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We illustrate two-dimensional arrays, and enumerations over them, using the examples of
Cellular Automata and the Game of Life.

Cellular Automata model the Universe as a rectangular grid of cells, each in a given state.
Time progresses in discrete steps. On each clock tick, each cell simultaneously decides what
state to enter based on its current state and the current states of its neighbors. Each cell
makes its decision independently, but all cells follow the same rules.

The Game of Life is a particular Cellular Automaton that models birth and death.

Systematic top-down development of an entire program is illustrated. Deeply-nested for-
statements in the code arise naturally as a consequence of stepwise refinement, but are
readily understood.
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Class CellularAutomaton models the notion of a Cellular Automaton, and its simulation.

/* A cellular automaton. */
class CellularAutomaton {

} /* CellularAutomaton */

= Aggregate the definitions of related variables and methods in a class.
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The simulation as a whole is implemented as method main.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular automaton. */
static void main() {

} /* main */

} /* CellularAutomaton */

== Program top-down, outside-in.
== Many short procedures are better than large blocks of code.
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A class method is defined within a class using
the keyword static.

The simulation as a whole is implemented as method main.

/* A cellular automatogn-.
class CellularAutgmaton {

/* Simu e a cellular automaton. */
static void main() {

} /* main */

} /* CellularAutomaton */

== Program top-down, outside-in.
== Many short procedures are better than large blocks of code.
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Adopt the pattern that first initializes, then computes.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular automaton. */
static void main() {

/* Initialize. */

/* Compute. */

} /* main */

} /* CellularAutomaton */

= Master stylized code patterns, and use them.
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Instantiate placeholders Initialize and Compute for the problem at hand.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular automaton. */

static void main() {
/* Create the initial Universe and display it. */
/* Simulate and display remaining generations. */
} /* main */

} /* CellularAutomaton */

= Master stylized code patterns, and use them.
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Refine the specifications.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular automaton. */
static void main() {
/* Create the initial Universe and display it. */
Initialize();
Display();
/* Simulate and display remaining generations. */
} /* main */

} /* CellularAutomaton */
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Refine the specifications.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular automaton. */
static void main() {
/* Create the initial Universe and display it. */
Initialize();
Display();
/* Simulate and display remaining generations. */
for (generation=1; generation<=LAST_GEN; generation++) {
NextGeneration();
Display();
}

} /* main */

} /* CellularAutomaton */
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Refine the specifications.

/* A cellular automaton. */
class CellularAutomaton {

/* Simulate a cellular tomaton.
static void main() {

Initialize, Display, and NextGeneration are other
class methods to be defined.

*/

/* Create the initj{al Universe and display it. */

Initialize();
Display();

/* Simulate and display remaining generations. */
for (generation=1; generation<=LAST_GEN; generation++) {

NextGeneration();
Display();
}

} /* main */

} /* CellularAutomaton */
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Create stubs for the methods that have been introduced, which you can do mindlessly.

/* A cellular automaton. */
class CellularAutomaton {

/* Create the initial Universe. */
static void Initialize() { } /* Initialize */

/* Display the Universe. */
static void Display() { } /* Display */

/* Update Universe to be the next generation. */
static void NextGeneration() { } /* NextGeneration */

} /* CellularAutomaton */

== Defer challenging code for later; do the easy parts first.
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Our simulation of a cellular automaton models a finite M-by-N Universe of cells.

The states of each generation of next cells is determined from the states of O
the old cells, where generations are numbered from 0 through LAST_GEN. The 'n.,p
state of each cell is modeled as an int. Q)
A
Specify and declare the data representation. %
—
/* A cellular automaton. */ 8
class CellularAutomaton { D
=3
static final int M = 5; // Height of Universe. cr
static final int N = 20; // Width of Universe. ,n.,p
static int old[][] = new int[M][N]; // old Universe. 5‘
static int next[][] = new int[M][N]; // next Universe. =
static final int LAST GEN = 40; // Last generation.
static int generation; // Generation number.

} /* CellularAutomaton */

= Aggregate the definitions of related variables and methods in a class.




Our simulation of a cellular automaton models a finite M-by-N Universe of cells.

The states of each generation of next cells is determined from the states of\

the old cells, where generations are numbered from 0 through LAST_GEN. The
state of each cell is modeled as an int.

Specify and declare the data representation.

/* A cellular automaton. */
class CellularAutomaton {

static
static
static
static
static
static

final int M = 5; //
final int N = 20; //
int old[][] = new int[M][N]; //
int next[][] = new int[M][N]; //
final int LAST GEN = 40; //
int generation; //

} /* CellularAutomaton */

N.B. The term “state” is overloaded.
Each cell of the Universe has a “state”.

Height of Universe.
Width of Universe.
old Universe.

next Universe.

Last generation.
Generation number.

= Introduce program variables whose values describe “state”.
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Our simulation of a cellular automaton models a finite M-by-N Universe of cells.
The states of each generation of next cells is determined from the states of
the old cells, where generations are numbered from 0 through LAST_GEN. The

state of each cell is modeled as an int.

Specify and declare the data representation.

/* A cellular automaton.

class CellularAutomaton

static final int M
static final int N
static int old[][]
static int next[][]

*/
{
S5

20;
new int[M][N];

new int[M][N];

static final int LAST GEN = 40;
static int generation;

} /* CellularAutomaton */

N.B. The term “state” is overloaded. Each
cell of the Universe has a “state”, and the
simulation as a whole has a “state”.

// Height of Universe.
// Width of Universe.
// old Universe.
// next Universe.
// Last generatign.

// Generation mber.

/
= Introduce program variables whose values describe “state”.
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Names of variables intended to be constant throughout program execution (final) are, by convention,

all capital letters.

Declare and specify the data representation.

/* A cellular automaton. */
class CellularAutomaton {

static
static
static
static
static
static

final int M = 5;
final int N = 20;
int old[][] = new int[M][N];

int next[][] = new int[M][N];
final int LAST GEN = 40;
int generation;

} /* CellularAutomaton */

//
//
//
//
//
//

Height of Universe.

Width of Universe.
old Universe.

next Universe.
Last generation.
Generation number.

= Minimize use of literal numerals in code; define and use symbolic constants.
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Declare and specify the data representation.

/* A cellular automaton. */
class CellularAutomaton {

static final int M

= 5; //
static final int N = 20; //
static int old[][] = new int[M][N]; //
static int next[][] = new int[M][N]; //
static final int LAST GEN = 40; //
static int generation; //

} /* CellularAutomaton */

Height of Universe.

Width of Universe.
old Universe.

next Universe.
Last generation.
Generation number.

Variables declared at the top-level of a class with the keyword static are called
class variables, and are shared among all of the methods of the class.
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We now turn to the implementation of the methods

/* A cellular automaton. */
class CellularAutomaton {

} /* CellularAutomaton */
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The declarations and their
initializations already did so.

Anything that needs to be at first can done in initialize. Fop1iow, nothing.

/* Create the initial Universe. */
static void Initialize() {

} /* Initialize */
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Display the current generation of the Universe.

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {

} /* Display */

Ae|dsiq



Display the current generation of the Universe.

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {
System.out.println( "Generation:

+ generation );

} /* Display */
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Use a standard row-major-order traversal, and output newlines at row ends.

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {
System.out.println( "Generation:
for (int r=0; r<M; r++) {
for (int c=0; c<N; c++) System.out.print( old[r][c] + " " );
System.out.println();

}
} /* Display */

+ generation );

= Master stylized code patterns, and use them.
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Use a standard row-major-order traversal, and output newlines at row ends.

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {
System.out.println( "Generation:
for (int r=0; r<M; r++) {
for (int c=0; c<N; c++) System.out.print( old[r][c] + " " );
System.out.println();

}
} /* Display */

+ generation );

Means: Don’t go to the beginning
of the next line after printing.

= Master stylized code patterns, and use them.
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Use a standard row-major-order traversal, and output newlines at row ends.

/* Display Universe old[][] as an M-by-N grid. */

static void Display() {
System.out.println( "Generation:
for (int r=0; r<M; r++) {

+ generation );

for (int~<=0; c<N; c++) System.out.print( old[r][c] + " " );
System.out.println();
}

} /* Display */

Variables r and c are local variables of method Display.
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Use a standard row-major-order traversal, and output newlines at row ends.

/* Display Universe old[][] as an M-by-N grid. */

static void Display() {
System.out.println( "Generation:
for (int r=0; r<M; r++) {

+ generation );

for (int c=0; c<N; c++) System.out.print( old[r][c] + " " );

System.out.println();

}
} /* Display */

Variables generation, M, N, and old are class variables.
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The existing stub for NextGeneration suffices for an initial test.

/* Update Universe to be the next generation. */
static void NextGeneration() { } /* NextGeneration */

==  \Write degenerate program stubs that allow partial programs to execute.
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Test early and often.

To try it out, invoke CellularAutomaton.main().

= Test programs incrementally.
== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
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Output:

Generation: ©
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Generation: 1
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Generation: 2
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Etc.

What has been validated?
* Generation counting
* Formatting of Universe

= Validate output thoroughly.
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Instance of the standard compute-use pattern.

/* Update Universe to be the next generation. */

static void NextGeneration() {
/* Determine the states of next[][] as F(old[][] states). */
/* Swap old[][] and next[][] Universes. */
} /* NextGeneration */

= Master stylized code patterns, and use them.
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Standard row-major-order traversal for determining new states of each cell of next.

/* Update Universe to be the next generation. */
static void NextGeneration() {
/* Determine the states of next[][] as F(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++)
old next

F

/* Swap old[][] and next[][] Universes. */
} /* NextGeneration */
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Standard row-major-order traversal for determining new states of each cell of next.

/* Update Universe to be the next generation. */
static void NextGeneration() {

/* Determine the states of next[][] as F(old[][] states). */

for (int r=0; r<M; r++)
for (int c=0; c<N; c++)
/* next[r][c] = F( old[r][c] and its neighbors ); */
/* Swap old[][] and next[][] Universes. */
} /* NextGeneration */
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Standard code for swap

/* Update Universe to be the next generation. */
static void NextGeneration() {

/* Determine the states of next[][] as F(old[][] states). */

for (int r=0; r<M; r++)
for (int c=0; c<N; c++)

/* next[r][c] = F( old[r][c] and its neighbors ); */

/* Swap old[][] and next[][] Universes. */
int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */

= Master stylized code patterns, and use them.
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Notice that swap is a constant-time operation, independent of the size of the Universes.

old

old

next

next

TPty

!

!

1
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Notice that swap is a constant-time operation, independent of the size of the Universes.*

0o 1 2 o 1 2
2| o LT 1T 1T 2| e——[ T T T
o 1 2 0o 1 2
1 e (T T T | e4——[ 1T 1T T
0o 1 2 0o 1 2
od ¢| 0| e [T 1T 1T next| ¢ (O e4+——[ T T T
] |
o 1 2 o 1 2
2| o T 1T 1 2| e—— [T T T
0o 1 2 o 1 2
1 o T 11 |eq+——[TT T
o 1 2 o 1 2
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*C/C++ Constant-time swap is not available for C-style arrays in C/C++. Rather, this can be read as describing one
of the alternatives to C-style arrays that are available in C++.
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Completed next_generation for a generic cellular automaton.

/* Update Universe to be the next generation. */
static void NextGeneration() {

/* Determine the states of next[][] as F(old[][] states). */

for (int r=0; r<M; r++)
for (int c=0; c<N; c++)

/* next[r][c] = F( old[r][c] and its neighbors ); */

/* Swap old[][] and next[][] Universes. */
int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */
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For easy incremental testing, let each cell increment its state on each generation.

/* Update Universe to be the next generation. */
static void NextGeneration() {
/* Determine the states of next[][] as F(old[][] s
for (int r=0; r<M; r++)
for (int c=0; c<N; c++)
next[r][c] = old[r][c] + 1;
/* Swap old[][] and next[][] Universes. */
int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */

= Test programs incrementally.
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Test early and often.

To try it out again, invoke CellularAutomaton.main().

= Test programs incrementally.
== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
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Output:

Generation: ©
0000000000000V
0000000000000V

00000000000000000000
00000000000000000000
00000000000000000000
Generation: 1
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
Generation: 2
22222222222222222222
22222222222222222222
22222222222222222222
22222222222222222222
22222222222222222222
Etc.

What has been validated?

* Creation of next Universe from old Universe
e Swapping of old and next

= Validate output thoroughly.
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Game of Life. A Cellular Automaton in which each cell is either dead or alive.

In each generation:

Each live cell with 2 or 3 live neighbors lives on to the next generation (life)
otherwise it dies (death).

Each dead cell with 3 live neighbors comes alive in the next generation (birth)
otherwise it remains dead.
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Each cell is either dead or alive, so specialize the Universes as Boolean 2-D arrays.

/* A cellular automaton. */
class CellularAutomaton {

static final int M = 6; // Height of Universe.
static final int N = 20; // Width of Universe.
static boolean old[][] = new boolean [M][N]; // cell true iff alive.
static boolean next[][] = new boolean [M][N]; // cell true iff alive.
static final int LAST _GEN = 50; // Last generation.
static int generation; // Generation number.

} /* CellularAutomaton */

== Choose representations that by design don’t have nonsensical configurations.
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Specialize the output by compactly rendering dead as and alive as “X"

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {
System.out.println( "Generation: " + generation );
for (int r=0; r<M; r++) {
for (int c=0; c<N; c++)
if ( old[r][c] ) System.out.print( "X" );
else System.out.print( " " );
System.out.println();

}
} /* Display */

3417 J0 swren



Implement Game of Life rules.

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++)

3417 J0 swren

/* Set next[r][c] = according to Game of Life rules. */

/* Swap old[][] and next[][] Universes. */
int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */



Instance of the standard compute-use pattern.

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) {

/* Compute. */
/* Use. */

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */

= Master stylized code patterns, and use them.
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Instantiate placeholders Compute and Use for the problem at hand.

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) {

/* Let liveNeighbors be number alive around old[r][c]. */
/* Set next[r][c] according to the birth and death rules. */

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; o0ld = next; next = temp;
} /* NextGeneration */

= Master stylized code patterns, and use them.
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/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) {
/* Let liveNeighbors be number alive around old[r][c]. */

/* Set next[r][c] according to the birth and death rules. */
if ( old[r][c] ) /* Currently live. */
if ( liveNeighbors==2 || liveNeighbors==3 )
next[r][c] = true;
else next[r][c] = false;
else /* Currently dead. */
if ( liveNeighbors==3 ) next[r][c] = true;
else next[r][c] = false;

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; old = next; next = temp;
} /* NextGeneration */

Use is a structured four-way case analysis.
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/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) {

/* Let liveNeighbors be number alive around old[r][c]. */
int liveNeighbors = 0;
for (int dr=-1; dr<=+1; dr++)
for (int dc=-1; dc<=+1; dc++)
if ( ! ((dr==0)&&(dc==0)) && old[r+dr][c+dc] )
liveNeighbors++;

/* Set next[r][c] according to the birth and death rules. */

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; old = next; next = temp;
} /* NextGeneration */

Compute is a 3x3 row-major-order traversal, incrementing 1iveNeighbors as appropriate.
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/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) {

/* Let liveNeighbors be number alive around old[r][c]. */
int liveNeighbors = 0;
for (int dr=-1; dr<=+1; dr++)
for (int dc=-1; dc<=+1; dc++)
if ( !((dr==0)&&(dc==0)) && old[r+dr][c+dc] )
liveNeighbors++;

/* Set next[r][c] according to the birth and death rules. */

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; old = next; next = temp;
} /* NextGeneration */
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/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
/* Determine the states of next[][] as Life(old[][] states). */
for (int r=0; r<M; r++)
for (int c=0; c<N; c++) { pd
/* Let liveNeighbors be number alive around old[r][c]. */
int liveNeighbors = 0;
for (int dr=-1; dr<=+1; dr++)
for (int dc=-1; dc<=+1; dc++)
if ( !'((dr==0)&&(dc==0)) && old[(r+dr)%M][ (c+dc)%N] )
liveNeighbors++;
/* Set next[r][c] according to the birth and death rules. */

}
/* Swap old[][] and next[][] Universes. */

int temp[][] = old; old = next; next = temp;
} /* NextGeneration */

'SNJ0] B UO 31e|nWis ‘spunod jo 1no Suiog siduasgns ayi 3uanald o)

3417 J0 swren



Create some life, which will glide diagonally down and to the right.

/* Establish original configuration in old. */

static void Initialize() {
/* Glider */
old[0][1] = old[1][2]
} /* Initialize */

old[2][3]

old[2][1]

old[2][2] = true;
old o 2

0

1 T

2| T T

3417 J0 swren



To let it rip, invoke CellularAutomaton.main() yet again.
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And presto ...

Generation:
X

%)

X

XXX
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And presto ...

Generation:

1

X_X

XX

X
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And presto ...

Generation:

2

3417 J0 swren



And presto ...

Generation:

3

X

XX

XX
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And presto ...

/

Back to the same configuration as Generation O,
but shifted down and one cell to the right.

Generation: 4

X
X
XXX
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And presto ...

Generation:
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And presto ...

Generation:

6
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And presto ...

Generation:

7

XX

XX
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And presto ...

Generation:

8\

Back to the same configuration as Generation 1,
but shifted down and right one cell.

XXX
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And presto ...

Generation:

X

Whoa! What’s going on? Oh, | forgot, we are on a torus.

X X

XX
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And presto ...

Generation:

XX

10

X

_ XX

Generation:

11
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And presto ...

Generation:

XX

11

XX

sunsay



And presto ...

Generation:

XXX

12
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And presto ...

Generation:

XX

13

X

X X
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And presto ...

Generation:

X_X

14

XX
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And presto ...

Generation:

XX

15

XX
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And presto ...

Generation:

X

16

XXX
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And presto ...

Generation:

XX

17

XX

X
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And presto ...

Generation:

X

18

XX

XX
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And presto ...

Generation:

X

19

XX

XX
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And presto ...

Generation:

X

2@\

X

XXX

Back to the same configuration as Generation O,
but shifted right several cells. The glider is coiling
around the donut!
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What are the boundary conditions for this problem, and did we forget them?

For example, what if the height of the Universe were only 4? To try it out, change N, and
invoke CellularAutomaton.main().

Generation: ©
X

X
XXX

suonipuo) Aiepunog

== Boundary conditions. Dead last, but don’t forget them.




What are the boundary conditions for this problem, and did we forget them?

For example, what if the height of the Universe were only 4? To try it out, change N, and
invoke CellularAutomaton.main().

Generation: ©

X
X
XXX
Generation: 1 There isn’t enough “elbowroom” around the glider, and it is
interfering with its own propagation. By generation 6, all life is gone!
X_X
XX Should your program be defensive and prevent this, or is this just
X X how life goes?

suonipuo) Aiepunog

== Boundary conditions. Dead last, but don’t forget them.




Summary:

The notion of a class has been introduced as a means for aggregating variables and
methods.

Many standard precepts, patterns, and recommended coding techniqgues have been
illustrated.

And the Game of Life itself is fascinating.
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