Principled Programming

Introduction to Coding in Any Imperative Language

Tim Teitelbaum

Emeritus Professor
Department of Computer Science
Cornell University

Cellular Automata

Copyright©2023 by Tim Teitelbaum; Most recent revision, 12/16/2024

We illustrate two-dimensional arrays, and enumerations over them, using the examples of
Cellular Automata and the Game of Life.

Cellular Automata model the Universe as a rectangular grid of cells, each in a given state.
Time progresses in discrete steps. On each clock tick, each cell simultaneously decides what
state to enter based on its current state and the current states of its neighbors. Each cell
makes its decision independently, but all cells follow the same rules.

The Game of Life is a particular Cellular Automaton that models birth and death.

Systematic top-down development of an entire program is illustrated. Deeply-nested for-
statements in the code arise naturally as a consequence of stepwise refinement, but are
readily understood.

uo3oNpoJuj

Class CellularAutomaton models the notion of a Cellular Automaton, and its simulation.

/* A cellular automaton. */
class CellularAutomaton {

} /* CellularAutomaton */

= Aggregate the definitions of related variables and methods in a class.

9.1n30Nn43}S apo) |and|-doj

The simulation as a whole is implemented as method main.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular automaton. */
static void main() {

} /* main */

} /* CellularAutomaton */

== Program top-down, outside-in.
== Many short procedures are better than large blocks of code.

uiewl

A class method is defined within a class using
the keyword static.

The simulation as a whole is implemented as method main.

/* A cellular automatogn-.
class CellularAutgmaton {

/* Simu e a cellular automaton. */
static void main() {

} /* main */

} /* CellularAutomaton */

== Program top-down, outside-in.
== Many short procedures are better than large blocks of code.

uiewl

Adopt the pattern that first initializes, then computes.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular automaton. */
static void main() {

/* Initialize. */

/* Compute. */

} /* main */

} /* CellularAutomaton */

= Master stylized code patterns, and use them.

uiewl

Instantiate placeholders Initialize and Compute for the problem at hand.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular automaton. */

static void main() {
/* Create the initial Universe and display it. */
/* Simulate and display remaining generations. */
} /* main */

} /* CellularAutomaton */

= Master stylized code patterns, and use them.

uiewl

Refine the specifications.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular automaton. */
static void main() {
/* Create the initial Universe and display it. */
Initialize();
Display();
/* Simulate and display remaining generations. */
} /* main */

} /* CellularAutomaton */

uiewl

Refine the specifications.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular automaton. */
static void main() {
/* Create the initial Universe and display it. */
Initialize();
Display();
/* Simulate and display remaining generations. */
for (generation=1; generation<=LAST_GEN; generation++) {
NextGeneration();
Display();
}

} /* main */

} /* CellularAutomaton */

uiewl

Refine the specifications.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular tomaton.
static void main() {

Initialize, Display, and NextGeneration are other
class methods to be defined.

*/

/* Create the initj{al Universe and display it. */

Initialize();
Display();

/* Simulate and display remaining generations. */
for (generation=1; generation<=LAST_GEN; generation++) {

NextGeneration();
Display();
}

} /* main */

} /* CellularAutomaton */

uiewl

Create stubs for the methods that have been introduced, which you can do mindlessly.

/* A cellular automaton. */
class CellularAutomaton {

/* Create the initial Universe. */
static void Initialize() { } /* Initialize */

/* Display the Universe. */
static void Display() { } /* Display */

/* Update Universe to be the next generation. */
static void NextGeneration() { } /* NextGeneration */

} /* CellularAutomaton */

== Defer challenging code for later; do the easy parts first.

9.1n30Nn43}S apo) |and|-doj

Our simulation of a cellular automaton models a finite M-by-N Universe of cells.

The states of each generation of next cells is determined from the states of O
the old cells, where generations are numbered from 0 through LAST_GEN. The 'n.,p
state of each cell is modeled as an int. Q)
A
Specify and declare the data representation. %
—
/* A cellular automaton. */ 8
class CellularAutomaton { D
=3
static final int M = 5; // Height of Universe. cr
static final int N = 20; // Width of Universe. ,n.,p
static int old[][] = new int[M][N]; // old Universe. 5‘
static int next[][] = new int[M][N]; // next Universe. =
static final int LAST GEN = 40; // Last generation.
static int generation; // Generation number.

} /* CellularAutomaton */

= Aggregate the definitions of related variables and methods in a class.

Our simulation of a cellular automaton models a finite M-by-N Universe of cells.

The states of each generation of next cells is determined from the states of\

the old cells, where generations are numbered from 0 through LAST_GEN. The
state of each cell is modeled as an int.

Specify and declare the data representation.

/* A cellular automaton. */
class CellularAutomaton {

static
static
static
static
static
static

final int M = 5; //
final int N = 20; //
int old[][] = new int[M][N]; //
int next[][] = new int[M][N]; //
final int LAST GEN = 40; //
int generation; //

} /* CellularAutomaton */

N.B. The term “state” is overloaded.
Each cell of the Universe has a “state”.

Height of Universe.
Width of Universe.
old Universe.

next Universe.

Last generation.
Generation number.

= Introduce program variables whose values describe “state”.

uoijejuasaiday eyeq

Our simulation of a cellular automaton models a finite M-by-N Universe of cells.
The states of each generation of next cells is determined from the states of
the old cells, where generations are numbered from 0 through LAST_GEN. The

state of each cell is modeled as an int.

Specify and declare the data representation.

/* A cellular automaton.

class CellularAutomaton

static final int M
static final int N
static int old[][]
static int next[][]

*/
{
S5

20;
new int[M][N];

new int[M][N];

static final int LAST GEN = 40;
static int generation;

} /* CellularAutomaton */

N.B. The term “state” is overloaded. Each
cell of the Universe has a “state”, and the
simulation as a whole has a “state”.

// Height of Universe.
// Width of Universe.
// old Universe.
// next Universe.
// Last generatign.

// Generation mber.

/
= Introduce program variables whose values describe “state”.

uoijejuasaiday eyeq

Names of variables intended to be constant throughout program execution (final) are, by convention,

all capital letters.

Declare and specify the data representation.

/* A cellular automaton. */
class CellularAutomaton {

static
static
static
static
static
static

final int M = 5;
final int N = 20;
int old[][] = new int[M][N];

int next[][] = new int[M][N];
final int LAST GEN = 40;
int generation;

} /* CellularAutomaton */

//
//
//
//
//
//

Height of Universe.

Width of Universe.
old Universe.

next Universe.
Last generation.
Generation number.

= Minimize use of literal numerals in code; define and use symbolic constants.

uoijejuasaiday eyeq

Declare and specify the data representation.

/* A cellular automaton. */
class CellularAutomaton {

static final int M

= 5; //
static final int N = 20; //
static int old[][] = new int[M][N]; //
static int next[][] = new int[M][N]; //
static final int LAST GEN = 40; //
static int generation; //

} /* CellularAutomaton */

Height of Universe.

Width of Universe.
old Universe.

next Universe.
Last generation.
Generation number.

Variables declared at the top-level of a class with the keyword static are called
class variables, and are shared among all of the methods of the class.

uoijejuasaiday eyeq

We now turn to the implementation of the methods

/* A cellular automaton. */
class CellularAutomaton {

} /* CellularAutomaton */

uoijejuasaiday eyeq

The declarations and their
initializations already did so.

Anything that needs to be at first can done in initialize. Fop1iow, nothing.

/* Create the initial Universe. */
static void Initialize() {

} /* Initialize */

azijeniu|

Display the current generation of the Universe.

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {

} /* Display */

Ae|dsiq

Display the current generation of the Universe.

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {
System.out.println("Generation:

+ generation);

} /* Display */

Ae|dsiq

Use a standard row-major-order traversal, and output newlines at row ends.

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {
System.out.println("Generation:
for (int r=0; r<M; r++) {
for (int c=0; c<N; c++) System.out.print(old[r][c] + " ");
System.out.println();

}
} /* Display */

+ generation);

= Master stylized code patterns, and use them.

Ae|dsiq

Use a standard row-major-order traversal, and output newlines at row ends.

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {
System.out.println("Generation:
for (int r=0; r<M; r++) {
for (int c=0; c<N; c++) System.out.print(old[r][c] + " ");
System.out.println();

}
} /* Display */

+ generation);

Means: Don’t go to the beginning
of the next line after printing.

= Master stylized code patterns, and use them.

Ae|dsiq

Use a standard row-major-order traversal, and output newlines at row ends.

/* Display Universe old[][] as an M-by-N grid. */

static void Display() {
System.out.println("Generation:
for (int r=0; r<M; r++) {

+ generation);

for (int~<=0; c<N; c++) System.out.print(old[r][c] + " ");
System.out.println();
}

} /* Display */

Variables r and c are local variables of method Display.

Ae|dsiq

Use a standard row-major-order traversal, and output newlines at row ends.

/* Display Universe old[][] as an M-by-N grid. */

static void Display() {
System.out.println("Generation:
for (int r=0; r<M; r++) {

+ generation);

for (int c=0; c<N; c++) System.out.print(old[r][c] + " ");

System.out.println();

}
} /* Display */

Variables generation, M, N, and old are class variables.

Ae|dsiq

The existing stub for NextGeneration suffices for an initial test.

/* Update Universe to be the next generation. */
static void NextGeneration() { } /* NextGeneration */

== \Write degenerate program stubs that allow partial programs to execute.

uoijelauanIxanN

Test early and often.

To try it out, invoke CellularAutomaton.main().

= Test programs incrementally.
== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

sunsay

Output:

Generation: ©
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Generation: 1
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Generation: 2
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Etc.

What has been validated?
* Generation counting
* Formatting of Universe

= Validate output thoroughly.

sunsay

Instance of the standard compute-use pattern.

/* Update Universe to be the next generation. */

static void NextGeneration() {
/* Determine the states of next[][] as F(old[][] states). */
/* Swap old[][] and next[][] Universes. */
} /* NextGeneration */

= Master stylized code patterns, and use them.

uoijelauanIxanN

Standard row-major-order traversal for determining new states of each cell of next.

/* Update Universe to be the next generation. */
static void NextGeneration() {
/* Determine the states of next[][] as F(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++)
old next

F

/* Swap old[][] and next[][] Universes. */
} /* NextGeneration */

uoijelauanIxanN

Standard row-major-order traversal for determining new states of each cell of next.

/* Update Universe to be the next generation. */
static void NextGeneration() {

/* Determine the states of next[][] as F(old[][] states). */

for (int r=0; r<M; r++)
for (int c=0; c<N; c++)
/* next[r][c] = F(old[r][c] and its neighbors); */
/* Swap old[][] and next[][] Universes. */
} /* NextGeneration */

uoijelauanIxanN

Standard code for swap

/* Update Universe to be the next generation. */
static void NextGeneration() {

/* Determine the states of next[][] as F(old[][] states). */

for (int r=0; r<M; r++)
for (int c=0; c<N; c++)

/* next[r][c] = F(old[r][c] and its neighbors); */

/* Swap old[][] and next[][] Universes. */
int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */

= Master stylized code patterns, and use them.

uoijelauanIxanN

Notice that swap is a constant-time operation, independent of the size of the Universes.

old

old

next

next

TPty

!

!

1

uoijelauanIxanN

Notice that swap is a constant-time operation, independent of the size of the Universes.*

0o 1 2 o 1 2
2| o LT 1T 1T 2| e——[T T T
o 1 2 0o 1 2
1 e (T T T | e4——[1T 1T T
0o 1 2 0o 1 2
od ¢| 0| e [T 1T 1T next| ¢ (O e4+——[T T T
] |
o 1 2 o 1 2
2| o T 1T 1 2| e—— [T T T
0o 1 2 o 1 2
1 o T 11 |eq+——[TT T
o 1 2 o 1 2
old| ¢ | 0| e YT T 1T next| ¢ [Of e+—[T T T
t »

*C/C++ Constant-time swap is not available for C-style arrays in C/C++. Rather, this can be read as describing one
of the alternatives to C-style arrays that are available in C++.

uoijelauanIxanN

Completed next_generation for a generic cellular automaton.

/* Update Universe to be the next generation. */
static void NextGeneration() {

/* Determine the states of next[][] as F(old[][] states). */

for (int r=0; r<M; r++)
for (int c=0; c<N; c++)

/* next[r][c] = F(old[r][c] and its neighbors); */

/* Swap old[][] and next[][] Universes. */
int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */

uoijelauanIxanN

For easy incremental testing, let each cell increment its state on each generation.

/* Update Universe to be the next generation. */
static void NextGeneration() {
/* Determine the states of next[][] as F(old[][] s
for (int r=0; r<M; r++)
for (int c=0; c<N; c++)
next[r][c] = old[r][c] + 1;
/* Swap old[][] and next[][] Universes. */
int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */

= Test programs incrementally.

sunsa]

Test early and often.

To try it out again, invoke CellularAutomaton.main().

= Test programs incrementally.
== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

sunsay

Output:

Generation: ©
0000000000000V
0000000000000V

00000000000000000000
00000000000000000000
00000000000000000000
Generation: 1
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
Generation: 2
22222222222222222222
22222222222222222222
22222222222222222222
22222222222222222222
22222222222222222222
Etc.

What has been validated?

* Creation of next Universe from old Universe
e Swapping of old and next

= Validate output thoroughly.

sunsay

Game of Life. A Cellular Automaton in which each cell is either dead or alive.

In each generation:

Each live cell with 2 or 3 live neighbors lives on to the next generation (life)
otherwise it dies (death).

Each dead cell with 3 live neighbors comes alive in the next generation (birth)
otherwise it remains dead.

3417 J0 swren

Each cell is either dead or alive, so specialize the Universes as Boolean 2-D arrays.

/* A cellular automaton. */
class CellularAutomaton {

static final int M = 6; // Height of Universe.
static final int N = 20; // Width of Universe.
static boolean old[][] = new boolean [M][N]; // cell true iff alive.
static boolean next[][] = new boolean [M][N]; // cell true iff alive.
static final int LAST _GEN = 50; // Last generation.
static int generation; // Generation number.

} /* CellularAutomaton */

== Choose representations that by design don’t have nonsensical configurations.

3417 J0 swren

o n

Specialize the output by compactly rendering dead as and alive as “X"

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {
System.out.println("Generation: " + generation);
for (int r=0; r<M; r++) {
for (int c=0; c<N; c++)
if (old[r][c]) System.out.print("X");
else System.out.print(" ");
System.out.println();

}
} /* Display */

3417 J0 swren

Implement Game of Life rules.

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++)

3417 J0 swren

/* Set next[r][c] = according to Game of Life rules. */

/* Swap old[][] and next[][] Universes. */
int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */

Instance of the standard compute-use pattern.

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) {

/* Compute. */
/* Use. */

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */

= Master stylized code patterns, and use them.

3417 J0 swren

Instantiate placeholders Compute and Use for the problem at hand.

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) {

/* Let liveNeighbors be number alive around old[r][c]. */
/* Set next[r][c] according to the birth and death rules. */

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */

= Master stylized code patterns, and use them.

3417 J0 swren

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) {
/* Let liveNeighbors be number alive around old[r][c]. */

/* Set next[r][c] according to the birth and death rules. */
if (old[r][c]) /* Currently live. */
if (liveNeighbors==2 || liveNeighbors==3)
next[r][c] = true;
else next[r][c] = false;
else /* Currently dead. */
if (liveNeighbors==3) next[r][c] = true;
else next[r][c] = false;

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; old = next; next = temp;
} /* NextGeneration */

Use is a structured four-way case analysis.

3417 J0 swren

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) {

/* Let liveNeighbors be number alive around old[r][c]. */
int liveNeighbors = 0;
for (int dr=-1; dr<=+1; dr++)
for (int dc=-1; dc<=+1; dc++)
if (! ((dr==0)&&(dc==0)) && old[r+dr][c+dc])
liveNeighbors++;

/* Set next[r][c] according to the birth and death rules. */

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; old = next; next = temp;
} /* NextGeneration */

Compute is a 3x3 row-major-order traversal, incrementing 1iveNeighbors as appropriate.

3417 J0 swren

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) {

/* Let liveNeighbors be number alive around old[r][c]. */
int liveNeighbors = 0;
for (int dr=-1; dr<=+1; dr++)
for (int dc=-1; dc<=+1; dc++)
if (!((dr==0)&&(dc==0)) && old[r+dr][c+dc])
liveNeighbors++;

/* Set next[r][c] according to the birth and death rules. */

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; old = next; next = temp;
} /* NextGeneration */

spunoq jo 1no 3ulo3 sidiasgns ayl Juanald o)

3417 J0 swren

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) { pd
/* Let liveNeighbors be number alive around old[r][c]. */
int liveNeighbors = 0;
for (int dr=-1; dr<=+1; dr++)
for (int dc=-1; dc<=+1; dc++)
if (!'((dr==0)&&(dc==0)) && old[(r+dr)%M][(c+dc)%N])
liveNeighbors++;
/* Set next[r][c] according to the birth and death rules. */

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; old = next; next = temp;
} /* NextGeneration */

'SNJ0] B UO 31e|nWis ‘spunod jo 1no Suiog siduasgns ayi 3uanald o)

3417 J0 swren

Create some life, which will glide diagonally down and to the right.

/* Establish original configuration in old. */

static void Initialize() {
/* Glider */
old[0][1] = old[1][2]
} /* Initialize */

old[2][3]

old[2][1]

old[2][2] = true;
old o 2

0

1 T

2| T T

3417 J0 swren

To let it rip, invoke CellularAutomaton.main() yet again.

sunsay

And presto ...

Generation:
X

%)

X

XXX

3417 J0 swren

And presto ...

Generation:

1

X_X

XX

X

3417 J0 swren

And presto ...

Generation:

2

3417 J0 swren

And presto ...

Generation:

3

X

XX

XX

3417 J0 swren

And presto ...

/

Back to the same configuration as Generation O,
but shifted down and one cell to the right.

Generation: 4

X
X
XXX

3417 J0 swren

And presto ...

Generation:

sunsay

And presto ...

Generation:

6

sunsay

And presto ...

Generation:

7

XX

XX

sunsay

And presto ...

Generation:

8\

Back to the same configuration as Generation 1,
but shifted down and right one cell.

XXX

sunsay

And presto ...

Generation:

X

Whoa! What’s going on? Oh, | forgot, we are on a torus.

X X

XX

sunsay

And presto ...

Generation:

XX

10

X

_ XX

Generation:

11

sunsay

And presto ...

Generation:

XX

11

XX

sunsay

And presto ...

Generation:

XXX

12

sunsay

And presto ...

Generation:

XX

13

X

X X

sunsay

And presto ...

Generation:

X_X

14

XX

sunsay

And presto ...

Generation:

XX

15

XX

sunsay

And presto ...

Generation:

X

16

XXX

sunsay

And presto ...

Generation:

XX

17

XX

X

sunsay

And presto ...

Generation:

X

18

XX

XX

sunsay

And presto ...

Generation:

X

19

XX

XX

sunsay

And presto ...

Generation:

X

2@\

X

XXX

Back to the same configuration as Generation O,
but shifted right several cells. The glider is coiling
around the donut!

sunsay

What are the boundary conditions for this problem, and did we forget them?

For example, what if the height of the Universe were only 4? To try it out, change N, and
invoke CellularAutomaton.main().

Generation: ©
X

X
XXX

suonipuo) Aiepunog

== Boundary conditions. Dead last, but don’t forget them.

What are the boundary conditions for this problem, and did we forget them?

For example, what if the height of the Universe were only 4? To try it out, change N, and
invoke CellularAutomaton.main().

Generation: ©

X
X
XXX
Generation: 1 There isn’t enough “elbowroom” around the glider, and it is
interfering with its own propagation. By generation 6, all life is gone!
X_X
XX Should your program be defensive and prevent this, or is this just
X X how life goes?

suonipuo) Aiepunog

== Boundary conditions. Dead last, but don’t forget them.

Summary:

The notion of a class has been introduced as a means for aggregating variables and
methods.

Many standard precepts, patterns, and recommended coding techniqgues have been
illustrated.

And the Game of Life itself is fascinating.

Arewwng

	Title
	Slide 1

	Introduction
	Slide 2

	Top-level Code Structure
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

	Data Representation
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

	Method definitions
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

	Testing
	Slide 26
	Slide 27

	NextGeneration
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

	Testing
	Slide 35
	Slide 36
	Slide 37

	Game of Life
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

	Testing
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

