[k] (resp., NegDiag[k]) true iff a Queen in R[0..c] occurs on the
 positive (resp., negative) diagonal with index k.
 boolean PosDiag[] = new boolean[15]; // Initially false, by default.
 boolean NegDiag[] = new boolean[15]; // Initially false, by default.
 int c = 0;
 while (c<8 && !PosDiag[R[c]+c] && !NegDiag[c-R[c]+7]) {
 PosDiag[R[c]+c] = true; NegDiag[c-R[c]+7] = true;
 c++;
 }
 return c!=8;
 } /* hasSameDiagonal */

Iterate through the 8 queens until the first that occurs on
an already-occupied diagonal. If no such queen is found,
then the permutation represents a solution.

Commentary. Who would have guessed that the Eight Queens Problem reduces to:

/* Update R[0..7] to be the next permutation of 1,2,3,4,5,6,7,8
 in a cycle of all 8! Such permutations. */
static void NextPermutation(int R[]) {
 ...
 }

which is left as a (not so easy) exercise.

Background. A square tin box measuring one foot on each side
has a slit of size d centered on one side. Insert a bee-bee gun at
the center of the slit at angle Θ, and shoot. The bee-bee
ricochets off sides, one after another. On each ricochet, the
angle of reflection is equal to the angle of incidence.
Problem Statement. Write a program that inputs d and Θ, and
outputs the total distance the bee-bee travels before it exits.

Background. A square tin box measuring one foot on each side
has a slit of size d centered on one side. Insert a bee-bee gun at
the center of the slit at angle Θ, and shoot. The bee-bee
ricochets off sides, one after another. On each ricochet, the
angle of reflection is equal to the angle of incidence.
Problem Statement. Write a program that inputs d and Θ, and
outputs the total distance the bee-bee travels before it exits.

Problem Reduction. Allow the bee-bee to break through the
wall of the box, and proceed in a straight line trajectory.

Problem Reduction. Consider the plane to be tiled with
reflections of the box.

Problem Reduction. Add Cartesian coordinates with origin
centered in the middle of the slit of the lower-leftmost box.

Problem Reduction. The slit replicas are on even values of y,
centered on integer values of x.

Problem Reduction. The slit replicas are on even values of y,
centered on integer values of x.

Problem Reduction. The slit replicas are on even values of y,
centered on integer values of x.

Problem Reduction. The slit replicas are on even values of y,
centered on integer values of x.

Problem Reduction. The slit replicas are on even values of y,
centered on integer values of x.

Problem Reduction. The slit replicas are on even values of y,
centered on integer values of x, etc.

Problem Reduction. We seek the smallest (even) y such that
the trajectory falls within d/2 of the center of a slit replica.

Problem Reduction. We seek the smallest (even) y such that
the trajectory falls within d/2 of the center of a slit replica.

Problem Reduction. We seek the smallest (even) y such that
the trajectory falls within d/2 of the center of a slit replica.

int y = 2;
while (/* line does not pass through a slit at y */) y = y+2;
/* Output the length of the line between ⟨0,0⟩ and ⟨x,y⟩, where x is
 computed from y and theta. */

Problem Reduction. We seek the smallest (even) y such that
the trajectory falls within d/2 of the center of a slit replica.

int y = 2;
while (Math.abs(x(y,theta)-Math.round(x(y,theta)))>=d/2) y = y+2;
/* Output the length of the line between ⟨0,0⟩ and ⟨x,y⟩, where x is
 computed from y and theta. */

where

static double x(double y, double theta) {
 ⟨compute x from y and theta⟩
 } /* x */

Problem Reduction. Output the length of the trajectory for
that y and the corresponding x.

int y = 2;
while (Math.abs(x(y,theta)-Math.round(x(y,theta)))>=d/2) y = y+2;
System.out.println(Hypotenuse(x(y,theta),y));

where

/* Return length of hypotenuse of triangle with sides x and y. */
static double Hypotenuse(double x, double y) {
 return Math.sqrt(x*x + y+y);
 } /* Hypotenuse */

Final detail: Compute x from y and theta using a bit of
trigonometry and care for numerical stability.

static double x(double y, double theta) {
 ⟨compute x from y and theta⟩
 } /* x */

static double x(double y, double theta) {
 if (theta<Math.PI/4 || theta>3*Math.PI/4)
 return y/Math.tan(theta);
 else return y*Math.tan(Math.PI/2-theta);
 } /* x */

Final detail: Compute x from y and theta using a bit of
trigonometry and care for numerical stability.

Reflection. Analysis and problem reduction resulted in
simple code.

Contrast it with the complexity of the code that would have
been needed to simulate each leg the bee-bee’s trajectory.

static void main() {
 double d = in.nextDouble();
 double theta = in.nextDouble();
 int y = 2;
 while math.abs(x(y,theta) - Math.round(x(y,theta))) >= d / 2:
 y = y + 2
 print(Hypotenuse(x(y, theta), y))

	Title
	Slide 1

	Introduction
	Slide 2

	TicTacToe
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

	Checkers
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

	Eight Queens Problem
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

	Ricocheting Bee-Bee
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

