
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Running a Maze

Copyright©2024 by Tim Teitelbaum; Most recent revision, 12/03/2024

We present a systematic top-down development of an entire program to Run a Maze. We
start from the beginning, but reference previous discussions from Chapters 1 and 4.

The main themes presented are:

• Use of a class to encapsulate a data representation.
• Consideration of alternative data representations.
• Structuring a program as two modules in a client/server relationship.
• The practice of information hiding.
• Incremental testing.
• Self-testing code.
• Exhaustive bounded testing of code.

Background. Define a maze to be a square two-dimensional grid of
cells separated (or not) from adjacent cells by walls. One can move
between adjacent cells if and only if no wall divides them. A solid
wall surrounds the entire grid of cells, so there is no escape from
the maze.
Problem Statement. Write a program that inputs a maze, and
outputs a direct path from the upper-left cell to the lower-right
cell if such a path exists, or outputs “Unreachable” otherwise. A
path is direct if it never visits any cell more than once.

1 2 3

5 4

6 7

8

9 10 11

class RunMaze:
 """
 Rat running.

 # Methods.
 main(cls) -> None

 # See also.
 Chapter 15 of Principled Programming
 """

Establish a framework:

☞ Program top-down, outside-in.

class RunMaze:
 """..."""

 @classmethod
 def main(cls) -> None:
 """Run a maze given as input, if possible."""

☞ Program top-down, outside-in.

Establish a framework:

class RunMaze:
 """..."""

 @classmethod
 def main(cls) -> None:
 """Run a maze given as input, if possible."""
 #.Input.
 #.Compute.
 #.Output.

☞ Start by writing a top-level decomposition of the solution.

Establish a framework:

class RunMaze:
 """..."""

 @classmethod
 def main(cls) -> None:
 """Run a maze given as input, if possible."""
 #.Input a maze of arbitrary size, or output “malformed input”
 # and stop if the input is improper. Input format: TBD.
 #.Compute a direct path through the maze, if one exists.
 #.Output the direct path found, or “unreachable” if there is
 # none. Output format: TBD.

Establish a framework:

☞ Repeatedly improve comments by relentless copy editing.

☞ Many short procedures are better than large blocks of code.

Establish a framework:

class RunMaze:
 """..."""

 @classmethod
 def main(cls) -> None:
 """Run a maze given as input, if possible."""
 # Input a maze of arbitrary size, or output “malformed input”
 # and stop if the input is improper. Input format: TBD.
 RunMaze._input()

 # Compute a direct path through the maze, if one exists.
 RunMaze._solve()

 # Output the direct path found, or “unreachable” if there is
 # none. Output format: TBD.
 RunMaze._output()

class RunMaze:
 ...

 @classmethod
 def _input(cls) -> None:
 """Input a maze of arbitrary size, or output “malformed input” and
 stop if the input is improper. Input format: TBD.
 """
 pass
 @classmethod
 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists."""
 pass
 @classmethod
 def _output(cls) -> None:
 """Output the direct path found, or “unreachable” if there is none. Output format: TBD."""
 pass

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Stubs: Create stubs for the methods that have been introduced, which you can do mindlessly.

☞ Practice information hiding.

class RunMaze:
 ...

 @classmethod
 def _input(cls) -> None:
 """Input a maze of arbitrary size, or output “malformed input” and
 stop if the input is improper. Input format: TBD.
 """
 pass
 @classmethod
 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists."""
 pass
 @classmethod
 def _output(cls) -> None:
 """Output the direct path found, or “unreachable” if there is none. Output format: TBD."""
 pass

Stubs: Create stubs for the methods that have been introduced, which you can do mindlessly.

Names that begin with underscores are protected and internal to RunMaze; other classes should not
access them. Although such access it is not denied, the underscores serve as a warning not to do so.

Algorithm (from Chapter 4):

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Sidestep

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Sidestep

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Sidestep

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.
 “Peripheral” is not just “outer”, but includes “attached”
 inner walls.

VARIANT:
 Get closer to goal.

Turn convex corner

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Pirouette to other side

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Turn convex corner

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Actions:
• Sidestep
• Pirouette
• Turn convex corner
• (Turn concave corner)

VARIANT:
 Get closer to goal.

Actions:
• Sidestep
• Pirouette
• Turn convex corner
• (Turn concave corner)
Query:
• What action to perform?

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Actions:
• Sidestep
• Pirouette
• Turn convex corner
• (Turn concave corner)
Query:
• What action to perform?
Unit of progress:
• 1 wall-segment-surface

Physically, you don’t need to distinguish cases, e.g., “just keep your hand on the wall and
move to the right”, but computationally, a case analysis must inspect the geometry, e.g.,

if __________ : Sidestep
elif __________ : Pirouette
elif __________ : Turn convex corner
else: Turn concave corner

Alternative Formulation: From Chapter 4.

(allow left-hand off wall if it is at a door)
INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
Actions:
• Turn clockwise 90°
• Turn counterclockwise 90°
• Step forward
Query:
• Facing a wall?
Unit of progress:
• 1 wall-segment-surface-or-door

Alternative Formulation: From Chapter 4.

(allow left-hand off wall if it is at a door)
INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
Actions:
• Turn clockwise 90°
• Turn counterclockwise 90°
• Step forward
Query:
• Facing a wall?
Unit of progress:
• 1 wall-segment-surface-or-door

Finer-grained actions.

Alternative Formulation: From Chapter 4.

(allow left-hand off wall if it is at a door)
INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
Actions:
• Turn clockwise 90°
• Turn counterclockwise 90°
• Step forward
Query:
• Facing a wall?
Unit of progress:
• 1 wall-segment-surface-or-door

Local query.

Finer-grained actions.

Alternative Formulation: From Chapter 4.

(allow left-hand off wall if it is at a door)
INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
Actions:
• Turn clockwise 90°
• Turn counterclockwise 90°
• Step forward
Query:
• Facing a wall?
Unit of progress:
• 1 wall-segment-surface-or-door

Local query.

Finer-grained actions.

Simpler to implement.

Alternative Formulation: Pseudo-code, from Chapter 4.

Start in upper-left cell, facing up.
while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall :
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.

while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall :
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall :
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall :
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall :
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall :
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall :
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall :
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall :
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall :
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

Algorithm: Drop code into RunMaze.

INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
 Establish INVARIANT as part of initialization of state.

class RunMaze:
 ...

 @classmethod
 def _input(cls) -> None:
 """
 Input a maze of arbitrary size, or output “malformed input” and stop if
 the input is improper. Input format: TBD.
 """
 pass

Algorithm: Drop code into RunMaze.

INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
 Establish INVARIANT as part of initialization of state.

class RunMaze:
 ...

 @classmethod
 def _input(cls) -> None:
 """
 Input a maze of arbitrary size, or output “malformed input” and stop if
 the input is improper. Input format: TBD.
 """
 ⟨Obtain maze from input.⟩
 ⟨Start in upper-left cell, facing up.⟩

class RunMaze:
 ...

 @classmethod
 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists."""
 while not(is_at_cheese()) and not(is_about_to_repeat()):
 if is_facing_wall(): turn_clockwise()
 else:
 step_forward()
 turn_counter_clockwise()
 ...

Algorithm: Drop code into RunMaze, with pseudo-operations turned into method calls.

INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
 Maintain INVARIANT and make progress in solve.

class MRP:
 ...
 def turn_clockwise() -> None: ...
 def turn_counter_clockwise() -> None: ...
 ...

CLIENT
algorithm

SERVER
maze

rat

path

class RunMaze:
 ...
 def main(self) -> None:
 """Run a maze given as input, if possible."""
 ...
 ...

queries actions

Modular program structure: Separation of concerns.

class RunMaze:
 ...

 @classmethod
 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists."""
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 else:
 MRP.step_forward()
 MRP.turn_counter_clockwise()

 ...

Algorithm (from Chapter 4): Qualify names of methods of another class.

The algorithm is a client of services provided by class MRP.

Operations:

class MRP:
 ...

 # Public Interface.
 @classmethod
 def turn_clockwise(cls) -> None: pass
 @classmethod
 def turn_counter_clockwise(cls) -> None: pass
 @classmethod
 def step_forward(cls) -> None: pass
 @classmethod
 def is_facing_wall(cls) -> bool: return ____
 @classmethod
 def is_at_cheese(cls) -> bool: return ____
 @classmethod
 def is_about_to_repeat(cls) -> bool: return ____
 ...

☞ The touchstone of a data representation is its utility in performing the needed operations.

Procedure stubs for the services.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Stubs provide signatures, i.e., names, types for return values,
types for parameters (none), and visibility (underscores or not).

Operations:

class MRP:
 ...

 # Public Interface.
 @classmethod
 def turn_clockwise(cls) -> None: pass
 @classmethod
 def turn_counter_clockwise(cls) -> None: pass
 @classmethod
 def step_forward(cls) -> None: pass
 @classmethod
 def is_facing_wall(cls) -> bool: return ____
 @classmethod
 def is_at_cheese(cls) -> bool: return ____
 @classmethod
 def is_about_to_repeat(cls) -> bool: return ____
 ...

Operations:

☞ The touchstone of a data representation is its utility in performing the needed operations.

Visible to client classes of MRP, e.g., RunMaze.

class MRP:
 ...

 # Public Interface.
 @classmethod
 def turn_clockwise(cls) -> None: pass
 @classmethod
 def turn_counter_clockwise(cls) -> None: pass
 @classmethod
 def step_forward(cls) -> None: pass
 @classmethod
 def is_facing_wall(cls) -> bool: return ____
 @classmethod
 def is_at_cheese(cls) -> bool: return ____
 @classmethod
 def is_about_to_repeat(cls) -> bool: return ____
 ...

State: The Maze, Rat, and Path data representations.

We (the implementers of MRP) design the data representation to record the state, and code the
query and action operations to update it.

☞ Practice information hiding.

Program

Class

Method Specifications.

Method Implementations

State: The Maze, Rat, and Path data representations.

☞ Practice information hiding.

Program

Specification.

Implementation

Program

Class
 ⟨protected state variables⟩

Method Specifications.

Method Implementations

We (the implementers of MRP) design the data representation to record the state, and code the
operations to query and update it.

Clients of MRP will have no direct access to the state in MRP. Rather, they will only be able to
interact with MRP via its operations, i.e., its interface. This is called an abstract data type, and
generalizes our prior use of specifications for information hiding.

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0

1

2

3

4

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0 9

1

2

3

4

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0 9 10

1

2

3

4

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0 9 10 12

1

2

3

4

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0 9 10 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

Anticipate

• Direction d, ⟨0,1,2,3⟩ = ⟨up,right,down,left⟩

• Decoder isWall(r,c,d), True iff wall in direction d

W 0 1 2 3 4

0 9 10 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:

13 140 1 2 3 4 115 6 7 8 9 10 12 15

Positive

• Direct correspondence between physical
maze and 2-D array W.

☞ The touchstone of a data representation is its utility in performing the needed operations.

W 0 1 2 3 4

0 9 10 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ Choose representations that by design do not have nonsensical configurations.

W 0 1 2 3 4

0 9 11 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

13 140 1 2 3 4 115 6 7 8 9 10 12 15

Negative

• Representation admits nonsensical data, e.g.,
9 claims “there is no wall to the right”, but 11
claims “there is a wall to the left”.

Maze Representation 1: N-by-N array W whose elements encode cell walls:

13 140 1 2 3 4 115 6 7 8 9 10 12 15

Negatives

• Representation admits nonsensical data, e.g.,
9 claims “there is no wall to the right”, but 11
claims “there is a wall to the left”.

• Decoder isWall(r,c,d) and corresponding
encoder are somewhat fussy.

W 0 1 2 3 4

0 9 11 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:

Path Representation 1: N-by-N array P whose elements are visit numbers or 0 (UNVISITED).

☞ The touchstone of a data representation is its utility in performing the needed operations.

P 0 1 2 3 4

0 1 2 3 0 0

1 0 5 4 0 0

2 0 6 7 0 0

3 0 0 8 0 0

4 0 0 9 10 11

1 2 3

5 4

6 7

8

9 10 11

Positive

• Direct correspondence between physical
maze and 2-D array P.

Maze Representation 2: Separate boolean arrays, V and H, for vertical and horizontal walls.

Eliminating Negatives of Representation 1

• Unique representation of each (possible) wall.

• Decoder and corresponding encoder are
more straightforward.

☞ Choose representations that by design do not have nonsensical configurations.

Maze Representation 2: Separate boolean arrays, V and H, for vertical and horizontal walls.

Negative of Representation 2

• Non-uniformity. Two arrays rather than one.

☞ Choose data representations that are uniform, if possible.

Maze Representation 3: (2·N+1)-by-(2·N+1) array M of of walls and path visit numbers.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Positives

• Single 2-D array M for both walls and path.

• Unique array cell (gray) to represent each
(possible) wall.

• Unique array cell (letters) for visit numbers.

M 0 1 2 3 4

0

1 A B
2

3 C D
4

A B

C D

Maze Representation 3: (2·N+1)-by-(2·N+1) array M of of walls and path visit numbers.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Negatives

• About ¼ of storage is wasted (yellow).

• Direct correspondence between maze
coordinate system and 2-D array. indices lost.

M 0 1 2 3 4

0

1 A B
2

3 C D
4

A B

C D

Maze Representation 3: Adopt it.

M 0 1 2 3 4

0

1 A B
2

3 C D
4

A B

C D

☞ Don’t let the “perfect” be the enemy of the “good”.
Be prepared to compromise because there may be no
perfect representation. Don’t freeze.

Data Representation Invariant:

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

class MRP:

 # Maze. Cells of an N-by-N maze are represented by elements of a
 # (2*N+1)-by-(2*N+1) array M. Maze cell ⟨r,c⟩ is represented by array
 # element M[2*r+1][2*c+1]. The possible walls ⟨top, right, bottom,
 # left⟩ of the maze cell corresponding to ⟨r,c⟩ are represented by
 # WALL or NO_WALL in ⟨M[r-1][c], M[r][c+1], M[r+1][c], M[r][c-1]⟩.
 # The remaining elements of M are unused. lo is 1, and hi is 2*N-1.
 _N: int # _N is size of maze.
 _M: list[list[int]] # _M is _N-by-_N maze, walls, and path.
 _WALL: int = -1 # _WALL encodes presence of a wall.
 _NO_WALL: int = 0 # _NO_WALL encodes absence of a wall.
 _lo: int # _lo is left and top maze indices.
 _hi: int # _hi is right and bottom maze indices.

 ...

☞ Practice information hiding.

class MRP:

 # Maze. Cells of an N-by-N maze are represented by elements of a
 # (2*N+1)-by-(2*N+1) array M. Maze cell ⟨r,c⟩ is represented by array
 # element M[2*r+1][2*c+1]. The possible walls ⟨top, right, bottom,
 # left⟩ of the maze cell corresponding to ⟨r,c⟩ are represented by
 # WALL or NO_WALL in ⟨M[r-1][c], M[r][c+1], M[r+1][c], M[r][c-1]⟩.
 # The remaining elements of M are unused. lo is 1, and hi is 2*N-1.
 _N: int # _N is size of maze.
 _M: list[list[int]] # _M is _N-by-_N maze, walls, and path.
 _WALL: int = -1 # _WALL encodes presence of a wall.
 _NO_WALL: int = 0 # _NO_WALL encodes absence of a wall.
 _lo: int # _lo is left and top maze indices.
 _hi: int # _hi is right and bottom maze indices.

 ...

Names that begin with _ are protected and internal to MRP. No other class needs to know about them.

class MRP:

 # Maze. Cells of an N-by-N maze are represented by elements of a
 # (2*N+1)-by-(2*N+1) array M. Maze cell ⟨r,c⟩ is represented by array
 # element M[2*r+1][2*c+1]. The possible walls ⟨top, right, bottom,
 # left⟩ of the maze cell corresponding to ⟨r,c⟩ are represented by
 # WALL or NO_WALL in ⟨M[r-1][c], M[r][c+1], M[r+1][c], M[r][c-1]⟩.
 # The remaining elements of M are unused. lo is 1, and hi is 2*N-1.
 _N: int # _N is size of maze.
 _M: list[list[int]] # _M is _N-by-_N maze, walls, and path.
 _WALL: int = -1 # _WALL encodes presence of a wall.
 _NO_WALL: int = 0 # _NO_WALL encodes absence of a wall.
 _lo: int # _lo is left and top maze indices.
 _hi: int # _hi is right and bottom maze indices.

 ...

Full-word names that are all capital letters, by convention, are intended to be constant throughout program execution.

☞ Minimize use of literal numerals in code; define and use symbolic constants.

class MRP:
 ...

 # Rat. The rat is located in cell M[r][c] facing direction d, where
 # d=⟨0,1,2,3⟩ represents the orientation ⟨up,right,down,left⟩,
 # respectively.
 _r: int
 _c: int
 _d: int

 ...

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Data Representation Invariant:

class MRP:
 ...

 # Path. When the rat has traveled to cell ⟨r,c⟩ via a given path
 # through cells of the maze, the elements of M that correspond to
 # those cells will be 1, 2, 3, etc., and all other elements of M
 # that correspond to cells of the maze will be UNVISITED. The
 # number of the last step in the path is move.
 _UNVISITED: int = 0
 _move: int

 ...

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Data Representation Invariant:

Data Representation Invariant:

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

class MRP:

 # Maze. Cells of an N-by-N maze are represented by elements of a
 # (2*N+1)-by-(2*N+1) array M. Maze cell ⟨r,c⟩ is represented by array
 # element M[2*r+1][2*c+1]. The possible walls ⟨top, right, bottom,
 # left⟩ of the maze cell corresponding to ⟨r,c⟩ are represented by
 # WALL or NO_WALL in ⟨M[r-1][c], M[r][c+1], M[r+1][c], M[r][c-1]⟩.
 # The remaining elements of M are unused. lo is 1, and hi is 2*N-1.
 _N: int # _N is size of maze.
 _M: list[list[int]] # _M is _N-by-_N maze, walls, and path.
 _WALL: int = -1 # _WALL encodes presence of a wall.
 _NO_WALL: int = 0 # _NO_WALL encodes absence of a wall.
 _lo: int = 1 # _lo is left and top maze indices.
 _hi: int = 2 * _N - 1 # _hi is right and bottom maze indices.

 ...

Variables declared and initialized at the top-level of a class are called class variables, and are shared
among all of the methods of the class.

Data Representation Invariant:

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

class MRP:

 # Maze. Cells of an N-by-N maze are represented by elements of a
 # (2*N+1)-by-(2*N+1) array M. Maze cell ⟨r,c⟩ is represented by array
 # element M[2*r+1][2*c+1]. The possible walls ⟨top, right, bottom,
 # left⟩ of the maze cell corresponding to ⟨r,c⟩ are represented by
 # WALL or NO_WALL in ⟨M[r-1][c], M[r][c+1], M[r+1][c], M[r][c-1]⟩.
 # The remaining elements of M are unused. lo is 1, and hi is 2*N-1.
 _N: int = 0 # _N is size of maze.
 _M: list[list[int]] = [] # _M is _N-by-_N maze, walls, and path.
 _WALL: int = -1 # _WALL encodes presence of a wall.
 _NO_WALL: int = 0 # _NO_WALL encodes absence of a wall.
 _lo: int = 1 # _lo is left and top maze indices.
 _hi: int = 2 * _N - 1 # _hi is right and bottom maze indices.

 ...

Variables declared and initialized at the top-level of a class are called class variables, and are shared
among all of the methods of the class.

All class variables should be initialized even if the values will necessarily be updated later,
e.g., _N and _M will be established by _input. Nonetheless, be consistent with the invariant.

class MRP:
 ...

 # Rat. The rat is located in cell M[r][c] facing direction d, where
 # d=⟨0,1,2,3⟩ represents the orientation ⟨up,right,down,left⟩,
 # respectively.
 _r: int = _lo
 _c: int = _lo
 _d: int = 0

 ...

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Data Representation Invariant:

All class variables should be initialized even if the values will necessarily be updated later,
e.g., _N and _M will be established by _input. Nonetheless, be consistent with the invariant.

class MRP:
 ...

 # Path. When the rat has traveled to cell ⟨r,c⟩ via a given path
 # through cells of the maze, the elements of M that correspond to
 # those cells will be 1, 2, 3, etc., and all other elements of M
 # that correspond to cells of the maze will be UNVISITED. The
 # number of the last step in the path is move.
 _UNVISITED: int = 0
 _move: int = _lo

 ...

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Data Representation Invariant:

All class variables should be initialized even if the values will necessarily be updated later,
e.g., _N and _M will be established by _input. Nonetheless, be consistent with the invariant.

class MRP:
 ...

 # Unit vectors in direction d
 # d = 0, 1, 2, 3
 # up, right, down, left
 _deltaR: list[int] = [-1, 0, 1, 0]
 _deltaC: list[int] = [0, 1, 0, -1]

 ...

Auxiliary Data:

class MRP:
 ...

 # Public Interface.
 def turn_clockwise(cls) -> None:
 MRP._d = (MRP._d + 1) % 4
 def turn_counter_clockwise(cls) -> None:
 MRP._d = (MRP._d + 3) % 4
 def step_forward(cls) -> None:
 MRP._r += 2 * MRP._deltaR[MRP._d]; MRP._c += 2 * MRP._deltaC[MRP._d]
 MRP._move += 1; MRP._M[MRP._r][MRP._c] = MRP._move
 def is_facing_wall(cls) -> bool:
 return MRP._M[MRP._r + MRP._deltaR[MRP._d]
][MRP._c + MRP._deltaC[MRP._d]] == MRP._WALL
 def is_at_cheese(cls) -> bool:
 return (MRP._r == MRP._hi) and (MRP._c == MRP._hi)
 def is_about_to_repeat(cls) -> bool:
 return (MRP._r == MRP._lo) and (MRP._c == MRP._lo) and (MRP._d==3)

 ...

Operations: Complete the implementation
Note: @classmethod decorators have
been omitted from this slide for brevity.

Interface includes I/O: Only MRP knows the data representation, so it must do the I/O.

class MRP:
 ...

 @classmethod
 def input(cls) -> None:
 """Input N-by-N maze."""

 @classmethod
 def print_maze(cls) -> None:
 """Output N-by-N maze, with walls and path."""

 ...

Input: Hard code a trivial initial example.

class MRP:
 ...

 @classmethod
 def input(cls) -> None:
 """Input N-by-N maze."""
 # Maze. As per representation invariant.
 MRP._N = 1
 MRP._lo = 1; MRP._hi = 2 * MRP._N - 1
 MRP._M = [[0 for _ in range(2 * MRP._N + 1)] for _ in range(2 * MRP._N + 1)]
 MRP._M[0][1] = MRP._M[1][0] = MRP._M[1][2] = MRP._M[2][1] = MRP._WALL

 # Rat. Place rat in upper-left cell facing up.
 MRP._r = MRP._lo; MRP._c = MRP._lo; MRP._d = 0

 # Path. Establish the rat in the upper-left cell.
 MRP._move = lo; MRP._M[MRP._r][MRP._c] = MRP._move

 ...Use the representation invariants as a guide in helping to establish correct values. Don’t worry about
trying to avoid needless assignments; it’s better to be complete than to risk missing something.

Input: Hard code a trivial initial example.

class MRP:
 ...

 @classmethod
 def input(cls) -> None:
 """Input N-by-N maze."""
 # Maze. As per representation invariant.
 MRP._N = 1
 MRP._lo = 1; MRP._hi = 2 * MRP._N - 1
 MRP._M = [[0 for _ in range(2 * MRP._N + 1)] for _ in range(2 * MRP._N + 1)]
 MRP._M[0][1] = MRP._M[1][0] = MRP._M[1][2] = MRP._M[2][1] = MRP._WALL

 # Rat. Place rat in upper-left cell facing up.
 MRP._r = MRP._lo; MRP._c = MRP._lo; MRP._d = 0

 # Path. Establish the rat in the upper-left cell.
 MRP._move = lo; MRP._M[MRP._r][MRP._c] = MRP._move

 ...

Slight language extension: Multiple lefthand sides for assignment statement.

class RunMaze:
 ...

 @classmethod
 def _input(cls) -> None:
 """
 Input a maze of arbitrary size, or output “malformed input” and stop
 if the input is improper. Input format: TBD.
 """

 MRP.input()

Input: Invoke from the client.

class MRP:
 ...

 @classmethod
 def print_maze(cls) -> None:
 """Output N-by-N maze, with walls and path."""
 for r in range(MRP._lo - 1, MRP._hi + 2):
 for c in range(MRP._lo - 1, MRP._hi + 2):
 if MRP._M[r][c] == MRP._WALL: s = "#"
 elif ((MRP._M[r][c] == MRP._NO_WALL) or
 (MRP._M[r][c] == MRP._UNVISITED)): s = " "
 else: s = str(MRP._M[r][c]) + ""
 print((s + " ")[0:3], end='')
 print()

 ...

Output: Straightforward, so knock it off now, for the general case.

class RunMaze:
 ...

 @classmethod
 def _output(cls) -> None:
 """Output the direct path found, or “unreachable” if there is none."""
 if not(MRP.is_at_cheese()): print ("Unreachable")
 else: MRP.print_maze()
 ...

Output: Invoke from the client.

Commentary : Design rules for abstract data types.

• Prefer fine-grained micro-operations over coarse-grained macro-operations.

▪ E.g., turn_clockwise rather than Pirouette.

• It is better to support operations that are defined relative to the state than it is to reveal portions of
the state itself. Avoid leaking details of any particular data representation.

▪ E.g., is_at_cheese rather than get_row and get_column.
▪ E.g., turn_clockwise rather than get_direction and set_direction.

• Avoid macro-operations that embody algorithmic details that belong in the client.

• E.g., RunMaze._solve rather than MRP.solve .

File and Module Structure:

from mrp import MRP
class RunMaze:
 ⟨Declarations and definitions of class RunMaze⟩

RunMaze.main() # Invoke the program

File run_maze.py

class MRP:
 ⟨Declarations and definitions of class MRP⟩

File mrp.py

In a directory for the program, place each class (e.g., one with the camel-case name MyFoo)
in its own file with a related lower-case name (e.g., my_foo.py).

The file of the principle class imports classes it needs, as shown, and invokes its main method.

Controlled Testing: At first, use an empty stub for solve.

Test 1: Check for syntax errors, and check input/output framework.

#
1
#

input output

☞ Test programs incrementally.

Correct output.

Controlled Testing: Change input to hard-code a 2-by-2 maze, but still
use an empty stub for solve.

Test 2: Check output.

Unreachable

input output

Expected output since solve is just a
stub. Validation of code for message.

☞ Test programs incrementally.

#
1 2
#
3
#

input output

Controlled Testing: Now use the real code for solve.

Test 3: Further check of output, and check of solve for an empty 2-by-2 maze.

Correct solution.

#
1 #
#
2 3
#

input output

Controlled Testing: Change input to hard-code a 2-by-2, with an obstacle.

Test 4: Further check of solve.

Correct solution. Appears to be going counter-clockwise,
but this is an illusion: It is making its way around the
obstacle clockwise when it stumbles into the cheese.

#
3 2
#
4 5
#

input output

Controlled Testing: Change input to hard-code a 2-by-2, with a cul-de-sac.

Test 5: Further check of solve.

Anticipated incorrect solution. We are doing a complete
exploration, and don’t bother to detect the cul-de-sac.
As a result, we overwrite the path, and leave a mess.

#
1
#
#
#

input output

↑

Controlled Testing: Change input to hard-code a 2-by-2, with a cul-de-sac.

Test 5: Further check of solve.

Replay.

#
1
#
#
#

input output

→

Controlled Testing: Change input to hard-code a 2-by-2, with a cul-de-sac.

Test 5: Further check of solve.

Replay.

#
1 2
#
#
#

input output

↑

Controlled Testing: Change input to hard-code a 2-by-2, with a cul-de-sac.

Test 5: Further check of solve.

Replay.

#
1 2
#
#
#

input output

→

Controlled Testing: Change input to hard-code a 2-by-2, with a cul-de-sac.

Test 5: Further check of solve.

Replay.

#
1 2
#
#
#

input output

↓

Controlled Testing: Change input to hard-code a 2-by-2, with a cul-de-sac.

Test 5: Further check of solve.

Replay.

#
1 2
#
#
#

input output

←

Controlled Testing: Change input to hard-code a 2-by-2, with a cul-de-sac.

Test 5: Further check of solve.

Replay. This is the moment when we need to detect the
imminent re-entry to a cell that is currently on the path.

#
3 2
#
#
#

input output

↓

Controlled Testing: Change input to hard-code a 2-by-2, with a cul-de-sac.

Test 5: Further check of solve.

We ignored the issue, and overwrote the 1 with a 3.

#
1 2
#
#
#

input output

←

Controlled Testing: Change input to hard-code a 2-by-2, with a cul-de-sac.

Test 5: Further check of solve.

Backing up, we need to prevent this.

Algorithm: Proceed only if about to enter a cell that is not on the current path.

class RunMaze:
 ...

 @classmethod
 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists."""
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 elif MRP.is_facing_unvisited():
 MRP.step_forward()
 MRP.turn_counter_clockwise()
 else: RunMaze.retract()
 ...

Add the check …

… and introduce retract to handle the cul-de-sac case.

Extend MRP: Add is_facing_unvisited to interface.

class MRP:
 ...

 @classmethod
 def is_facing_unvisited() -> bool:
 return MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]] == MRP._UNVISITED

 ...

Retract:

#
1 2
#
#
#

input output

←
The next step from here needed to detect the imminent
re-entry to a cell that is currently on the path, but didn’t
bother.

Retract:

def step_forward(cls) -> None:
 MRP._r += 2 * MRP._deltaR[MRP._d]; MRP._c += 2 * MRP._deltaC[MRP._d]
 MRP._move += 1; MRP._M[MRP._r][MRP._c] = MRP._move

#
1 2
#
#
#

input output

←

Note: @classmethod decorators have
been omitted from this slide for brevity.

The next step from here needed to detect the imminent
re-entry to a cell that is currently on the path, but didn’t
bother.

Need to undo the step_forward that took us into the
cul-de-sac.

Retract:

#
1
#
#
#

input output

←

def step_forward(cls) -> None:
 MRP._r += 2 * MRP._deltaR[MRP._d]; MRP._c += 2 * MRP._deltaC[MRP._d]
 MRP._move += 1; MRP._M[MRP._r][MRP._c] = MRP._move
def step_backward(cls) -> None:
 MRP._M[MRP._r][MRP._c] = MRP._UNVISITED; MRP._move -= 1
 MRP._r += 2 * MRP._deltaR[MRP._d]; MRP._c += 2 * MRP._deltaC[MRP._d]

Note: @classmethod decorators have
been omitted from this slide for brevity.

The next step from here needed to detect the imminent
re-entry to a cell that is currently on the path, but didn’t
bother.

Need to undo the step_forward that took us into the
cul-de-sac.

Retract:

#
1
#
#
#

input output

↓

def step_forward(cls) -> None:
 MRP._r += 2 * MRP._deltaR[MRP._d]; MRP._c += 2 * MRP._deltaC[MRP._d]
 MRP._move += 1; MRP._M[MRP._r][MRP._c] = MRP._move
def step_backward(cls) -> None:
 MRP._M[MRP._r][MRP._c] = MRP._UNVISITED; MRP._move -= 1
 MRP._r += 2 * MRP._deltaR[MRP._d]; MRP._c += 2 * MRP._deltaC[MRP._d]

Note: @classmethod decorators have
been omitted from this slide for brevity.

The next step from here needed to detect the imminent
re-entry to a cell that is currently on the path, but didn’t
bother.

Need to undo the step_forward that took us into the
cul-de-sac, and turn as if it had been skipped.

Retract: Implemented as follows.

class RunMaze:
 ...

 @classmethod
 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.step_backward()
 MRP.turn_counter_clockwise()

 ...

class RunMaze:
 ...

 @classmethod
 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.step_backward()
 MRP.turn_counter_clockwise()

 ...

Retract: Implemented as follows.

Marker: You have just been deliberately
led astray, but we will keep going.

Test 6: Redo Test 5.

#
1
#
2 3
#

input output

Correct solution. We backed out of the cul-de-sac, and
proceeded to the lower-right cell.

Test 6: Redo Test 5.

#
1
#
2 3
#

input output
Could we be done? Perhaps, but we will need to test on
bigger mazes. It’s time to code the general-purpose
input method.

Correct solution. We backed out of the cul-de-sac, and
proceeded to the lower-right cell.

Input: Start with the hardcoded initial example.

class MRP:
 ...

 @classmethod
 def input(cls) -> None:
 """Input N-by-N maze.""“
 # Maze. As per representation invariant.
 MRP._N = 1
 MRP._lo = 1; MRP._hi = 2 * MRP._N - 1
 MRP._M = [[0 for _ in range(2 * MRP._N + 1)] for _ in range(2 * MRP._N + 1)]
 MRP._M[0][1] = MRP._M[1][0] = MRP._M[1][2] = MRP._M[2][1] = MRP._WALL

 # Rat. Place rat in upper-left cell facing up.
 MRP._r = MRP._lo; MRP._c = MRP._lo; MRP._d = 0

 # Path. Establish the rat in the upper-left cell.
 MRP._move = 1; MRP._M[MRP._r][MRP._c] = MRP._move

 ...

class MRP:
 ...

 @classmethod
 def input(cls) -> None:
 """Input N-by-N maze."""
 # Maze. As per representation invariant.
 MRP._N = ⟨value for _N⟩
 MRP._lo = 1; MRP._hi = 2 * MRP._N - 1
 MRP._M = [[0 for _ in range(2 * MRP._N + 1)] for _ in range(2 * MRP._N + 1)]
 ⟨Define each element of _M⟩

 # Rat. Place rat in upper-left cell facing up.
 MRP._r = MRP._lo; MRP._c = MRP._lo; MRP._d = 0

 # Path. Establish the rat in the upper-left cell.
 MRP._move = 1; MRP._M[MRP._r][MRP._c] = MRP._move

 ...

Input: Identify places to generalize.

☞

☞

Input: Create a class for rapid prototyping.

Rapid prototyping harness
class RapidPrototype:

 # Simplified relevant code from input().
 _N = ⟨value for _N⟩
 _lo = 1; _hi = 2 * _N - 1
 _M = [[0 for _ in range(2 * _N + 1)] for _ in range(2 * _N + 1)]
 ⟨Define each element of _M⟩

☞

☞

Input: Provide needed context.

Rapid prototyping harness
class RapidPrototype:
 # Relevant constants.
 _UNVISITED = 0; _WALL = -1; _NO_WALL = 0

 # Simplified relevant code from input().
 _N = ⟨value for _N⟩
 _lo = 1; _hi = 2 * _N - 1
 _M = [[0 for _ in range(2 * _N + 1)] for _ in range(2 * _N + 1)]
 ⟨Define each element of _M⟩

☞

☞

Input: Simulate the input file in a string variable, and split it into lines.

Rapid prototyping harness
class RapidPrototype:
 # Relevant constants.
 _UNVISITED = 0; _WALL = -1; _NO_WALL = 0

 # Input file split into lines.
 _file = "2\nxxxxx\nx x\nx x\nx x\nxxxxx"
 _lines = _file.split("\n")

 # Simplified relevant code from input().
 _N = ⟨value for _N⟩
 _lo = 1; _hi = 2 * _N - 1
 _M = [[0 for _ in range(2 * _N + 1)] for _ in range(2 * _N + 1)]
 ⟨Define each element of _M⟩

☞

☞

Rapid prototyping harness
class RapidPrototype:
 # Relevant constants.
 _UNVISITED = 0; _WALL = -1; _NO_WALL = 0

 # Input file split into lines.
 _file = "2\nxxxxx\nx x\nx x\nx x\nxxxxx"
 _lines = _file.split("\n")

 # Simplified relevant code from input().
 _N = int(_lines[0]); del _lines[0]
 _lo = 1; _hi = 2 * _N - 1
 _M = [[0 for _ in range(2 * _N + 1)] for _ in range(2 * _N + 1)]

for r in range(_lo - 1, _hi + 2):
 _line = _lines[0]; del _lines[0]
 ⟨Define each element of the r-th row of _M from the _line>

Input: Simulate per-line input

☞

☞

Rapid prototyping harness
class RapidPrototype:
 # Relevant constants.
 _UNVISITED = 0; _WALL = -1; _NO_WALL = 0

 # Input file split into lines.
 _file = "2\nxxxxx\nx x\nx x\nx x\nxxxxx"; print(_file)
 _lines = _file.split("\n"); print(_lines)

 # Simplified relevant code from input().
 _N = int(_lines[0]); del _lines[0]; print(_N)
 _lo = 1; _hi = 2 * _N - 1
 _M = [[0 for _ in range(2 * _N + 1)] for _ in range(2 * _N + 1)]
 for r in range(_lo - 1, _hi + 2):
 _line = _lines[0]; del _lines[0]
 ⟨Define each element of the r-th row of _M from the _line>

Input: Simulate per-line input

☞

☞

xxxxx
x x
x x
x x
xxxxx
['2', 'xxxxx', 'x x', 'x x', 'x x', 'xxxxx’]
2

Use print statements, as needed,
for diagnostic output

Rapid prototyping harness
class RapidPrototype:
 # Relevant constants.
 _UNVISITED = 0; _WALL = -1; _NO_WALL = 0

 # Input file split into lines.
 _file = "2\nxxxxx\nx x\nx x\nx x\nxxxxx"
 _lines = _file.split("\n")

 # Simplified relevant code from input().
 _N = int(_lines[0]); del _lines[0]
 _lo = 1; _hi = 2 * _N - 1
 _M = [[0 for _ in range(2 * _N + 1)] for _ in range(2 * _N + 1)]
 for r in range(_lo - 1, _hi + 2):
 _line = _lines[0]; del _lines[0]
 for c in range(_lo - 1, _hi + 2):
 if (r % 2 == 1) and (c % 2 == 1): _M[r][c] = _UNVISITED
 elif line[c:c+1] == " ": _M[r][c] = _NO_WALL
 else: _M[r][c] = _WALL

Input: Define elements of array M.

☞

☞

class MRP:
 ...

 def input(cls) -> None:
 """Input N-by-N maze."""
 # Input file split into lines.
 file = "2\nxxxxx\nx x\nx x\nx x\nxxxxx"
 lines = file.split("\n")

 # Maze. As per representation invariant.
 MRP._N = int(lines[0]); del lines[0]
 MRP._lo= 1; MRP._hi = 2 * MRP._N - 1
 MRP._M = [[0 for _ in range(2 * MRP._N + 1)] for _ in range(2 * MRP._N + 1)]
 for r in range(MRP._lo - 1, MRP._hi + 2):
 line = lines[0]; del lines[0]
 for c in range(MRP._lo - 1, MRP._hi + 2):
 if (r % 2 == 1) and (c % 2 == 1): MRP._M[r][c] = MRP._UNVISITED
 elif line[c:c+1] == " ":
 MRP._M[r][c] = MRP._NO_WALL
 else: MRP._M[r][c] = MRP._WALL

 # Rat. Place rat in upper-left cell facing up.
 ...
 ...

Input: Retrofit the prototype into MRP.input(), including the file simulated in a string variable.

☞

☞

☞

Note: @classmethod decorators have
been omitted from this slide for brevity.

Controlled Testing: Try every sort of maze you can think of.

Deeper cul-de-sacs

Higgledy-piggledy cul-de-sacs

1 1 2 1 2 3 1 2 1 1

2

1

2 3 4

5

. . .

1 2 3 6 7

4 5 8

1 2 3

4 5

6 7

9 8

1 2 3

5 4

6 7

8

9 10 11

☞ Test programs thoroughly.

Controlled Testing: But how can you know when you are done?

Deeper cul-de-sacs

Higgledy-piggledy cul-de-sacs

1 1 2 1 2 3 1 2 1 1

2

1

2 3 4

5

. . .

1 2 3 6 7

4 5 8

1 2 3

4 5

6 7

9 8

1 2 3

5 4

6 7

8

9 10 11

☞ Beware of premature self-satisfaction.

Controlled Testing: But how can you know when you are done?

Review Code:

• You were supposed to be very systematic, but did you consider every case?

Review Test data:

• You were supposed to be very systematic, but did you consider every case?

☞ Test programs thoroughly.

Controlled Testing: But how can you know when you are done?

Review Code:

• You were supposed to be very systematic, but did you consider every case?

Review Test data:

• You were supposed to be very systematic, but did you consider every case?

Do you have to just keep trying until you think of a room-shaped cul-de-sac?

1
. . .

☞ Test programs thoroughly.

Controlled Testing: But how can you know when you are done?

Review Code:

• You were supposed to be very systematic, but did you consider every case?

Review Test data:

• You were supposed to be very systematic, but did you consider every case?

Do you have to just keep trying until you think of a room-shaped cul-de-sac?

Aargh! We only considered corridor-shaped cul-de-sacs.

1 1 2 3

5 4

1 2 3

4

1 3

4

1 3

4 4

1 3

4 4

5 6 7

.

☞ Test programs thoroughly.

1 1 2 3

4

1 3

4

1 3

4 4

1 3

4 4

5 6 7

.

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.step_backward()
 MRP.turn_counter_clockwise()

 ...

1 2 3

5 4

This didn’t unwind the traversal of the cul-de-sac; it only undid the first step into the cul-de-sac. This worked
fine even for deep corridor-shaped cul-de-sacs (which could be backed out of one “first-step” at a time).

Recall: We deliberately led you astray,
but we kept going.

Retract: Recall that the implementation was as follows.

Note: @classmethod decorators have omitted from this slide forward for brevity.

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 while not-unwound:
 MRP.face_previous()
 MRP.step_backward()
 MRP.turn_counter_clockwise()

 ...

Retract: To be implemented now as follows.

1 1 2 3

5 4

1 2 3

4

1 3

4

1 3

4 4

1 3

4 4

5 6 7

.

1 1 2 3

5 4

1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

Picking
up the
“bread
crumbs”.

Correction: Now we will truly unwind
the path.

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

retract is coded in class MRP in order to have direct access to the data representation.

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

We record the identity of the about-to-be-revisited
neighbor

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

We record the identity of the about-to-be-revisited
neighbor, and the direction we were facing when we
detected it.

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

We record the identity of the about-to-be-revisited
neighbor, and the direction we were facing when we
detected it. We stop unwinding when we get to it

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

We record the identity of the about-to-be-revisited
neighbor, and the direction we were facing when we
detected it. We stop unwinding when we get to it,
and restore the direction in which we were facing.

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

⟨r,c⟩

↑ d

Trace: There are actually two separate cul-de-sacs: one detected from 5 (facing 2), and the other from 2 (facing 1).

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞ 2

⟨r,c⟩

↑ d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞
↑

2

⟨r,c⟩

↑ d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

↑ d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

→ d

time →

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

→ d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

→ d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

↑ d

time →

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

↑ d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

↑ d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

← d

time →

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

← d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

← d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

↑ d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

↑

2

⟨r,c⟩

← d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

⟨r,c⟩

← d

☞

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

⟨r,c⟩

← d

Second call to retract.

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞ 1

⟨r,c⟩

← d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞
←

1

⟨r,c⟩

← d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

←

1

⟨r,c⟩

← d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

←

1

⟨r,c⟩

← d

time →

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

←

1

⟨r,c⟩

← d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

←

1

⟨r,c⟩

← d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

←

1

⟨r,c⟩

← d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞

←

1

⟨r,c⟩

↓ d

time →

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

1 1 2 3

4

1 2 3 1 2 1
.

1

2

3 4 5

1 2 3

5 4

☞⟨r,c⟩

→ d

class MRP:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

Recall that retract was coded in class MRP in order to have direct access to the data representation.

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

Recall that retract was coded in class MRP in order to have direct access to the data representation.
But it really is too algorithmic for MRP, and more properly belongs in RunMaze.

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d # Save direction.
 while MRP._M[MRP._r][MRP._c] != MRP._neighbor_number:
 MRP.face_previous()
 MRP.step_backward()
 MRP._d = MRP._neighbor_direction # Restore direction.
 MRP.turn_counter_clockwise()

 ...

Recall that retract was coded in class MRP in order to have direct access to the data representation.
But it really is too algorithmic for MRP, and more properly belongs in RunMaze.
But then it wouldn’t have access to the data representation, which is protected in MRP.

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

Recall that retract was coded in class MRP in order to have direct access to the data representation.
But it really is too algorithmic for MRP, and more properly belongs in RunMaze.
But then it wouldn’t have access to the data representation, which is protected in MRP.

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

↑

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

↑

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”

1 2 3

5 4

☞

First call to retract.

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

1 2 3

5 4↑

☞

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

1 2 3

5 4

↑

☞

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

1 2 3

4

↑

☞

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

1 2 3

4

↑

☞
The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

1 2 3

4↑

☞ The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

1 2 3

☞

↑

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

1 2 3↑

☞
The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

1 2 3↑

☞ The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

1 2↑

☞
The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

1 2↑

☞
The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”
• “Align direction with the arrow”

☞

1 2↑

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

☞

1 2↑

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”
• “Align direction with the arrow”

The solution is for MRP to encapsulate the
needed code as an extension of its services:

• record_neighbor_and_direction
• is_at_neighbor
• restore_direction

class RunMaze:
 ...

 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists.
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 elif MRP.is_facing_unvisited():
 MRP.step_forward()
 MRP.turn_counter_clockwise()
 else: RunMaze.retract()

 ...

1 2↑

☞

class RunMaze:
 ...

 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists.
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 elif MRP.is_facing_unvisited():
 MRP.step_forward()
 MRP.turn_counter_clockwise()
 else: RunMaze.retract()

 ...

1 2↑

☞

class RunMaze:
 ...

 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists.
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 elif MRP.is_facing_unvisited():
 MRP.step_forward()
 MRP.turn_counter_clockwise()
 else: RunMaze.retract()

 ...

1 2↑

☞

class RunMaze:
 ...

 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists.
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 elif MRP.is_facing_unvisited():
 MRP.step_forward()
 MRP.turn_counter_clockwise()
 else: RunMaze.retract()

 ...

1 2↑

☞

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

↑

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”

☞

1 2↑

Second call to retract.

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

↑

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

☞

1 2↑

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

↑

☞

1 2↑

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

No change

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

↑
☞

1

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

↑

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

↑

☞
The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”

1 ↑

1

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

↑☞

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”
• “Align direction with the arrow”

No change

↑

class RunMaze:
 ...

 def retract(cls) -> None:
 """Unwind abortive exploration."""
 MRP.record_neighbor_and_direction()
 while not(MRP.is_at_neighbor()):
 MRP.face_previous()
 MRP.step_backward()
 MRP.restore_direction()
 MRP.turn_counter_clockwise()

 ...

↑

The MRP operations (colloquially) are:
• “Toss an arrow into a neighbor”
• “Detect being in that neighbor”
• “Align direction with the arrow”

↑1

☞

↑

class RunMaze:
 ...

 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists.
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 elif MRP.is_facing_unvisited():
 MRP.step_forward()
 MRP.turn_counter_clockwise()
 else: RunMaze.retract()

 ...

☞
↑1

↑

class RunMaze:
 ...

 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists.
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 elif MRP.is_facing_unvisited():
 MRP.step_forward()
 MRP.turn_counter_clockwise()
 else: RunMaze.retract()

 ...

☞

1

2↑

class RunMaze:
 ...

 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists.
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 elif MRP.is_facing_unvisited():
 MRP.step_forward()
 MRP.turn_counter_clockwise()
 else: RunMaze.retract()

 ...

☞

1

2↑

class RunMaze:
 ...

 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists.
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 elif MRP.is_facing_unvisited():
 MRP.step_forward()
 MRP.turn_counter_clockwise()
 else: RunMaze.retract()

 ...

☞

1

2↑ We’re on our way.

class RunMaze:
 ...

 def _solve(cls) -> None:
 """Compute a direct path through the maze, if one exists."""
 while not(MRP.is_at_cheese()) and not(MRP.is_about_to_repeat()):
 if MRP.is_facing_wall(): MRP.turn_clockwise()
 elif MRP.is_facing_unvisited():
 MRP.step_forward()
 MRP.turn_counter_clockwise()
 else: RunMaze.retract()

 ...

1

2

↑

☞

We’re on our way.

class MRP:
 ...

 # Recorded state.
 _neighbor_number: int # Visit number of cell into which the arrow was tossed.
 _neighbor_direction: int # Direction when the arrow was tossed.

 def record_neighbor_and_direction(cls) -> None:
 """Toss an arrow into the neighboring cell in the direction faced."""
 MRP._neighbor_number = MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
 MRP._neighbor_direction = MRP._d

 def is_at_neighbor(cls) -> bool:
 """Detect being in the same cell as the arrow."""
 return MRP._M[MRP._r][MRP._c] == MRP._neighbor_number

 def restore_direction(cls) -> None:
 """Align direction with the arrow."""
 MRP._d = MRP._neighbor_direction

 ...

State variables of MRP supporting the notion of an “arrow in a cell”.

class MRP:
 ...

 @classmethod
 def face_previous(cls) -> None:
 MRP._d = 0
 while MRP.is_facing_wall() or (MRP._M[MRP._r][MRP._c] - 1 !=
 MRP._M[MRP._r + 2 * MRP._deltaR[MRP._d]
][MRP._c + 2 * MRP._deltaC[MRP._d]]
): MRP._d += 1

 ...

Remaining Implementation: face_previous, just a Sequential Search.

Test 7:

1 #

2 # #

3 4 5 #
#

input output

1 #

2 # #

3 4 5 #
#

input output

Test 7:

1 #

2 # #

3 4 5 #
#

input output

Test 7:

But how can we know there isn’t
yet another lingering bug?

“Program testing can be used to show
the presence of bugs, but never to
show their absence!”
 ― Edsger W. Dijkstra

Self-checking: The setting.

It is often easier to automatically check the correctness of a problem solution than it is to find
the solution in the first place.

Self-checking: The setting.

It is often easier to automatically check the correctness of a problem solution than it is to find
the solution in the first place.

Self-checking: The setting.

It is often easier to automatically check the correctness of a problem solution than it is to find
the solution in the first place.

Running a Maze can be viewed as a search problem that either succeeds (by finding a path),
or that announces “unreachable”.

Checking the answer “unreachable” is no easier than the original problem because it involves
discovering a path that contradicts the unreachability claim.

Self-checking: The setting.

It is often easier to automatically check the correctness of a problem solution than it is to find
the solution in the first place.

Running a Maze can be viewed as a search problem that either succeeds (by finding a path),
or that announces “unreachable”.

Checking the answer “unreachable” is no easier than the original problem because it involves
discovering a path that contradicts the unreachability claim.

But if the program claims a path, it can be checked for correctness.

Self-checking: The checking code.

class MRP:
 ...
 @classmethod
 def _is_valid_path(cls, r: int, c: int) -> bool:
 """Return False iff rat reached cell ⟨r,c⟩ via an invalid path."""
 if MRP._M[r][c] == MRP._UNVISITED: return True # No claim if UNVISITED.
 else:
 while not((r == MRP._lo) and (c == MRP._lo)):
 # Go to any valid predecessor; return False if there is none.
 d = 0
 while (d < 4) and ((
 MRP._M[r + MRP._deltaR[d]][c + MRP._deltaC[d]]
 == MRP._WALL
) or (MRP._M[r + 2 * MRP._deltaR[d]][c + 2 * MRP._deltaC[d]]
 != (MRP._M[r][c] - 1)
)): d += 1
 if d == 4: return False
 r += 2 * MRP._deltaR[d]; c += 2 * MRP._deltaC[d]
 return True # Reached upper-left cell.
 ...

Self-checking: The checking code.

class MRP:
 ...

 @classmethod
 def is_solution(cls) -> bool:
 """Return False iff rat reached lower-right cell via an invalid path."""
 return MRP._is_valid_path(MRP._hi, MRP._hi)

 ...

Self-checking:. Make the assertion the last step in RunMaze.main.

Stop execution if path found is not a solution.
 assert MRP.is_solution(), "internal program error"

N.B. No warning from the assert “confirms” that the solution is
correct, provided, of course, that MRP.is_solution() does not itself
contain a bug. We should test that it does actually return False for
(some) bad paths, (say) by wantonly buggering paths in
MRP.print_maze().

N.B. The code in MRP.is_valid_path() is missing a check for the
absence of noise off the path.

Exhaustive Bounded Testing:

There are an infinite number of mazes, so exhaustive testing is not
possible.

For given N, there are a finite number of N-by-N mazes, so exhaustive
testing of up to size N is feasible, in principle. How many are there?

Answer: 2w , where w is the number of places where a wall can either
exist or not exist:

• Outer walls must exist.
• Each of N rows of cells has N-1 interior vertical-wall positions.
• Each of N columns of cells has N-1 inerior horizontal-wall positions.

So w = 2*N*(N-1).

Feasible up through N=4.

N 22·N·(N-1)

1 20 = 1

2 24 = 16

3 212 = 4,096

4 224 = 16,777,216

5 290

Exhaustive Bounded Testing: Maze generation.

class MRP:
 ...
 @classmethod
 def generate_input(cls, N: int, w: int) -> None:
 """Create an N-by-N maze with walls given by the bits of w."""
 # Maze.
 MRP._N = N; lo = MRP._lo = 1; hi = MRP._hi = 2 * N - 1
 MRP._M = [[0 for _ in range(2 * N + 1)] for _ in range(2 * N + 1)]
 # ==
 # Set boundary walls.
 for i in range(0, hi + 2):
 MRP._M[lo - 1][i] = MRP._M[hi + 1][i] = MRP._WALL
 MRP._M[i][lo - 1] = MRP._M[i][hi + 1] = MRP._WALL

 # Set 2*n*(n-1) interior walls to the corresponding bits of w.
 for r in range(lo, hi + 1):
 for c in range(lo, hi + 1):
 if (r % 2 == 0 and c % 2 == 1) or (r % 2 == 1 and c % 2 == 0):
 if w % 2 == 1: MRP._M[r][c] = MRP._WALL
 else: MRP._M[r][c] = MRP._NO_WALL
 w = w // 2

 # Rat.
 MRP._r = lo; MRP._c = lo; MRP._d = 0

 # Path.
 MRP._move = 1; MRP._M[lo][lo] = MRP._move

Exhaustive Bounded Testing: Iterating through mazes.

class RunMaze:
 ...

 @classmethod
 def exhaustive_test(cls) -> None:
 """Generate/solve all mazes of sizes up through 3, and validate paths found."""
 for N in range(1, 4):
 for w in range(0, 2 ** (2 * N *(N - 1))):
 MRP.generate_input(N, w)
 RunMaze._solve()
 assert MRP.is_solution(), "internal program error"
 if (w > 0) and (w % 100000 == 0): print(w) # Heartbeat.
 print("passed for size", N)
 print("passed")

 ...

Random Testing: Generation and testing with random input data is called “fuzz testing”.

class RunMaze:
 ...

 @classmethod
 def fuzz_test(cls, f: int, n: int) -> None:
 """Fuzz f mazes of size n."""
 for k in range(0, f): RunMaze.random_test(n)

 @classmethod
 def random_test(cls, n: int) -> None:
 """Create a random maze of size n."""
 # Let w be random walls for the n-by-n maze.
 w = random.randint(0, 2 ** (2 * n *(n - 1)))

 # Generate maze of size n with walls w, solve, and validate (or abort).
 print("Size:", n, "Walls:", w) # (Comment out for serious test.)
 MRP.generate_input(n, w) # Create n-by-n maze with walls w.
 RunMaze._solve() # Attempt a solution.
 assert MRP.is_solution() # Validate solution (or abort).
 MRP.print_maze() # (Comment out for serious test.)

 ...

Random Testing: Sampling of output (most are unreachable).

RunMaze.Fuzz(3, 4)

Size: 4 Walls: 7345699

1 # # #

2 3 # #

4 5 #

6 7 #

Size: 4 Walls: 5141212

1 2 3 # #

5 4 # #

6 7 8 #

9 #

Size: 4 Walls: 6884164

1 # #

Claim of unreachability not validated.

Solution validated.

Solution validated.

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3

	Top-level Code Structure
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

	Algorithm
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

	Data Representation, revisited
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

	Testing
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

	Algorithm (Revised)
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103

	Input
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

	Testing (Revisited)
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117

	Algorithm (Revised)
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185

	Testing (Revisited)
	Slide 186
	Slide 187
	Slide 188

	Self-Checking Code
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195

	Testing (Revisited)
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200

