
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Collections

Copyright©2023 by Tim Teitelbaum; Most recent revision, 12/16/2024

Until now, we have searched in arrays, and have rearranged their values, but the set of
values stored in the array has been static, i.e., fixed and unchanging during program
execution.

A collection is a set of values that is dynamic, i.e., its size and members change during
execution.

We consider three ways to represent a collection:

• Lists
• Histograms
• Hash Tables

The need to dynamically increase the size of an array leads naturally to the revelation that
arrays are objects, and to a discussion of Two-Dimensional Arrays.

0 n

A

The following data structure, known as a list, represents a collection of integers.

/* A[0..size-1] are the current items in A[0..n-1], 0≤size≤n. */
 int A[]; // receptacle for items in a list.
 int size; // current # of elements in list, 0≤size≤n.
 int n; // maximum # of elements storable in the list.

• The number of items in the list at any given moment is size.
• The number of items that can be stored in the list is limited by n, the length of the array.
• The items in the list are stored in A[0..size-1].
• Array elements A[size..n-1] are unused, and are available for additional items.
• Because items may repeat, the collection is a multiset, i.e., a set with multiplicity.

0 n

A items of collection unused

s
iz

e

Given a multiset M and a value v, we want (at least) these operations:

• Add an instance of v to M, i.e., increase its multiplicity.

• Remove an instance of v from M if it is in M, i.e., decrease its multiplicity.

• Test membership of v in M, i.e., ask if its multiplicity is greater than zero.

• Obtain the multiplicity of v in M.

• Enumerate the elements of M in an arbitrary order, i.e., list them off, repeating m
times an element with multiplicity m.

0 n

A items of collection unused

s
iz

e

Add:

0 n

A items of collection unused

s
iz

e

/* Add v to A. */
 /* Ensure that A has the capacity for another element. */
 if (size==n) /* Make room for more values, or sound an alarm. */
 A[size] = v;
 size++;

Remove:

0 n

A items of collection unused

s
iz

e

/* Remove v from A. */
 int k = indexOf(v, A, size);
 if (k==size) /* v is not in A. */
 else { size--; A[k] = A[size]; }

where indexOf is a method to find v in A[0..size-1] using sequential-search:

/* Return k, a location of v in A, or return size if no v in A. */
static int indexOf(int v; int A[], int size) {
 int k = 0;
 while (k<size && A[k]!=v) k++;
 return k;
 }

Membership:

0 n

A items of collection unused

s
iz

e

/* Set b to true if v is in A, and false otherwise. */
 int k = indexOf(v, A, size);
 boolean b = (k<size);

Multiplicity:

0 n

A items of collection unused

s
iz

e

/* Set m to the multiplicity of v in A. */
 int m = 0;
 for (int k=0; k<size; k++) if (A[k]==v) m++;

Enumeration:

0 n

A items of collection unused

s
iz

e

/* Enumerate elements of A. */
 for (int k=0; k<size; k++) /* Do whatever for A[k]. */

Performance:

0 n

A items of collection unused

s
iz

e

Operation Steps

add constant

remove worst case linear in size

membership worst case linear in size

multiplicity linear in size

enumeration linear in size

The items in the collection can be maintained as an indexable list, sometimes referred to as
an ordered list.

As a consequence, the enumeration of collection members will be in the given order.

(Note that the ordering is determined by the client, and is not based on the normal
arithmetic ordering of values.)

To insert an item (green) at the kth index, first shift A[k..size-1] right one element:

Conversely, to delete the kth item (green), shift A[k+1..size-1] left one element:

0 n

A items of ordered collection unused

s
iz

e

0 k n

A unused

s
iz

e
0 k n

A unused
s

iz
e

Add into ordered list:

/* Add v at position k of A. */
 /* Check index. */
 if (k>size) /* Alert: Bad index. */
 /* Ensure that A has the capacity for another element. */
 if (size==n) /* Make room for more values. */
 /* Shift A[k..size-1] right one place to make room for v. */
 for (int j=size-1; j>=k; j--) A[j+1] = A[j];
 A[k] = v;
 size++;

Performance:

To add an item at index k requires effort proportional to size-k.

0 k n

A unused

s
iz

e

0 k n

A unused

s
iz

e

(before)

(after)

Remove from ordered list:

/* Remove v from position k of A. */
 /* Check index. */
 if (k>=size) /* Alert: Bad index. */
 size--;
 /* Shift A[k+1..size] left one place to squeeze out v. */
 for (int j=k; j<size; j++) A[j] = A[j+1];

0 k n

A unused

s
iz

e

0 k n

A unused

s
iz

e

(before)

(after)

Performance:

To remove an item at index k requires effort proportional to size-k.

0 n

A items of collection

s
iz

e

/* Add v to A. */
 /* Ensure that A has the capacity for another element. */
 if (size==n) /* Make room for more values, or sound an alarm. */
 A[size] = v;
 size++;

Add: When the array containing items of a collection is full, …

*C/C++

This section is not valid for C-style arrays in C/C++. Rather, it can be read as describing one of the alternatives to
C-style arrays that are available in C++.

Add: When the array containing items of a collection is full, we wish to increase its capacity.

0 n

A items of collection

s
iz

e

/* Add v to A. */
 /* Ensure that A has the capacity for another element. */
 if (size==n) { A = ensureCapacity(A); n = A.length; }
 A[size] = v;
 size++;

This statement doubles the length of A while retaining its values.

This statement updates n, where we have maintained the length of an array A in a separate
variable. We have done so, but didn’t need to because it was available as A.length all along.

Add: To understand how this works, know that

What has been depicted as
0 n

A

0 n

A

is really

The value in A (the) is called a reference
to an object (the int array).

s
iz

e

What has been depicted as
0 n

A

0 n

valuesA

is really

The capacity of the array object referred to by A can be
doubled by allocating a new int array object of twice
the length, copying the values from the old object to
the new object, and making A refer to the new object.

0 n

copy of values free

Add: To understand how this works, know that

s
iz

e

The value in A (the) is called a reference
to an object (the int array).

Aliases: To really understand how this works, consider this code:

int A[] = new int[10];
int B[] = A;
A[0] = 7;
B[0] = 8;
System.out.println(A[0]); // What does this line print?

The first line declares A, allocates an
array object of length 10, and assigns a
reference to that object to A.

A
0 10

Aliases: To really understand how this works, consider this code.

int A[] = new int[10];
int B[] = A;
A[0] = 7;
B[0] = 8;
System.out.println(A[0]); // What does this line print?

The second line declares B, and assigns
the contents of A (the reference) to B.

0 10

A

B

Aliases: To really understand how this works, consider this code.

int A[] = new int[10];
int B[] = A;
A[0] = 7;
B[0] = 8;
System.out.println(A[0]); // What does this line print?

The third line assigns 7 to be the
contents of A[0], the 0th variable in
the array object referred to by A.

0 10

7A

B

Aliases: To really understand how this works, consider this code.

int A[] = new int[10];
int B[] = A;
A[0] = 7;
B[0] = 8;
System.out.println(A[0]); // What does this line print?

The fourth line assigns 8 to be the
contents of B[0], the 0th variable in
the array object referred to by B.

0 10

8A

B

Aliases: To really understand how this works, consider this code.

int A[] = new int[10];
int B[] = A;
A[0] = 7;
B[0] = 8;
System.out.println(A[0]); // What does this line print?

The fifth line prints the contents of
A[0], the 0th variable in the array
referred to by A.

0 10

8A

B
It prints 8.

Aliases: To really understand how this works, consider this code.

int A[] = new int[10];
int B[] = A;
A[0] = 7;
B[0] = 8;
System.out.println(A[0]); // What does this line print?

The fifth line prints the contents of
A[0], the 0th variable in the array
referred to by A.

0 10

8A

B
It prints 8.

A and B are aliases that refer to the same object,
just as morningStar and eveningStar are
aliases that both refer to the same planet, Venus.

EnsureCapacity:

valuesA

/* Return a reference to a copy of A in an object that is twice as long. */
static int[] ensureCapacity(int A[]) {
 /* Make B refer to an object that is twice as long as A. */
 int B[] = new int[2*A.length];
 /* Copy the values from A (the old object) to B (the new object). */
 for (int k=0; k<A.length; k++) B[k] = A[k];
 return B;
 } /* ensureCapacity */

A
.l

e
n

g
th

valuesA

/* Return a reference to a copy of A in an object that is twice as long. */
static int[] ensureCapacity(int A[]) {
 /* Make B refer to an object that is twice as long as A. */
 int B[] = new int[2*A.length];
 /* Copy the values from A (the old object) to B (the new object). */
 for (int k=0; k<A.length; k++) B[k] = A[k];
 return B;
 } /* ensureCapacity */

B

EnsureCapacity:

A
.l

e
n

g
th

valuesA

/* Return a reference to a copy of A in an object that is twice as long. */
static int[] ensureCapacity(int A[]) {
 /* Make B refer to an object that is twice as long as A. */
 int B[] = new int[2*A.length];
 /* Copy the values from A (the old object) to B (the new object). */
 for (int k=0; k<A.length; k++) B[k] = A[k];
 return B;
 } /* ensureCapacity */

copy of valuesB

EnsureCapacity:

A
.l

e
n

g
th

/* Return a reference to a copy of A in an object that is twice as long. */
static int[] ensureCapacity(int A[]) {
 /* Make B refer to an object that is twice as long as A. */
 int B[] = new int[2*A.length];
 /* Copy the values from A (the old object) to B (the new object). */
 for (int k=0; k<A.length; k++) B[k] = A[k];
 return B;
 } /* ensureCapacity */

copy of values

EnsureCapacity:

Array parameters: We can now finally understand how array parameters work.

int A[] = { 10, 20, 30 };
Reverse(A,0,2);

Array parameters: We can now finally understand how array parameters work.

int A[] = { 10, 20, 30 };
Reverse(A,0,2);

0 1 2 3

10 20 30A

Array parameters: We can now finally understand how array parameters work.

int A[] = { 10, 20, 30 };
Reverse(A,0,2);

0 1 2 3

10 20 30A

static void Reverse(int A[], int L, int R) {
 while (L<R) {

/* Swap A[L] and A[R]. */
int temp = A[L]; A[L]=A[R]; A[R]=temp;

L++; R--;
}

 }

A

L

R

Array parameters: We can now finally understand how array parameters work.

int A[] = { 10, 20, 30 };
Reverse(A,0,2);

static void Reverse(int A[], int L, int R) {
 while (L<R) {

/* Swap A[L] and A[R]. */
int temp = A[L]; A[L]=A[R]; A[R]=temp;

L++; R--;
}

 }

0 1 2 3

10 20 30A

A

0L

2R

The blue A and the green A are aliases.

Array parameters: We can now finally understand how array parameters work.

int A[] = { 10, 20, 30 };
Reverse(A,0,2);

0 1 2 3

10 20 30A

static void Reverse(int A[], int L, int R) {
 while (L<R) {

/* Swap A[L] and A[R]. */
int temp = A[L]; A[L]=A[R]; A[R]=temp;

L++; R--;
}

 }

A

0L

2R

10temp

Array parameters: We can now finally understand how array parameters work.

int A[] = { 10, 20, 30 };
Reverse(A,0,2);

0 1 2 3

30 20 30A

static void Reverse(int A[], int L, int R) {
 while (L<R) {

/* Swap A[L] and A[R]. */
int temp = A[L]; A[L]=A[R]; A[R]=temp;

L++; R--;
}

 }

A

0L

2R

10temp

Array parameters: We can now finally understand how array parameters work.

int A[] = { 10, 20, 30 };
Reverse(A,0,2);

0 1 2 3

30 20 10A

static void Reverse(int A[], int L, int R) {
 while (L<R) {

/* Swap A[L] and A[R]. */
int temp = A[L]; A[L]=A[R]; A[R]=temp;

L++; R--;
}

 }

A

0L

2R

10temp

Array parameters: We can now finally understand how array parameters work.

int A[] = { 10, 20, 30 };
Reverse(A,0,2);

0 1 2 3

30 20 10A

static void Reverse(int A[], int L, int R) {
 while (L<R) {

/* Swap A[L] and A[R]. */
int temp = A[L]; A[L]=A[R]; A[R]=temp;

L++; R--;
}

 }

A

1L

2R

10temp

Array parameters: We can now finally understand how array parameters work.

int A[] = { 10, 20, 30 };
Reverse(A,0,2);

0 1 2 3

30 20 10A

static void Reverse(int A[], int L, int R) {
 while (L<R) {

/* Swap A[L] and A[R]. */
int temp = A[L]; A[L]=A[R]; A[R]=temp;

L++; R--;
}

 }

A

1L

1R

10temp

Array parameters: We can now finally understand how array parameters work.

int A[] = { 10, 20, 30 };
Reverse(A,0,2);

0 1 2 3

30 20 10A

static void Reverse(int A[], int L, int R) {
 while (L<R) {

/* Swap A[L] and A[R]. */
int temp = A[L]; A[L]=A[R]; A[R]=temp;

L++; R--;
}

 }

A

1L

1R

10temp

Array parameters: We can now finally understand how array parameters work.

int A[] = { 10, 20, 30 };
Reverse(A,0,2);

0 1 2 3

30 20 10A

Critique:

Representing a collection as a list of items in an array is fundamental, and the
operations for doing so should be at your ready disposal. Thus, they are presented as
patterns that you should master. However, writing such code directly in your program
has several drawbacks:

• The collection has no single name, and thus it is not easily manipulated as one thing.

• The collection’s implementation details are not hidden, and thus your program can
both break the data structure’s representation invariant and come to excessively
depend on its details.

These limitations are addressed in Chapter 18 Classes and Objects, where the collection
implementation is factored into a separate definition: ArrayList:

• References to instances of ArrayList can be manipulated as one thing.

• The details of an ArrayList are hidden using the class’s visibility mechanism.

This allows easy replacement of one collection implementation with another.

0 n

A items of collection unused

s
iz

e

A multiset of integer values in the range 0 through maxValue can be represented as a histogram.

/* Collection of items in range 0..maxValue, where multiplicity of v is H[v]. */
 int H[] = new H[maxValue+1];

m
a

x
V

a
lu

e

0 1 2 3 …

H

Add:

/* Add v to H. */
 H[v]++;

m
a

x
V

a
lu

e

0 1 2 3 …

H

Remove:

/* Remove v from H. */
 if (H[k]==0) /* Alarm: attempt to remove a value not in H. */
 else H[k]--;

m
a

x
V

a
lu

e

0 1 2 3 …

H

Membership:

/* b = true iff v is in H. */
 boolean b = (H[v]>0);

m
a

x
V

a
lu

e

0 1 2 3 …

H

Multiplicity:

/* m = Multiplicity of v in H. */
 int m = H[v];

m
a

x
V

a
lu

e

0 1 2 3 …

H

Enumeration:

/* Enumerate elements of H. */
 for (int k=0; k<=maxValue; k++)
 for (int j=1; j<=H[k]; j++)
 /* Enumerate k. */

m
a

x
V

a
lu

e

0 1 2 3 …

H

Performance:

Operation Steps

add constant

remove constant

membership constant

multiplicity constant

enumeration linear in maxValue + number of elements in the multiset

m
a

x
V

a
lu

e

0 1 2 3 …

H

Limitation. Enumeration of small multisets of values in a large range is not efficient.

Other Limitations:

• Integer items. Elements of the multiset must be integers. In contrast, lists can store any type of
value, and Sequential Search can be used to find values of any type in a list, provided an equality
operation is provided for that type.

• Limited range. The integer elements of the multiset must lie in a limited range for which there is
enough memory for the histogram, H[0..maxValue].

• Associated values. The histogram representation does not provide an obvious way to represent
the associated value components of ⟨key,value⟩ pairs. In contrast, to represent a multiset of
⟨key,value⟩ pairs in the list representation, not just integer keys, one can store the keys in one
array, say, A[0..n-1], and the values in a parallel array, say, B[0..n-1]. Alternatively, array A
can contain references to ⟨key,value⟩-pair objects, and the implementation of the multiset
operations can be adapted to inspect the key fields of those objects.

m
a

x
V

a
lu

e

0 1 2 3 …

H

Ramanujan Cubes, continued: An application of histograms

/* Confirm Ramanujan’s claim that 1729 is the smallest number that is the
 sum of two positive cubes in two different ways. */
 /* Record the values of r^3+c^3 that arise for all sets {r,c} of
 distinct nonnegative integers that are no larger than 12. */
 for (int r=1; r<13; r++)
 for (int c=0; c<r; c++)
 /* Keep track of having seen r^3+c^3. */
 /* Confirm that 1729 is the smallest integer that arose twice. */

Ramanujan Cubes, continued: An application of histograms, manual review of output.

int N = 12*12*12+11*11*11+1; // (max r)^3+(max c)^3+1, for r!=c in [0..12].
int H[] = new int[N]; // H[k] = # of {r,c}, r!=c, s.t. k=r^3+c^3.
/* Confirm Ramanujan’s claim that 1729 is the smallest number that is the
 sum of two positive cubes in two different ways. */
 /* Let H be a histogram of r^3+c^3, for each set {r,c} of distinct
 nonnegative integers that are no larger than 12. */
 for (int r=1; r<13; r++)
 for (int c=0; c<r; c++)

H[r*r*r+c*c*c]++;
 /* Output non-zero bins of histogram H. */
 for (int k=0; k<N; k++)
 if (H[k]>0) System.out.println(k + " " + H[k]);

Ramanujan Cubes, continued: An application of histograms, automated confirmation.

int N = 12*12*12+11*11*11+1; // (max r)^3+(max c)^3+1, for r!=c in [0..12].
int H[] = new int[N]; // H[k] = # of {r,c}, r!=c, s.t. k=r^3+c^3.
/* Confirm Ramanujan’s claim that 1729 is the smallest number that is the
 sum of two positive cubes in two different ways. */
 /* Let H be a histogram of r^3+c^3, for each set {r,c} of distinct
 nonnegative integers that are no larger than 12. */
 for (int r=1; r<13; r++)
 for (int c=0; c<r; c++)

H[r*r*r+c*c*c]++;
 /* Let k be smallest index s.t. H[k]>1. */
 int k=0;
 while (H[k]<2) k++;
 if (H[k]==2 && k==1729) System.out.println("confirmed");
 else System.out.println("not confirmed");

Hash Tables combine the good aspects of lists and histograms.

… …

3

2

1

0

H

maxValue

Start with a histogram H[0..maxValues].

*C/C++

This section is not valid for C-style arrays in C/C++. Rather, it can be read as describing one of the alternatives to
C-style arrays that are available in C++.

To implement a collection of items that have keys of an arbitrary type t:
• Introduce function hash: t → 0..231-1 that maps type-t keys into uniformly-distributed integers in 0..231-1.
• Replace the histogram multiplicities in H[0..hSize] with references to sub-collections of items.
• All items that hash to k are stored in sub-collection H[k mod hSize].
• Dynamically adjust hSize, as needed, to keep H and sub-collections not too big and not too small.

… …

3

2

1

0

H

hSize

s3 n3

items unused

s2 n2

items unused

s1 n1

items unused

s0 n0

items unused

Hash Tables combine the good aspects of lists and histograms.

To implement a collection of items that have keys of an arbitrary type t:
• Introduce function hash: t → 0..231-1 that maps type-t keys into uniformly-distributed integers in 0..231-1.
• Replace the histogram multiplicities in H[0..hSize] with references to sub-collections of items.
• All items that hash to k are stored in sub-collection H[k mod hSize].
• Dynamically adjust hSize, as needed, to keep H and sub-collections not too big and not too small.

… …

3

2

1

0

H

hSize

s3 n3

items unused

s2 n2

items unused

s1 n1

items unused

s0 n0

items unused

Hash Tables combine the good aspects of lists and histograms.

When the total number of items exceeds
some given threshold, halve sub-collection
Sequential Search times by:
• Doubling hSize and reallocating items

to appropriate new half-length sub-
collection.

To implement a collection of items that have keys of an arbitrary type t:
• Introduce function hash: t → 0..231-1 that maps type-t keys into uniformly-distributed integers ≥ 0.
• Replace the histogram multiplicities in H[0..hSize] with references to sub-collections of items.
• All items that hash to k are stored in sub-collection H[k mod hSize].
• Dynamically adjust hSize, as needed, to keep H and sub-collections not too big and not too small.

Hash Tables combine the good aspects of lists and histograms.

item item item item item item

item

item item

hSize When the total number of items exceeds
some given threshold, halve sub-collection
Sequential Search times by:
• Doubling hSize and reallocating items

to appropriate new half-length sub-
collection.

• In practice, the sub-collections are often
implemented as linked item holders, a
data structure known as a linked list.

… …

3

2

1

0

H

Two-dimensional arrays are really one-dimensional arrays of one dimensional arrays.

int A[][] = new int[3][3];

2

1

0
0 1 2

0 1 2

0 1 2

A

*C/C++

This section is not valid for C-style arrays in C/C++. Rather, it can be read as describing one of the alternatives to
C-style arrays that are available in C++.

Two-dimensional arrays are really one-dimensional arrays of one dimensional arrays.

/* Create a 3-by-3 triangular array. */
 int A[][] = new int[3][];
 for (int r=0; r<3; r++) A[r] = new int[r+1];

There is no requirement that “row” arrays have equal length.

Create an array for the rows, but not the rows themselves.

Create the rows themselves, and refer to them in A.2

1

0
0

0 1

0 1 2

A

	Title
	Slide 1

	Introduction
	Slide 2

	Lists
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

	Histograms
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

	Hash Tables
	Slide 51
	Slide 52
	Slide 53
	Slide 54

	Two-Dimensional Arrays
	Slide 55
	Slide 56

